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ABSTRACT

The integration of a renewable energy distributed generation into microgrids
poses a significant constraint in the way power is managed, further so due to

the natural variability in renewable generation and the variability in the load OPEN ACCESS
demands. To address these issues, this paper introduces a novel approach
to the Spider Swarm Optimization (SSO) algorithm, the Dynamic Load- Received: 25/10/2025

Adaptive Power Splitting (DLAPS) strategy, to enable real-time adaptive

power sharing and enhance system resilience. Unlike the classical methods Accepted: 17/11/2025

of power allocation that are static, according to which the power is divided DOI

between sources of renewable energy and storage systems, and between these 10.23967/j.rimni.2026.10.75125
sources and critical loads, the DLAPS-SSO applies the idea of a machine

learning based predictive model to predict the power and dynamically Keywords:

optimize power allocation between the sources of renewable energy and
storage systems and the sources and the critical loads. The model provides a
multi-objective optimization framework that aims to minimize power losses
and grid frequency variations, and to maximize the system’s resilience to
disturbances, including disconnection from the grid, component malfunc-
tions, and the availability of renewable energy sources. The comparison of
simulation results with those of the Particle Swarm Optimization (PSO)
and Genetic Algorithm (GA) methods shows that the energy efficiency of
the DLAPS-SSO increases by 15%-20%, and the amount of power losses
across various load profiles decreases by 30%—-35%. Moreover, the proposed
solution offers 60% faster recovery time in case of grid disconnection, main-
tains 65.9% of the critical load in case of component failure, and provides
40%-50% less resilience than state-of-the-art techniques. The analysis of
seasons and real data shows that there is stability of the behavior with
the increase of efficiency (18%-22% during winter, and 23%-25% during
summer), and the ability of the suggested approach to be robust when chang-
ing plant configuration/operation. Integration of optimization of dynamic
load management and adaptive power splitting will spur microgrid control
strategies and offer a viable strategy to stabilize the grid, reduce operation
costs, and enable sustainable changes in energy transformations. The results
demonstrate the essential role of bio-inspired optimization and reactivity in
the next generation of smart grids.
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1 Introduction

Timely adoption of renewable energy sources (RES) in contemporary microgrids has subjected
enormous challenges in power management due to the uncertainty of the nature of the RES and
dynamic load demands [l]. Even though the availability and sustainability of energy have been
enhanced by microgrids, the efficiency and robustness of microgrids cannot yet match those of tradi-
tional energy control systems, which are incapable of managing energy allocation in real time [2]. The
hierarchical controls of a rule-based nature [3] and the static dispatch programs for power generation
[4] tend to overlook the probabilistic interactions among generation, storage, and load shape, thereby
leading to inefficient and insecure behavior during grid disturbances [5]. Recent literature indicates
that over 60% of microgrid instabilities are caused by inadequate dynamic power system control and
the slow response to the randomness of renewable energy resources [6,7], underscoring the significance
of advanced control methods.

The limitations of existing energy management systems are as follows: (1) deterministic load
predictions that ignore real-time variations [8], (2) the decentralized nature of controllers that do not
cooperate much in either islanding or faults [9], and (3) heuristic optimization models like Particle
Swarm Optimization (PSO) and Genetic Algorithms (GA) are likely to converge prematurely in a
high-dimensional search space [10]. For example, PSO-oriented approaches are at least 22% less
efficient under rapid load changes [10], and GA-based methods struggle with resilience optimization
in the presence of multi-component failures [11]. Although model predictive control (MPC) can
enhance transient response [12], its computational complexity makes it challenging to scale up to large
microgrid networks [13]. It is these gaps that drive the creation of a single framework to unify adaptive
power splitting with bio-inspired optimization for real-time decision-making [14,15].

To overcome such challenges, the paper proposes a Dynamic Load-Adaptive Power Splitting
(DLAPS) strategy combined with a Spider Swarm Optimization (SSO) algorithm. The three main ones
include (1) to decrease power losses by 30%—-35% using machine learning-based load forecasting and
adaptive resource allocation, (2) to raise resilience by maintaining 65.9% of critical load during grid
disconnections and component failures, and (3) to provide uniform performance across seasonal and
temporal changes by using a multi-objective optimization model. The framework is more innovative
in four ways than the current approaches: First, the architecture integrates a hybrid prediction-
optimization framework that combines long short-term memory (LSTM) networks with the parallel
search mechanism of SSO to overcome the short-sighted convergence of PSO/GA [10]. Second, it uses
a dynamic model of redundancy allocation based on self-healing microgrid approaches [16], enabling
power restoration 60 times faster than traditional approaches [17]. Third, the formulation only reduces
the second-order fluctuations in power (d2P/dt2) to stabilize frequency variations below 0.1 Hz [1§],
which is also a crucial gap in DC microgrid voltage control [2]. Fourth, it combines resilience and
efficiency measures through a weighted performance index, building on past single-objective models
[11,19].

The value of this work is supported by a comparative analysis with seven current state-of-the-art
approaches across three operating scenarios: grid-connected, islanded, and fault-recovery mode. The
findings show that DLAPS-SSO is 15%-20% more efficient than PSO-based strategies [10] and 59.7%
more efficient than MPC strategies for load shedding in the presence of renewable intermittency [12].
Moreover, the decentralized architecture of the framework is also in compliance with the conservative
power theory principles [18], which guarantees voltage stability and allows serving heterogeneous
resources, which is a critical step toward smart microgrids [20].
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This work’s novelty is architectural and integrative: it builds a single closed-loop microgrid
controller that (i) couples temporal-attention LSTM forecasting (5-s horizon) with (ii) a stability-aware
multi-objective power-splitting layer that penalizes second-order power derivatives for frequency/volt-
age smoothing, (iii) a resilience module that performs component-level redundancy allocation from
learned failure probabilities and sub-200 ms activation, and (iv) a Spider Swarm Optimization back-
end with adaptive inertia and vibration-guided constraint handling for fast, feasible dispatch every
2 s. While LSTM forecasting, redundancy management, and metaheuristics exist independently, we
could not find a prior framework that unifies all four components into a single real-time pipeline,
integrates stability directly into the objective, and demonstrates consistent efficiency/resilience gains
with sensitivity and Monte Carlo evidence under the same operating conditions. This system-level
composition is what enables the reported improvements and HIL-ready timing margins, rather than
any single new algorithmic primitive.

The remainder of this paper will be organized as follows: In Section 2, the related literature part
including the current micro grid control strategies and the limitations are presented. Section 3 describes
the methodology part including DLAPS-SSO formulation, which is the SSO algorithm and resilience
optimization model. Section 4 is a discussion of simulation results and comparisons and Section 5 is
a discussion of practical implications and future work and extends the dynamic load management to
adaptive resilience.

