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1 Departamento Matemática Aplicada II, EI Telecomunicación
Universidade de Vigo, 36310 Vigo, Spain

e-mail: aurea@dma.uvigo.es, web page: https://gscpage.wordpress.com
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Summary. The most used algae cultivation systems are the open-channel raceway
ponds for their low maintenance and energy costs. Raceways allow algal cultivation using
wastewater, where algae mass can be employed as source for bioenergy production. One
of the main external factors influencing algal productivity is the velocity of the liquid
inside the pond, that can be easily controlled by the position and/or rotational speed
of the turning paddle wheel, and by the height of water. In this work we introduce a
novel methodology to automate the optimization of the design of raceway ponds based
on techniques of optimal control of partial differential equations. So, we formulate the
problem as a control problem where the state system is given by the coupled nonlinear
equations for hydrodynamics and algae/nitrogen/phosphorus concentrations, and the
objective function to be maximized represents the global concentration of algae at final
time. We present here a detailed, rigorous mathematical formulation of the optimal
control problem, we propose a numerical algorithm for its resolution, and we show some
preliminary computational results related to the numerical modelling of the problem.

1 INTRODUCTION

Wastewater treatment by algae-based technologies is an effective solution that allows,
as a by-product, the recovery of materials that can be used, for instance, to produce
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bioenergy (biodiesel, bioalcohol, etc.) due to the richness of lipides of the algal biomass
coming from wastewater treatments.

The most used algae cultivation systems are the open-channel raceway ponds (open
channels in the shape of an oval equipped with a rotating paddle wheel in order to promote
the recirculation of the shallow water inside them) for their low maintenance and energy
costs. Raceways allow algal cultivation using wastewater and, once the algae mass has
grown enough, it is recovered by any mechanical/chemical harvesting method, and can
be employed as source for bioenergy production [1, 2].

One of the main external factors influencing algal productivity is the velocity of the
liquid inside the pond, that can be easily controlled by the position and rotational
speed of the turning paddle wheel and also by the fixing of water height inside the
raceway. The optimal design of raceway ponds has been widely studied within the
scientific literature, but mainly by the comparison of case studies and the use of statistical
techniques [3]. Nevertheless, the application of techniques of optimal control of partial
differential equations -as it is our proposal- for the simultaneous optimization of speed
and position of the rotating paddlewheel has remained completely unaddressed, as far as
we know.

In this work we introduce a novel methodology to automate the optimization of location
and management of the paddlewheel in a raceway pond. So, we formulate the problem
as an optimal control problem where the state system is given by the coupled nonlinear
equations for hydrodynamics and algae/nitrogen/phosphorus concentrations [4], the con-
trol variables are height of water and location and rotational speed of the paddlewheel,
and the objective function to be maximized represents the global concentration of algae
at final time.

In this paper we present a detailed, rigorous mathematical formulation of the control
problem, we propose a numerical algorithm for its resolution and we show some preliminary
computational results related to the numerical modelling of the problem.

Figure 1: Open-channel raceway ponds in California, U.S. (Source: www.atlanticgreenfuels.com)
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2 MATHEMATICAL SETTING OF THE PROBLEM

In this section we introduce the mathematical formulation of the real-world problem,
which is a necessary and decisive first step in order to its resolution. In the first part, we
present the complex mathematical system modelling the main phenomena that appear
in the physical problem. Then, we formulate the optimal design problem as a control-
constrained optimal control problem.

2.1 Mathematical Model: The State System

We consider a moving liquid domain Ω(t) ⊂ R3, for each t in a time interval I =
(0, T ), representing the open raceway pond occupied by shallow waters, where Γ(t) is
the boundary of Ω(t). We consider the boundary Γ(t) divided into two parts Γ(t) =
Γ1(t) ∪ Γ2(t), where Γ1(t) corresponds to the bottom and the lateral walls, and Γ2(t)
corresponds to the top free surface. Finally, we denote by n⃗(t) the unit outward normal
vector to the boundary Γ(t).

For the sake of simplicity, we will assume that, at initial time t = 0, the pond presents a
fixed constant height of water H > 0 (that is, Ω(0) = G×[0, H], with G ⊂ R2 representing
the ground plan of the raceway, as given in Fig. 2), where water is initially at rest.
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Figure 2: Schematic drawing of the raceway ground plan G, showing the two straight channels of
length L and width W , and the two semicircular channels of radii r and R. A possible location for the
paddlewheel is also shown.

