

CONVERTING KNOWLEDGE INTO VALUE FOR OVER 35 YEARS **Since 1986**

Computational use of an Artificial Bee Colony approach for Model Predictive Control

<u>Jhonny de Sá Rodrigues</u> Alejandro Goldar

Service d'Automatique et d'Analyse des Systèmes Department of Control Engineering and System Analysi. Brussels School of Engineering

.....

© INEGI all rights reserved

4-4-4

CONTENT

- Artificial Bee Colony algorithm
- Artificial Bee Colony algorithm proposal
- Automated Tape Laying process
- Preliminary results
- Remarks

U. PORTO

Cinegi driving science & innovation

- Zero-order search algorithm that mimics the behaviour of a bee swarm searching for food¹
- Consists of 3 types of bees:
 - Employed bees
 - ✓ Perform a random search around the entire domain
 - Onlooker bees
 - Perform a search around the selected food source
 - Scout bees
 - Perform a random search similarly to the Employed bees

© INEGI all rights reserved

10.0

 $y = f(x_1, x_2)$

• Consists of 3 types of bees:

- Employed bees
- Perform a random search around the entire domain
- Onlooker bees
- Perform a search around the selected food source
- Scout bees
- Perform a random search similarly to the Employed bees

Cinegi driving science & innovation

- Employed bees
- Perform a random search around the entire domain
- Onlooker bees
- Perform a search around the selected food source
- Scout bees
- Perform a random search similarly to the Employed bees

if Termination == True: Terminate the algorithm else:

Generate new Employed bees and repeat the algorithm

driving science

& innovation

eined

- 1. Define the Employed bees, and evaluate them
- 2. Select the best Employed bee

- 2. Select the best Employed bee
- 3. Calculate the gradient of the selected Employed bee

 $-\nabla f$

© INEGI all rights reserved

12

ARTIFICIAL BEE COLONY PROPOSAL

- 1.
- Select the best Employed bee
- Calculate the gradient of the selected
- 4. Define the Onlooker bees along the descent direction

- 1. Define the Employed bees, and evaluate them
- 2. Select the best Employed bee
- 3. Calculate the gradient of the selected Employed bee
- 4. Define the Onlooker bees along the descent direction
- 5. Define the Scout bees, and evaluate all the bees

© INEGI all rights reserved

ARTIFICIAL BEE COLONY PROPOSAL

- 1. Define the Employed bees, and evaluate them
- 2. Select the best Employed bee
- 3. Calculate the gradient of the selected Employed bee
- 4. Define the Onlooker bees along the descent direction
- 5. Define the Onlooker bees, and evaluate all the bees
- 6. Select the best bee

1. Define the Employed bees, and evaluate them

- 2. Select the best Employed bee
- 3. Calculate the gradient of the selected Employed bee
- 4. Define the Onlooker bees along the descent direction
- 5. Define the Onlooker bees, and evaluate all the bees
- 6. Select the best bee
- if Termination == True: Terminate the algorithm else:

Generate new Onlooker bees, new Scout bees, and repeat

bee 7.5of the selected 5.0 \times s along the descent 2.5

X Onlooker bees

X Selected bee

10.0

X Scout bees

ARTIFICIAL BEE COLONY PROPOSAL Summing up

- 1. Start the Employed Bee search
- 2. Calculate the Employed bee fitness
- 3. Perform a Greedy selection
- 4. Calculate the gradient
- 5. Generate the Onlooker bees
- 6. Generate Scout bees
- 7. Calculate the onlooker and scout fitness
- 8. Perform a greedy selection
- 9. Check the convergence condition
 - 1. If the condition is met, stop
 - 2. Otherwise, repeat from step 3

© INEGI all rights reserved

ARTIFICIAL BEE COLONY

MOTIVATION

Automated Tape Laying Process

Temperature control for a composite material ٠ manufacturing process

Constraints handling

- Temperature control for a composite material manufacturing process
- Constraints:
 - 1. Nip Point Temperature

 $T_{np} = 200 \,^{\circ}C$

2. Maximum allowable temperature $T_{max} = 280 \ ^{\circ}C$ Moving away from a value

Heating zone

b)

Constraints handling

- Temperature control for a composite material manufacturing process
- Constraints:
 - 1. Nip Point Temperature $T_{np} = 200 \,^{\circ}C$
 - 2. Maximum allowable temperature $T_{max} = 280 \ ^{\circ}C$ Moving away from a value

$$e_{np} = T_{np} - T_{np}^*$$

$$g(e_{np}) = 1 - e^{\frac{-e_{np}^2}{2 \cdot \sigma}}$$

Constraints handling

- Temperature control for a composite material manufacturing process
- Constraints:
 - 1. Nip Point Temperature $T_{np} = 200 \,^{\circ}C$ Moving towards a value
 - 2. Maximum allowable temperature $T_{max} = 280 \ ^{\circ}C$

Constraints handling

- Temperature control for a composite material manufacturing process
- Constraints:
 - 1. Nip Point Temperature $T_{np} = 200 \,^{\circ}C$ Moving towards a value
 - 2. Maximum allowable temperature $T_{max} = 280 \ ^{\circ}C$

$$e_{max} = T_{max} - T_{max}^*$$

$$g(e_{max}) = e^{\frac{-e_{np}^2}{2 \cdot \sigma}}$$

© INEGI all rights reserved

ARTIFICIAL BEE COLONY MOTIVATION

First results

- Sensor 1: Pyrometer. Original machine ۲ equipment.
- Sensor 2: Pyrometer. For validation. •

- Sensor 1 C)
- Sensor 2 d)

ARTIFICIAL BEE COLONY MOTIVATION

First results

- Real data •
 - Inputs •
 - Outputs ۰
- Process model: ٠
 - Finite differences •

- As the bees are independent of each other, the algorithm can be parallelized, saving computational time.
 - Multiprocessing/Multithreading
- The proposed artificial bee colony algorithm is suitable for a state estimation process.
- The proposed algorithm is a first step to implement Model Predictive Control, for a composite material manufacturing process.

Thanks for your attention

jsrodrigues@inegi.up.pt INSTITUTE OF SCIENCE AND INNOVATION IN MECHANICAL AND INDUSTRIAL ENGINEERING

www.inegi.pt

CONVERTING

KNOWLEDGE INTO VALUE FOR OVER 35 YEARS

f in y o

This project has received funding from European Union's Horizon 2020 research and innovation programme under grant agreement n° 101006860

Since 1986

....