2 Literature Review
2.1 Introduction to Microgrid Energy Management

As renewable generation increases in microgrids more sophisticated energy management strategies
are required for stable, efficient, and resilient operation of the system. The existing method of
distributing power follows the conventional engineered system, which has a predetermined allocation
of resources, but is unable to handle a variable amount of renewable generation and uncertain periodic
demand [1]. Hence, more advanced microgrid energy management systems have emerged with an
optimal power sharing solution with the integration of optimization algorithms and predictive load
forecasting mechanisms to improve grid stability [5,7].

2.2 Microgrid Energy Management and Control Strategies

Recent research has demonstrated the importance of well-designed energy management strategy
of MGs (Micro Grids), which are especially for distributed generations (DG) and emergency power
loads[1,5]. Different methods, such as centralized, decentralized and hierarchical control schemes have
been developed for energy dispatch in a microgrid [9]. Energy management at a centralized level works
well for instantaneous decision making but usually involves excessive computational complexity and
communication delays [14]. To the contrary, decentralized and distributed control approaches achieve
scalability and robustness by having each microgrid component make autonomous decisions based on
local conditions [21].

The crucial role of voltage control strategies on the stable operation of microgrids is highlighted
in a detailed survey paper by Al-Ismail [2]. Control philosophies, such as droop control and model
predictive control (MPC), can be used to achieve an efficient integration of renewable energy sources
with reduced power fluctuations [8,12]. Hybrid ESSs such as a battery-flywheel combination have also
been suggested for appreciating voltage stabilization and transient power power offset removal [13].
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2.3 Power Quality and Resilience in Microgrids

Power quality improvement is still a main issue in the operation of microgrids, especially single-
phase and islanded ones. Alhaiz et al. [0] give a comprehensive overview of PQ improvement methods
and focus on the role of reactive power compensation solutions, harmonic filtering solutions and
voltage regulation solutions. In addition, resiliency in the microgrid has been considered as a design
focus and many works are concerned with self-healing, load recovery, and fault tolerant control
design [16,17]. Chi and Xu [22] provide the resiliency-based view of microgrids by focusing on the
robustness of energy management solutions to stand against grid outages and renewable power
intermittency. Sophisticated optimization methods, such as evolutionary algorithms and heuristic
controllers, have been utilized to increase microgrid resilience under different operating conditions
[15,20]. The blockchain and the IoT-based smart contracts integration for improving the grid resilience
for facilitating real-time decision making and securing energy transactions has also been examined [20].

2.4 Optimization Techniques for Adaptive Power Splitting

Optimized-based energy management strategies are the cornerstone for improving microgrid
efficiency. The conventional optimization methods, e.g., Genetic Algorithms (GA) and Particle Swarm
Optimization (PSO), are popularly used for optimal power dispatch and load balancing in microgrids
[4,10]. However, such techniques rarely have a slow convergence speed and local optimal problem;
thus, some advanced metaheuristic algorithms need to be proposed.

In recent years, bio-inspired optimization methods have been used and among them, SSO has
been adopted for adaptive power splitting in microgrids [23]. Contrary to traditional operations, SSO
adapts the allocation of power in a continuous and dynamic way according to real-time load dynamics
and the availability of renewable sources in order to reduce power losses and enhance the efficiency of
the whole system [3]. SSO is superior to conventional GA and PSO in terms of efficiency and solution
quality according to the comparative results [10].

While metaheuristic techniques are widely adopted, recent studies have applied deep reinforce-
ment learning (DRL) frameworks such as DDPG, PPO, and A2C for adaptive microgrid control.
These methods were evaluated offline for benchmarking, but due to their significantly higher compu-
tational demands and training instability under rapidly varying renewable conditions, they were not
selected for final deployment. All baselines were implemented under the same operating conditions
and tuned using consistent hyperparameter search limits to ensure fair comparison.

2.5 Seasonal and Temporal Considerations in Microgrid Operations

Microgrid performance is significantly different for various seasons since the solar irradiation,
wind patterns, and load demand profiles change. It has been reported in some empirical research that
winter energy efficiency improvement varies from 18%-22%, while summer energy efficiency improve-
ment is from 23%-25%, highlighting the importance of seasonally adaptive energy management [11].

Li et al. [11] consider the energy storage and human-factors-perceived user experience models
in the isolated MG dispatch problem. They show that to enhance energy reliability and satisfy users,
adaptive power splitting methods should be utilized. Additionally, the comparative analysis of seasonal
recovery of loads methods demonstrate that microgrid resilience is less robust during the winter season
when robust fault tolerant mechanisms must be implemented [19,24].
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2.6 Future Directions and Research Gaps

Although there has been tremendous progress in terms of microgrid energy management, there are
research challenges. To begin with, currently used optimization methods are not scalable to large-scale
microgrids with a number of distributed energy resources [7]. Second, there is still ongoing research
to integrate the artificial intelligence (AI)-based predictive models of real-time load forecasting and
dynamic allocation of power [25].

Moreover, the resilience improvement plans will need subsequent improvement so that the quick
recovery of power during natural disasters and unpredictable grid failures is possible [18]. The future
study must look into hybrid optimization models that integrate metaheuristic with deep reinforcement
learning methods to be more efficient and resilient in the microgrid process [12,24].

The vast majority of the literature ([1,4,10]) is devoted to single-objective optimization without
considering the efficiency-resilience trade-off that is emphasized in [ 1 1]. Decentralized methods ([9,19])
are flexible but not as stable as centralized methods ([13,17]) are. Results on physical testbeds are
only validated in [6,13] and others are only based on simulations. Heuristic techniques [10] are more
convergent than mathematical programming ([17,19]) but have a premature convergence. Table |
provides a systematic comparison of the previous literature, which gives an evident rationale of our
DLAPS-SSO model.

Table 1: Comparative analysis of microgrid resilience and adaptive power splitting strategies

Study Focus Methodology Key findings Advantages Limitations
Ahmad Microgrid energy ~ Comprehensive Centralized methods  Identifies trends in Lacks implementation
etal. [1] management review of offer stability but lack hybrid control guidelines for
centralized vs. scalability; architectures real-world systems
decentralized decentralized
control strategies  approaches improve
flexibility but increase
communication
overhead
Al-Ismail ~ DC microgrid Hierarchical Achieved <1% Robust for radial ~ Limited to
2] voltage control control voltage deviation DC microgrid steady-state analysis;
architecture with  under 50% load topologies ignores transient
droop regulation  variation dynamics
Alhaiz Power quality in Active filtering +  Reduced THD by Effective for High computational
et al. [0] single-phase model predictive 68% compared to harmonic cost for large-scale
microgrids control (MPC) passive filters mitigation systems
Amir Standalone Split-horizon Reduced operational ~ Balances Assumes perfect load
et al. [4] microgrid dispatch dual-stage costs by 22% in short-term and forecasting
optimization islanded mode long-term
objectives
Bose Islanded Mixed-integer Achieved 85% critical ~ Scalable for Requires central
etal. [17] microgrid linear load restoration medium-sized controller; slow for
restoration programming within 15 mins microgrids large networks
(MILP)
formulation
Espina Distributed Multi-agent 40% faster Resilient to Limited to
et al. [9] microgrid control  consensus convergence than communication homogeneous
algorithms conventional PI failures resource networks
control
(Continued)
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Table 1 (continued)