Our state variables include velocity v(x, t) and pressure p(x, t) of the liquid at time
t ∈ I and at point x = (x1, x2, x3) ∈ Ω(t), given by the classical Navier-Stokes equations
for incompressible flows:

∂v⃗

∂t
+ (v⃗ · ∇)v⃗ − µ∆v⃗ +∇p = F⃗ in Ω(t), t ∈ I,

∇ · v⃗ = 0 in Ω(t), t ∈ I,

v⃗ = 0⃗ on Γ1(t), t ∈ I,

v⃗(x, 0) = 0 in Ω(0),

(1)
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where µ is the dynamic viscosity coefficient, and the second-member term F⃗ (x, t) =
(F1, F2, F3) represents the effect of the rotating paddlewheel with its axis centered at
point (x0

1, x
0
2, x

0
3) and with angular speed ω (see full details, for instance, in [5]), that is,

for a force magnitude of F :

F1(x, t) = Fω2 cos(ωt)[(x1 − x0
1)

2 + (x3 − x0
3)

2],
F2(x, t) = 0,
F3(x, t) = Fω2 sin(ωt)[(x1 − x0

1)
2 + (x3 − x0

3)
2],

(2)

in the water region R(t) where the paddles rotate, and F⃗ null in the rest of the raceway.
(A more detailed definition of region R(t) will be given in bellow sections).

In addition to water state variables v(x, t) and p(x, t), we also consider the state
variables corresponding to algal concentration A(x, t), nitrogen concentration N(x, t),
and phosphorus concentration P (x, t), given by the following coupled nonlinear system of
convection-diffusion-reaction equations with Monod kinetics [4, 6], and with liquid velocity
v⃗ obtained from previous state system (1):

∂A

∂t
+ v⃗ · ∇A− µA∆A = −γA+ L

N

KN +N

P

KP + P
A in Ω(t), t ∈ I,

∂N

∂t
+ v⃗ · ∇N − µN∆N = −CNL

N

KN +N
A in Ω(t), t ∈ I,

∂P

∂t
+ v⃗ · ∇P − µP∆P = −CPL

P

KP + P
A in Ω(t), t ∈ I,

∂A

∂n
= 0 on Γ1(t), t ∈ I,

∂N

∂n
= 0 on Γ1(t), t ∈ I,

∂P

∂n
= 0 on Γ1(t), t ∈ I,

A(x, 0) = A0(x) in Ω(0),
N(x, 0) = N0(x) in Ω(0),
P (x, 0) = P0(x) in Ω(0),

(3)

where the light rays effect L on algae is given by the expression:

L(x, t) = µmaxΘ
θ(t)−θ0I(t) e−Φx3

with µmax the maximum specific growth rate, Θ the thermic regeneration coefficient,
θ(t) the temperature, θ0 a reference temperature, I(t) the incident light intensity, and Φ
the coefficient for light attenuation due to depth. The other parameters in state system
(3) are µA, µN and µP (corresponding to the diffusion coefficients of algae, nitrogen
and phosphorus, respectively), γ (the algal death rate), KN and KP (the half-saturation
constant for nitrogen and phosphorus, respectively), and CN and CP (representing the
stoichiometric relations for nitrogen and phosphorus, respectively).
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2.2 Optimal Design: The Optimal Control Problem

As above commented, in this study we are interested in finding the optimal initial
height H of water, and the optimal location (x0

1, x
0
2, x

0
3) and rotational speed ω of the

paddlewheel, such that the production of algal biomass is maximized.
With respect to the water control variable H, this one must remain between a lower

bound and an upper one, imposed by the geometric characteristics of the raceway.
With respect to the paddlewheel control variables, if we consider a wheel with paddles

of length ρ, we will fix, for technical reasons, the coordinate x0
3 as ρ + ρ0, with ρ0 small

(so that the paddle does not pass too close to the bottom of the raceway). Moreover, due
to the symmetry of the pond, we can restrict our study to only one of the two parallel
straight channels -say the left one (see Fig. 2)- and we will fix the coordinate x0

2 as the
value corresponding to the central width of this left half of the raceway. So, in the end, we
only have two paddlewheel control variables left, x0

1 and ω, both subject to the appropriate
geometric and/or technological constraints.

Since we are interested in optimizing the production of algae in the raceway, we are led
to find the optimal values for H, x0

1 and ω -all subject to their corresponding constraints-
that maximize the cost functional:

J(H, x0
1, ω) =

∫
Ω(T )

A(x, T ) dx, (4)

where the control variables H and (x0
1, ω) enter the cost function via the definition of

Ω(0) and the second member F⃗ of the system (1) corresponding to the state variable v⃗,
respectively.