Study Focus Methodology Key findings Advantages Limitations
Hou Shipboard Hybrid Reduced peak battery Extends battery Complex parameter
etal. [13] microgrid energy  battery-flywheel stress by 45% lifespan tuning required
storage MPC
Li Isolated microgrid Multi-objective Improved user Balances technical Computationally
etal. [11] dispatch optimization satisfaction by 35% and user-centric intensive (avg. 8
(NSGA-II) with 12% efficiency metrics min/solution)
loss
Park Proactive Nested chance- Reduced outage Handles renew- Conservative
etal. [19] resilience constrained probability by 28% able/stochastic solutions due to
management programming under uncertainty load variability probabilistic bounds
Yousif Distributed PSO with dynamic Reduced power losses Fast convergence  Performance degrades
etal. [10] microgrid dispatch inertia weighting by 18% vs. rule-based  (avg. 12 iterations) with >15 distributed
methods units

This systematic literature review demonstrates the development of the microgrid energy
management strategies, which are adaptive power splitting, optimization methods, and resilience
enhancement. The combination of bio-inspired algorithms, real-time predictive models, and seasonal
regulation schemes is a potentially fruitful area of development of next-generation types of microgrids.
With the integration of solutions to existing research gaps and by capitalizing on new technologies,
future microgrid systems will have the potential to be more efficient, stable, and sustainable in the
process of switching to smart energy networks.

3 Methodology

The suggested framework Dynamic Load-Adaptive Power Splitting (DLAPS) will utilize three
technical innovations to solve the problem of modern microgrids operations: (1) hybrid prediction-
optimization frameworks that combine temporal attention-based LSTM forecasting and swarm
intelligence, (2) stability-aware multi-objective optimization with second-order constraints on power
derivatives, and (3) dynamic allocation of redundancy with adaptable reserves to failure probabilities.
The methodology as shown in Fig. | has a four stage cascaded architecture which combines machine
learning prediction, physics-constrained optimization and bio-inspired search in a synergistic way to
realise real-time adaptive control.

Machine Learning Model Architecture and Inputs:

The predictive layer in Phase I employs a temporal-attention LSTM architecture consisting of
two recurrent layers (64 and 32 neurons), followed by a dense output layer. The model receives a
multi-feature input vector comprising historical load curves, solar irradiance, wind speed, ambient
temperature, critical-load priority signals, battery state-of-charge, real-time frequency deviation, and
price signals. The network outputs short-term (5-s horizon) forecasts for net-load demand and
renewable generation, which serve as forward-looking states for Phase II optimization. Model training
was performed using Adam optimizer (learning rate 0.001), sequence length of 60 timestamps, batch
size 64, and 200 epochs with 80/20 training-validation split. Additionally, the failure-probability
assessment module uses a three-layer MLP (128-64-32 neurons with ReLU activation) that takes equip-
ment health indices, switching patterns, and temperature profiles as inputs and outputs a real-time
reliability score to support the redundancy allocation in Phase III. The combined predictive outputs
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ensure that DLAPS-SSO reacts proactively to demand fluctuations and renewable intermittency while
dynamically adjusting risk-aware reserves.

o TE e S tentto Tl ForccasnnglP“"“"“"' Load Profiles [lescl o i od Ontimizati ] Stable Power Allocation [

Phase III:Dynamic Redundancy Allocation

- Optimized Parameters’
Real-Time Sensor Data deémporal Attention LSTM Second-Order Derivative ('ull,\ll‘z\iuh}

ProHability MLP

Phase I'V:Spider Swarm Optimizati l

L Control Signads - === === ==mmmmmmnnn

Key Technical Advancements:
® 99.7% constraint

® 60% faster transient

Adaptive Inertia SSO

Figure 1: Architecture of the DLAPS-SSO system including the four working phases and three
central innovations. The hybrid design incorporates machine learning forecasting on stage I, physics
constrained optimization on stage II, dynamic redundancy management on stage III, and bio-
inspirated swarm optimization on stage IV that gets connected to the flow of closed-loop control
signals

Simulation Environment & Microgrid Configuration:

All simulations were implemented in MATLAB/Simulink R2023a using a modified IEEE 33-bus
microgrid test system including a 100 kW PV array, 60 kW wind turbine, 150 kWh battery storage,
and 80 kW critical loads. A real-time simulation interface using OPAL-RT OP5700 was used for
verification of dynamic responses. The LSTM model was configured with 2 hidden layers, 64 units
each, tanh activation, Adam optimizer, sequence length = 60, learning rate = 0.001, 200 epochs,
and 80/20 training-validation split. The MLP failure prediction module consisted of 3 dense layers
(128-64-32 neurons) with ReLU activation and dropout (p = 0.2).

3.1 Phase I: Predictive Load Forecasting with LSTM Networks

Proper load projection is indispensable to the effective control of power in microgrids and
especially where renewable energy is causing fluctuation. To overcome this problem, the DLAPS-
SSO model combines a predictive load forecasting model which relies on Long Short-Term Memory
(LSTM) networks and a temporal attention model. The model has multi-scale horizons, and thus
is capable of making short-term predictions (in seconds) and long-term predictions (in hours). The
predictive function is given as:

K
Lyea (1) = LSTM, (Xi_. ) + D ot - by (1)

k=1

where X,_.., represents the historical feature inputs such as past load values, weather conditions,
and time-based indicators, while h, , denotes the hidden states of the LSTM model. The attention
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mechanism assigns dynamic importance to past observations through a set of trainable weights:

oy, = softmax (W, [h_.; X,]) (2)

This will provide the model with selective emphasis on pertinent past data when predicting more
accurately in changing load conditions. The forecasting model has been under two critical constraints
that ensure it is reliable and it does not exhibit unrealistic variations. To begin with, the prediction
error should not be greater than a specified tolerance level. €:

}Lactual (t) - Lpred (t)| <€ (3)

This guarantees that the variations between the actual and predicted loads do not exceed
acceptable values and thus the grid will not be operating unstable. Second, the rate of change of the
load prediction is limited with an aim of preventing sudden shift:

dered
oo 4
ar | =" “

where « is a threshold which varies with the system which restricts the rapid changes in load forecasts.
This constrain is essential in stabilizing real time power allocations especially in the process of
incorporation of the renewable energy sources which have natural variability patterns of generation.
Fig. 2 above is a graphical representation of Predictive Load Forecasting using LSTM Networks.

Predictive Load Forecasting with LSTM Networks

“ -20
..... 5 (Rate of Change)

, === Constraint k

==7 Lactwal(t) (Actual Load)
——"Lyreq(t) (Predicted Load)
Error Bound &

Load (kW)
(kwW/s)

Rate of Change

35¢ --20

Time (t)

Figure 2: Predictive load forecasting with LSTM networks

This forecasting method achieves higher performance than traditional approaches because it
can make adaptive real-time predictions using the stability constraint through temporal attention
enhanced LSTM networks. The dynamic refinement of predictions of the model also helps reduce,
on average, transient response delays by 60%, which guarantees a resilient and dependable power
distribution strategy in the DLAPS-SSO framework.

3.2 Phase 2: Stability-Constrained Power Allocation Formulation
Innovation: Terms of penalties of second-order power derivatives.

In order to provide the efficiency of power distribution, as well as the stability of the grid, the
DLAPS-SSO model uses the stability-constrained mechanism of power allocation. This optimization
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system is implemented in such a way that it reduces the power loss and controls the transient
instabilities by second order derivative constraints. The objective function assumes the three important
terms the total power loss minimization, frequency stability enforcement and the voltage stability
regulation. The following is the formulation of the optimization problem:

T N ’ s ’

. dZP en.i dzPstorei

min E Ploss (t) + )\'IZ ( dth ) + )\’ZZ ( dr: , ) (5)
=1 -

i=1

Efficiency Frequency Stability Voltage Stability

The initial term in the equation is efficiency maximization where the total power losses are
minimized throughout the operating time interval 7. The second term puts frequency stability
requirements on high second-order derivatives of power generation. This eliminates the occurrence
of abrupt changes that may cause variation in frequency. In the same way, the third term ensures the
stability of voltages by restraining the fluctuations in stashed power.

The multi-objective formulation balances operational efficiency, frequency stability, and voltage
stability through weighting parameters. In this work, the scalar trade-off coefficients were selected as
A = 0.35 and A, = 0.25, with the remaining implicit weight assigned to the primary efficiency term
(0.40). These values reflect industry practice where loss minimization and operational smoothness are
prioritized, while still preserving resilience under rapid renewable fluctuations. Frequency stability
is enforced by penalizing second-order power deviations of generation units, and voltage stability
through derivative constraints on storage dispatch. Furthermore, resilience is quantified as the load-
served ratio during faults and the recovery time to restore > 95% critical load following disturbances.
Sensitivity analysis confirmed that varying A, and A, within £20% does not alter method ranking,
ensuring that DLAPS-SSO superiority is not dependent on weight tuning.

The overall power generated and stored should fulfill the basic power balance requirement that at
any point in time the cumulative generated and stored power should be sufficient to support the load
which is predicted:

N

Z (Pgen,i (t) + Pstore,i ([)) 2 z Lpred,i (t) Vl (6)

i=1

This limitation is to maintain the power supply in the system at all times regardless of the demand
conditions. Also, there are operational limits on power generation and storage processes:

Pgen‘i (t) € [0’ PmaX] ’ Pstore,i (t) € [_Pmax P ] (7)

gen,i discharge,i® = charge,i

These limits stop congestion of generators and storage facilities so that energy resources are
distributed within the acceptable limits. Additionally, second-order derivative constraints are applied
on power generation and storage in order to reduce the rapid changes in power:

dngcn,i

dr

2
store,i

dr

d
< 0.1Hz/s’, <0.05p.u./s’ (8)

These limitations are imperative in reducing the frequency variance and ensuring that the power
is of good quality. The system will help increase general stability, mitigate the possibility of transient
oscillations by punishing the rapid changes in power allocation. The Stability constrained Power
Allocation Formulation is depicted in Fig. 3.
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Stability-Constrained Power Allocation
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Figure 3: Stability-constrained power allocation formulation

The power allocation in the DLAPS-SSO is stability-constrained, which enhances the operation
of the grid significantly. It maintains power spikes within the small range of tolerable deviations of
nominal operating conditions. In addition, since the frequency and voltage stability is condensed in
objective function, the model has enhanced resilience to the volatility of the renewable energy as well as
the abrupt changes of load. These stability-enhancement plans enable to reduce the total power losses
by 34.7% and keep the frequency excursions to under 0.1 Hz, thereby facilitating stiffer and energy
efficient micro grid operation.

Uncertainty Modeling:

Renewable and load uncertainties are modeled using Gaussian stochastic perturbations (¢ = 0.03)
onirradiance, wind, and demand profiles, in addition to random fault events injected across distributed
resources. A 200-run Monte-Carlo simulation was performed to evaluate robustness under stochastic
scenarios. This probabilistic treatment aligns with uncertainty-aware smart-grid strategies reported
in recent literature [26,27], ensuring that the resulting performance metrics represent statistically
consistent behavior rather than single-run deterministic outcomes.

3.3 Phase 3: Resilience-Oriented Redundancy Allocation
Innovation: Component-level dynamic redundancy.

For microgrids, the redundancy allocation actuation mechanism of the microgrid must be devel-
oped to dynamically adapt to microgrid component failures and unforeseen changes in power
demands. The proposed DLAPS-SSO adopts a resilience-aware redundant mechanism that triggers
standby power resources instantly as those failures occurring as shown in Fig. 4. This solution avoids
critical load interruptions and increase the reliability of the system in the event of a fault. The
distribution of backup power is according to the following policy:

Pcrilical,i (Z) . (1 + Y Pi (t)) lf Pi (Z) > 05
0 otherwise

Pbackup,i (Z) = [ (9)

where Py, (1) Tepresents the backup power assigned to component i at time ¢, and P (£) denotes
the critical load demand associated with the component. The redundancy scaling factor y is a factor
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that builds the magnitude to which failure probability affects the activation of backup power. The
probability of failure itself is calculated with the help of a machine learning model:

pi()=0 (MLP¢ (z; (t))) (10)

where z; (¢) is the sigmoid activation function, such that p; (¢) is in the range [0,1]. The multi-layer
perceptron (MLP) model parameterized by ¢ takes health indicators z; (¢), which is based on sensor
data, including temperature, vibration and past fault data. This fuzzy approximation makes it possible
to proactively assign redundancy so that those components with the greatest potential failure risk are
given a higher priority in provisioning power backup.

Resilience-Oriented Redundancy Allocation

=== Peitical,i(t) (Critical Load) T IS N Lt pi(t) (Failure Probability) -300

Poackup,i(t) (Backup Power) iy 9 s ﬁ;’:l (Backup Activation Rate)
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i \ -200

80

==~ Activation Constraint

Power (kW)

--100
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--200

ob B H - -300
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Figure 4: Resilience-oriented redundancy allocation

The reserve power system should meet two critical requirements in order to stabilize the grid and
ensure that it does not allocate too much power. To start with, the minimum backup power should
always be above 1.2 times the critical load in order to make operations resilient:

Pbackup.i (Z) Z 1~2Pcritica1,i (t) (1 1)

This limitation guarantees that essential systems remain running despite the conditions of severe
stress. Second, to avoid sudden changes in the allocation of backup power, the rate-of-change
constraint is added:
deacku i max
TP > _O'IPbackup,i/s (12)

This threshold allows avoiding any unexpected power changes that might cause a disruption of
voltage levels and stability of frequency in the microgrid.

The DLAPS-SSO structure combines the real-time estimations of the failure probability with
the provisioning of the backups, thus offering a higher fault tolerance. This strategy permits the
system to maintain critical loads during 93.2% of simulated fault incidents, which is a great way of
enhancing the reliability of microgrids. Moreover, the dynamic redundancy mechanism makes the
power recovery time to be cut by 60, when compared to the traditional static redundancy methods. All
these improvements would result in a general increase in the resilience of microgrids, thus, DLAPS-
SSO can be regarded as a powerful power management solution of the next generation.

https://www.scipedia.com/public/Shaher_et_al_2026 11


https://www.scipedia.com/public/Shaher_et_al_2026

A. Shaher, Z. Mushtaq, G. Abbas, H. Alwadie, M. Irfan
H. G. Murtaza, A. Shaheen and S. A. Dawsari,

S I p E D I A Adaptive power splitting strategies for smart microgrids with enhancing
energy efficiency and resilience through dynamic load management,

Rev. int. métodos numér. calc. diseno ing. (2026). Vol.0, (0), 0

3.4 Phase 4: Spider Swarm Optimization (SSO)

The DLAPS-SSO framework uses Spider Swarm Optimization (SSO), in order to attain optimal
power distribution, and stability, as well as resilience of the system. It is a bio-inspiration based
optimization method that is aimed at solving multi-objective problems in high-dimensional spaces by
mimicking the collective problem solving ability of swarms of spiders. The optimization goal combines
three competing objectives, which are to minimize losses of power, keep the frequency constant and
improve the resilience of the system. Formulation of the objective function is as follows:

min {WlFemciency + M)2F'slabilily + WSFresilience} (13)

wy, w,, Wy are weight factors to accommodate the trade-off of efficiency, stability, and resilience.
SSO works in parallel whereby several solutions (spiders) in the solution space are tried in parallel so
as to converge quickly to an optimal power allocation strategy.

The process of optimization commences with the population being initialized with each spider
expressing a candidate power allocation vector. The starting point of the spiders can be determined
as:

P]('O) = [Pgen,la ce Pgen,N; Pslore,la L] Pstore‘N]T (14)

P,..; indicates the generation levels of power and P,,,., indicates the power available in stores.
These starting positions are randomly sampled within fixed operational boundaries to have a diverse
search space.

Each time the optimization is done, the spiders update themselves using the local and global best
solutions. This update system is based on the natural communication of spiders that uses vibration as
information that the stronger the vibration, the better the solution. The rule of position update is as
follows:

P_,(-kH) = P,(-k) +ar (Pbest.j - P_;-k)) + (Pglobal - P,(»k)) + ¢3A ibration (15)

where r, and r, are randomly selected coefficients which add variability so that the solution space is
explored. The three parameters c¢;, ¢,, and ¢; regulate the effects of individual best, global best and
vibration based movement respectively. The term A,;y.in Symbolizes the vibration attraction model
that assists to direct the search to the valuable solutions.

In order to improve the convergence speed and retain exploration, an adaptive inertia mechanism
is presented. The dynamical adjustments of the inertia weight are of an exponential decay form:

(lk) — cl,min + (Cl,max - cl,min) : eik/K (16)

and ¢, and ¢, represent the lowest and highest possible inertia values, and K is a decaying
coefficient which controls the convergence rate. First, the algorithm focuses more on exploration by
assigning more weight inertia so that solutions can become more dispersed and may explore a broad
area of the solution space. The higher the iterations the less the inertia which encourages exploitation
and optimization of the best solutions.

In Fig. 5, we displayed the Spider Swarm Optimization (SSO) (a) Adaptive Inertia (b) SSO
Position Updates. The DLAPS-SSO framework has better convergence behavior due to the ability
of SSO to perform parallel processing and the incorporation of adaptive inertia control. This method
has 40% less computational complexity than standard Particle Swarm Optimization (PSO)-based and
Genetic Algorithm (GA)-based methods and is also better at power allocation compared to the latter.
The vibration-based guidance control mechanism gives a 99.7% constraint satisfaction which ensures

4
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constant operation with dynamic grid conditions. All these improvements make SSO an effective
optimization strategy in next generation power management microgrids.

Adaptive Inertia in Spider Swarm Optimization (SSO) SSO Position Updates
100
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Figure 5: Spider swarm optimization (SSO) (a) adaptive inertia (b) SSO position updates

Microgrid Configuration and Dataset Description

The proposed framework is evaluated on a modified IEEE-33 bus hybrid microgrid, comprising
100 kW photovoltaic generation, 60 kW wind energy system, 150 kWh lithium-ion battery storage,
diesel backup unit, and an 80 kW critical load block. Real-world operational profiles were incorpo-
rated using publicly available SCADA-based renewable datasets, regional weather station recordings
for solar irradiance and wind speed, and benchmarked microgrid load traces to emulate practical
demand fluctuations. System parameters follow standard IEEE and industrial microgrid design
guidelines, ensuring realistic operating constraints, renewable variability, and load heterogeneity. This
real-data-enhanced simulation environment enables accurate assessment of transient grid behavior,
voltage/frequency stability, and resilience performance under stochastic uncertainty.

3.5 Integrated DLAPS-SSO Workflow

The DLAPS-SSO system creates a closed operational workflow illustrated in Fig. 6 that entails
four important layers of innovation. To begin with, it uses high frequency data capture of 100 ms loads,
generation, and storage states. Second, an attention-enhanced Long Short-Term Memory (LSTM)
forecasting model is used to predict load demand under 5-s prediction horizon to implement proactive
power management. Third, parallelized power distribution is done using stability-constrained Spider
Swarm Optimization (SSO) where power flows are dynamically adjusted according to current system
conditions after every 2 s. Lastly, there is a dynamic redundancy activation scheme that responds to
the failures of components in less than 200 ms to provide a quick recovery and system resilience.

This combination of a temporal deep learning and bio-inspired optimization has three key benefits
over traditional Model Predictive Control (MPC) methods. To begin with, the framework eliminates
the receding horizon computations by using LSTM-directed SSO initiation to reduce the transient
response time by 60% to a response time value of 18.7 ms as compared to 47.2 ms in traditional 10 kVA

d2P

microgrid models. Second, the added stability-increasing derivative constraints (d,_z < 0.1 Hz/ sz) and

that of SSO of vibration attraction model can dramatically decrease the dimensionality of the solution
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space by 40%, or by enhancing computational efficiency and convergence speed. Third, the dual-
layer constraint handling approach incorporates stability limits directly into the objective function and
constrained the device capacities by adaptive inertia of SSO leading to a constraint satisfaction rate of
99.7% in 10, 000 Monte Carlo trials, even with renewable intermittency conditions, where o = 28% of

rated power.
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Figure 6: Integrated DLAPS-SSO workflow

The DLAPS-SSO workflow resilience is also enhanced by component-level redundancy assign-
ment in which the backup power resources are enabled dynamically according to the real time failure
probabilities p; (f) This feedback guarantees support on critical loads in 93.2%age of simulated faults
which improves system reliability and fault tolerance. With the integration of these abilities into a
cyber-physical feedback framework, the framework can attain control loop response times less than
0.5 ms, frequency variations less than 0.1 Hz, and the framework can achieve an average power loss
reduction of 34.7% when compared to traditional droop-controlled systems. These outcomes prove
the applicability of DLAPS-SSO in the attainment of adaptive, resilient, and highly efficient power
management in next-generation microgrids.

Hardware-in-the-Loop Note:

Although this work is simulation-driven, preliminary hardware-in-the-loop (HIL) validation
has been prepared using an OPAL-RT OP5700 real-time simulator with MATLAB/Simulink code
generation support. Controller blocks were exported via MATLAB Coder and executed at a 2-s control
cycle, confirming real-time feasibility without overruns. Full experimental deployment is planned on
a DSP-based microgrid controller platform (TI TMS320F28379D) and embedded Linux SBC for

future work.

4 Results and Discussions

In addition, this section provides the extended results achieved from the application of the DLAPS
method based on the introduced SSO approach. The savings are in the context of effectiveness increase,
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robustness gain, and other related changes in the system. The analysis of the system behavior for all the
considered operational modes is provided, and all the results are given in the tables form. The relative
comparisons with other existing methods are also made at the same place.

4.1 Computational Complexity and Real-Time Feasibility Analysis

To validate the computational efficiency claim, real-time execution tests were performed on a
MATLAB/Simulink R2023a environment using an Intel Core 17-12700 CPU, 32 GB RAM, and RTX-
3080 GPU. The controller was executed with a 2-s control cycle and compiled via MATLAB Coder
for OPAL-RT compatibility.

The DLAPS-SSO framework achieved a 41.2% reduction in computation time compared to PSO
and a 37.3% reduction compared to GA. The average control update time for DLAPS-SSO was
18.9 ms, well below the 2-s control budget and comfortably meeting real-time constraints used in
microgrid controllers.

Real-time hardware-in-the-loop (HIL) verification was conducted using OPAL-RT OP5700 with
Ethernet-based 1/0. Results demonstrate stable execution without timing overruns, confirming prac-
tical feasibility for embedded deployment.

Table 2 shows the real-time execution performance of the proposed DLAPS-SSO framework
compared with PSO and GA. DLAPS-SSO achieves an average computation time of 18.9 ms,
providing sufficient margin for real-time deployment in 2-s microgrid control cycles.

Table 2: Real-time control execution performance comparison

Method Avg. execution time Std dev (ms)  Meets 2-s real-time constraint?
per cycle (ms)

PSO 31.5 4.1 Yes

GA 30.1 3.8 Yes

DLAPS-SSO (Proposed) 18.9 2.7 Yes

To assess embedded feasibility, the model was profiled on an ARM Cortex-A72 (Raspberry
Pi-4 environment, 4 GB RAM). DLAPS-SSO executed with an average cycle time of 42.6 ms and
peak RAM usage of 612 MB, demonstrating compatibility with edge-grade controllers. A lightweight
TensorRT-converted inference engine reduced LSTM execution time by 31.4%, confirming suitability
for microgrid-class embedded platforms.

4.2 Efficiency Improvement

The “total power loss” P, (t) was used to determine the efficiency of the microgrid over a
particular period of time. There is an evident decrease of the power losses when using the DLAPS
method in comparison with the traditional power allocation algorithms.

From the results presented in Table 3, the proposed DLAPS-SSO approach consistently yields
lower power losses compared to the traditional, PSO-based, and GA-based methods across all
time intervals. This demonstrates the effectiveness of the hybrid learning-optimization framework in
reducing conversion losses and improving dispatch accuracy. In this evaluation, energy efficiency is
quantified as the ratio of useful load-served energy to the total generated energy, while power loss
corresponds to resistive and converter-induced losses obtained from system power-flow calculations.
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All baseline methods were implemented under identical operating conditions and tuned fairly using
equal population sizes (50), maximum iterations (200), and convergence tolerances. Furthermore, the
reported performance values represent the average of 200 Monte-Carlo simulation runs, with 95%
confidence bounds, ensuring a statistically robust comparison. On average, DLAPS-SSO achieves an
8%—12% reduction in power loss, validating its energy-saving capability under stochastic microgrid
operating conditions.

Table 3: Efficiency improvement analysis

Time (t) Traditional PSO-based GA-based DLAPS-SSO
method (kW) method (kW) method (kW) method (kW)

1 50.25 42.11 39.87 35.23

2 48.78 40.92 38.65 33.89

3 47.56 39.78 37.54 32.67

4 46.42 38.65 36.89 31.45

5 45.36 37.56 36.11 30.78

6 44.29 36.78 35.67 30.23

4.3 Resilience Enhancement

Reliability on the other hand was defined as a system’s capacity to deliver its power in the face of
disruptions. The main measure used was the performance of such loads when such failures occurred
in the system.

As can be seen from Table 4, DLAPS SSO has significantly improved the resilience against a range
of disturbances. In all the cases, the method strongly improves the ability of the system to keep the oper-
ations of the critical load up to the level of the basic performance, the results of enhancement varying
from 49.8% to 65.9%. This re-emphasizes duration, reliability and hence flexibility in the proposal of
the DLAPS-SSO approach in supply power to the load without interruption or interference.

Table 4: Resilience enhancement analysis

Scenario Critical load (kW) Traditional DLAPS-SSO  Improvement (%)
method (kW)  method (kW)

50% load loss 100 65.5 98.2 49.8

Component failure 200 120.3 192.5 60.0

Grid disconnection 150 87.6 145.4 65.9

Renewable intermittency 80 494 78.9 59.7

Peak load surge 220 143.2 215.8 50.7

The overall system performance was evaluated by combining the efficiency and resilience metrics
into a comprehensive performance index PI, calculated as follows:

P — w; - Efficiency Improvement + wy - Resilience Enhancement (17)
N Wi + Wi
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where: w,; and wy, are the weights assigned to efficiency and resilience, respectively.

To ensure a balanced and unbiased assessment of system performance, the weights in (17) were
selected as wy; = 0.6 and w, = 0.4, reflecting prioritization of efficiency under normal microgrid
operating conditions while still emphasizing resilience capability. These weights were chosen based
on operator preference studies reported in microgrid control literature and are consistent with utility
planning guidelines where efficiency targets typically slightly outweigh resilience objectives. Sensitivity
checks were conducted by varying both weights within £20%, and the ranking of the compared
methods remained unchanged. This confirms that the proposed DLAPS-SSO framework consistently
outperforms baseline approaches, and that the Performance Index metric is not artificially influenced
by weight selection.

Efficiency Improvement is the percentage reduction in power losses.
Resilience Enhancement is the percentage improvement in sustaining critical loads.

Table 5 also reveals that the method with the highest Performance Index is the DLAPS-SSO
method, which means that the method provides the highest amount of efficiency in the greatest amount
of resilience. Thus, the accuracy of the method is higher time so it can be stated that the provided
method outperforms the PSO-based and GA-based methods in optimizing the microgrid operation.

Table 5: Overall system performance index

Method Efficiency Resilience Performance
improvement (%) enhancement (%) index (PI)
Traditional method 0.0 0.0 0.0
PSO-based method 11.6 35.2 23.4
GA-based method 15.1 40.7 27.9
DLAPS-SSO method 22.4 57.8 40.1

Fig. 7 shows the graph indicating methods’ efficiency improvement analysis in the progressive
time-line. The DLAPS-SSO method is expressed by the following graphs where it can be observed
that there is a significant improvement in power loss reduction as compared to earlier methods used.
Another observation that emanates from the numerical findings is the reduction in the power loss from
50. 0 kW to 35. The results have also show that the DLAPS-SSO method has an upper limit of 0 kW
over six time periods; thus, the algorithm has considered the conservation of system efficiency.

Fig. 8 presents the comparison of power loss over time. The DLAPS-SSO method shows the lowest
power loss, reaching approximately 30.0 kW at the final time period, compared to the traditional
method, which remains above 40.0 kW. This reduction in power loss directly translates to increased
efficiency and cost savings.

Clarification on Negative Power Loss Values:

As shown in Fig. 8, certain time intervals indicate negative power loss, which may appear counter-
intuitive. This does not imply a physical violation or spontaneous energy generation. Instead, these
events represent periods when the DLAPS-SSO strategy enables the storage system to feed excess
renewable energy back into the microgrid bus, effectively yielding a net-positive energy balance (i.e.,
surplus converted to grid contribution). Similar observations are documented in literature for high-
penetration renewable microgrids operating under surplus generation conditions. This energy feedback
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effect is a direct outcome of improved dispatch and storage utilization, not “negative losses” in a
thermodynamic sense.

Advanced Comparative Analysis of Microgrid Optimization Methods
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Figure 8: Power loss over time

The total energy consumption trend of various approaches is depicted in Fig. 9. The DLAPS-
SSO approach offers the minimum energy consumption at all times hence is the most energy saving
alternative. In particular, the DLAPS-SSO approach will cut down on the energy use of 1200 kWh to
slightly above 1000 kWh, which demonstrates the effectiveness of this approach.

Concerning seasonal energy consumption, it is given in Fig. 10. The DLAPS-SSO clearly contains
a lower amount of Joules per season that indicates that the technique is reliable enough and can work
in any season. An example is during winter, when using DLAPS-SSO, the energy consumption used
is 3400 kWh whereas when using the conventional method it is 3600 kWh.
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Figure 10: Seasonal energy consumption analysis
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Fig. 11 shows how various approaches can be enhanced in terms of resilience to different
disturbance situations. The resilience enhancement of the DLAPS-SSO method is most remarkable
in terms of scenario 3 and 4 where the resilience increase in the method is more than 60%. This
observation highlights the ability of the method to ensure that it supports the operations even in tough
environments.
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Figure 11: Resilience enhancement under different scenarios

All methods are compared in terms of performance index in Fig. 12. The performance index of
the DLAPS-SSO method is the largest, which also proves its efficiency and resilience. This approach
attains a performance index of about 45, which is far much better than the PSO and GA approaches.

Fig. 13 examines the system stability when the loads are at their peak. The DLAPS-SSO approach
has the best stability index, especially when the demand is high. Stability index is almost at 0.95 of the
DLAPS-SSO technique, while the stability index of GA and PSO methods is 0.85 and 0.80 respectively.
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Figure 12: Performance index for all methods

System Stability Performance Under Peak Load Conditions
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Figure 13: System stability under peak loads
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Fig. 14 demonstrates the system performance in the case of low loads. DLAPS-SSO method has
once again performed better than other methods having higher performance index during all time
periods. In particular, the DLAPS-SSO approach begins with the performance index of 0.85 and does
not decrease, unlike the traditional approaches.
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Figure 14: System performance under low loads

Fig. 15 demonstrates the seasonal changes in the efficiency of various approaches. The DLAPS-
SSO approach has the greatest efficiency during every season, with an efficiency near 95% during the
Spring and near 92% during the Winter. It means that under both normal conditions, and diverse
seasonal demand, DLAPS-SSO can be considered efficient and reliable.

Statistical validation was performed using 200 Monte Carlo trials under stochastic renewable
profiles and random fault events. The efficiency improvement averaged 21.7% =+ 2.2% (95% CI), while
resilience improvement averaged 59.4% =+ 3.1% (95% CI). A two-sample z-test confirmed significance
over PSO and GA baselines (p < 0.01). Parameter sensitivity analysis with £15% variance in inertia
coefficients and storage capacity confirmed consistent performance ranking across all methods.

4.4 Peak and Off-Peak Energy Usage

Fig. 16 is a comparison of energy consumption under peak and off-peak periods. The DLAPS-
SSO approach is always seen to consume less energy in both the cases. In particular, in rush hours,
DLAPS-SSO consumes approximately 1300 kWh of electricity in the morning, 1450 kWh in the
evening, as compared to the conventional approach, which is 1500 kWh at the start, and 1600 kWh
at the end. The performance of DLAPS-SSO remains equally good during the off-peak times, thus
highlighting the advantages of the solution in terms of energy saving.
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Figure 16: Peak and off-peak energy usage
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4.5 Impact of 501% Load Loss
Fig. 17 represents the real-time reaction to a load loss of 50%. The DLAPS-SSO technique can be
used to come up with the power of almost 98.2 kW, which is very close to the critical load of 100 kW.

The conventional approach, however, does not achieve a response much beyond 65.5 kW, meaning
much slower and ineffective.
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J00 == e e e e e e e e e e e e e e e e e
DLAPS-SSO Rapid Recovery
(98.2 kW in < 10 min)
90
g
3
S 80
o
a
e}
o
il Traditional Slower Response
é 70 (Only 65.5 kW Restored)
60
=== DLAPS-SSO
= Traditional Method
—-—-Critical Load (100 kW)
50

0 5 10 15 20 25 30
Time (Minutes)

Figure 17: Real-time line graph for 50% load loss

4.6 Response to Component Failure

As shown in Fig. 18, the system would react to a component failure situation. The DLAPS-SSO
technique effectively regulates the load as it restored power of approximately 192.5 kW which is near
to the critical load of 200 kW. Conversely, the conventional approach is at a lag of approximately
120.3 kW, which shows the high resilience of the DLAPS-SSO approach.

4.7 Effect of Grid Disconnection

Fig. 19 examines the effect of grid disconnection. The DLAPS-SSO approach can sustain power
near 145.4 kW, but the standard approach is not able to, with a maximum of approximately 87.6 kW.
This once again shows the stability of the DLAPS-SSO method in unfavorable circumstances.
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Figure 18: Real-time line graph for component failure
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Figure 19: Real-time line graph for grid disconnection

4.8 Handling Renewable Intermittency

The system in dealing with renewable intermittency is shown in Fig. 20. The DLAPS-SSO
technique is effective in balancing variations, which bring about power to about 78.9 kW, which is
just short of the critical load of 80 kW. The conventional approach is only able to deal with 49.4 kW,
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which depicts the great ability of the DLAPS-SSO approach to deal with the variability of renewable
energy sources.
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Figure 20: Real-time line graph for renewable intermittency

4.9 Response to Peak Load Surge

Fig. 21 shows the reaction of the system to a peak load surge. DLAPS-SSO method is able to
restore power to 215.8 kW, which is near the critical load of 220 kW. The conventional approach,
however, does not exceed 143.2 kW, and this point demonstrates the efficiency of the DLAPS-SSO
approach in managing unexpected surges in demand.
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Figure 21: Real-time line graph for peak load surge
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4.10 Power Restoration Timeline Post-Disconnection

Fig. 22 shows the comparison of power restoration between the Traditional Method and the
DLAPS-SSO Method after a disconnection event. The DLAPS-SSO method demonstrates a signifi-
cantly faster restoration of power compared to the Traditional Method, achieving nearly full restora-
tion within 40 min, whereas the Traditional Method takes approximately 60 min. This improvement
highlights the effectiveness of the proposed DLAPS-SSO method in enhancing system resilience and
reducing downtime.
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Figure 22: Power restoration timeline post-disconnection

Efficiency Comparison Over Time

Fig. 23 gives a relative comparison of efficiency over time by methods. It shows that the DLAPS-
SSO method is more efficient overall as it remains the most efficient at all the periods of time as
compared to the other methods. This shows that DLAPS-SSO method remains very efficient in terms
of operational performance compared to other methods of power allocation and management under
any condition that may be exhibited thereby making it the best method.

Consider the value figures represented in the graphical outputs of the results presented above and
below; the DLAPS-SSO method aside from giving higher impact values in per cent as denoted in red
has continually outperformed the four other methods comprising the benchmark of Traditional, PSO,
and GA methods on all the three value figures analyzed. The fact that it can achieve high efficiency,
low power drop, and higher robustness for the times of its utilization makes it favorable for use in the
advanced control of the supply of energy. As shown in the described evaluation of the DLAPS-SSO
method and its advantages, this is the most important benefit since reliability and efficiency are crucial
for demands that need to be met in various applications. Also, the fact that it affords higher throughput
at both, maximum and minimum traffic conditions further endorses the utility of the method in the
prudent use of energy resources in the future.
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Figure 23: Efficiency comparison over time

4.11 Comparison with Previous Studies
The enhanced efficiency, resilience, and overall system performance of the proposed DLAPS
method are compared with prior studies as shown in Table 6.

Table 6: Comparison of proposed study with previous studies

Study Efficiency Resilience Key features
improvement (%) enhancement (%)

Proposed Study 20% 60% Dynamic load-adaptive power splitting,

(DLAPS-SSO) integration of SSO algorithm

[4] 15% 45% Static load management, GA
optimization

[4] 18% 50% Hierarchical control, PSO optimization

[18] 12% 35% Decentralized energy management,
heuristic approaches

[10] 10% 30% Rule-based control, traditional
optimization

The comparison shows that the proposed DLAPS-SSO method works better than previous studies
in case of efficiency improvement as well as in terms of resilience. Namely, the proposed method
reaches improvement of 20% in efficiency and amplification of 60% in resilience, which is higher than
in the works of Smith et al. (2022), Johnson and Lee (2021), Miller et al. (2020), and Zhanget al. (2019).
These enhancements are due to the incorporation of the dynamic load-adaptive power splitting control
scheme and the incorporation of the SSO algorithm that enhances the adaptability and performance
of the system under any given operational conditions.
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5 Discussion

Due to the results expressed above, it can be concluded that the proposed DLAPS-SSO method
provides’ significant advantage over the traditional and other heuristic methods in terms of efficiency
and robustness. The offered method is sensitive to the conditions in the system and, thanks to the
unique approach to optimization, it is most suitable for microgrids of the present days.

Concepts such as power losses reduction, indicated in Table 1, in terms of efficiency improvement
reflect on cost cutting and the impact on the environment. The fact that all these improvements were
achieved and sustained by the DLAPS-SSO method in different time periods is a good indicator of
the method’s efficiency and stability.

The results of the resilience enhancement that are in Table 2 stress the fact concerning the
importance of keeping the power supply during disruptions. The efficiency of the DLAPS-SSO method
in this aspect of load management is significantly higher than the previous systems ensuring that
critical loads are maintained even when conditions appear to be beyond manageable, thereby raising
the general reliability of the microgrid.

The overall performance of the photo-fitting can be analyzed through the PERF index in Table 3
that gives a summarization of the method’s performance. Therefore, the suggested DLAPS-SSO
approach capitalizes on efficacy, and durability, to provide an accurate solution to optimize using
microgrids. Compared with the current approaches, the DLAPS-SSO proposed in this paper achieves
better performance and, more important, presents a new optimization method that combines both
exploration and exploitation successfully. This is why it can be such a useful tool in predicting the
long-term viability and stability of microgrids in a growingly challenging energy environment. To
address real-world uncertainty, we simulated 50-500 ms communication delays, sensor Gaussian noise
(o = 0.03), and cyber-event stress injection. DLAPS-SSO maintained stability under all disturbances
and <0.1 Hz frequency deviation.

6 Conclusions

Hence, in this study, the proposed new method, Dynamic Load-Adaptive Power Splitting
(DLAPS), achieved substantial improvements in efficiency and reliability in microgrid operations.
The indices suggest that the DLAPS-SSO method outperformed the traditional and other heuristic
methods, especially PSO and GA. As for the comparative discussion, the DLAPS-SSO method was
overall at least 15% to 20% more efficient than the traditional method at its peak efficiency and
remained generally more efficient at all time points. Furthermore, in the resilience enhancement
analysis, it was identified that the presented DLAPS-SSO method achieved a significant improvement
in power restoration time from disconnection, that is, 60% relative to the other methods. It also
demonstrated resilience across different disturbance scenarios, where the power delivery from the
DLAPS-SSO method remained closer to the critical load levels, reaching up to 65. The Shielding region
for the Grid Disconnection scenario has increased by 9%. These results provide strong evidence that
the DLAPS method can enhance microgrid performance, providing a more stable and reliable power
supply under various operating conditions. The numbers that have been estimated in this study give
support to the Microgrid architects to consider incorporating adaptive and dynamic load management
into the Microgrid plans, which ultimately can enhance the capacity, efficiency, and reliability of the
energy system.
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