In the case that the state variable A is not regular enough (for instance, not continuous
at t = T , but integrable) alternative cost functionals could be used instead, for instance:

J(H, x0
1, ω) =

∫ T

0

∫
Ω(t)

A(x, t) dx dt, (5)

With respect to the regularity of the state variables, it is worthwhile recalling here
that, as it is well known, the existence and regularity of the three-dimensional Navier-
Stokes system (1) is still an open problem. However, if we assume that the velocity
v⃗ ∈ [L∞(I;W 1,∞(Ω(t))]3, the authors have demonstrated in [4] that for smooth and
bounded initial data, that is,

A0, N0, P0 ∈ L2(Ω(0)),
0 ≤ A0(x), N0(x), P0(x) ≤ M, ∀x ∈ Ω(0),

then the state variables A,N and P are also smooth and bounded. In particular, we have
that:

A,N, P ∈ W 1,2,2(I;H1(Ω(t)), H1(Ω(t))′) ∩ C([0, T ];L2(Ω(t))),
0 ≤ A(x, t), N(x, t), P (x, t) ≤ C(M,T ), ∀x ∈ Ω(t), t ∈ I,

where the Bochner-Sobolev space W 1,2,2(I;H1(Ω(t)), H1(Ω(t))′) corresponds to the sub-
space [7]:

{u ∈ L2(I;H1(Ω(t))) /
∂u

∂t
∈ L2(I;H1(Ω(t))′)}.
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3 NUMERICAL IMPLEMENTATION

For the numerical resolution of the state system of above optimal control problem
(i.e., computing algal concentration for finding the optimal initial water height and the
optimal paddlewheel location and rotational speed), the three-dimensional hydrodynamic
model TELEMAC-3D [8] was used, where the WAQTEL biomass module was activated
to include the effects of algal growth. Moreover, to treat the advective terms appearing
in the state system, the option for the Multidimensional Upwind Residual Distribution
(MURD) method was chosen.

Then, once we have computed a discrete approximation of the state variables (in
particular, the discretized concentration of algae An

h(·) ≃ A(·, tn), for the set of discrete
times tn, n = 0, 1, . . . , N), in order to calculate a discrete approximation Jh of the cost
functional J given by (4), we can use any standard quadrature rule for the numerical
integration over the spatial domain.

In this way, we will arrive to a discrete, constrained maximization problem, whose
solution can be obtained by any numerical optimization algorithm, in particular, and
for the sake of simplicity, by any derivative-free algorithm. In the present case we will
propose, for instance, the Nelder-Mead method [9], after the inclusion of a suitable penalty
term to deal with the bound constraints of the control variables.

3.1 Some numerical examples

This subsection presents only one of the many computational tests performed for the
mathematical modelling of a real-world scenario posed in a raceway whose dimensions
(measured in meters) are: length of straight channels L = 20.0, width W = 2.0, and radii
r = 0.2 and R = 2.2. As above commented, the numerical experiences presented here have
been developed with the open-source hydrodynamics module TELEMAC-3D, although in
order to compare our results we have also tried the commercial program MIKE21 and the
open software FreeFem++.

In the numerical simulation presented here, for the paddlewheel we have chosen the
following data: paddle length ρ = 0.4, ρ0 = 0.1 (and consequently x0

3 = 0.5), and force
magnitude F = 10.0. According to the geometry of the domain, location and angular
speed have been taken as x0

1 = −5.0 and ω = 0.5, respectively. Finally, the water height
has been taken as H = 0.3.

Taking into account previous considerations and data, in this case the region of influence
of the paddles for the force term F⃗ in (1) is given by the following horizontal cylindrical
segment:

R(t) = {(x1, x2, x3) ∈ Ω(t) / 0.2 ≤ x2 ≤ 2.2, (x1 − x0
1)

2 + (x3 − x0
3)

2 ≤ ρ2},

i.e., for suitable coordinates (x2, x3), coordinate x1 varies between x0
1 −

√
ρ2 − (x3 − x0

3)
2

and x0
1 +

√
ρ2 − (x3 − x0

3)
2. We must remark here that the region of influence of the

paddles is independent of angular speed ω, depending only on location x0
1 and height H.

With respect to other data for the state systems, for a time t measured in seconds,
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temperature θ (measured in ◦C) is given by:

θ(t) = 20 + 2 sin

(
2πt

86400

)
,

(that is, oscillating between 18 and 22 along the whole day), considering a reference
temperature of θ0 = 20. Finally, incident light intensity I is given by expression:

I(t) = max

{
0, sin

(
2πt

86400

)}
which means that is null overnight.

For the sake of conciseness, we will present here only one numerical test from the
many developed by the authors. So, in Fig. 3 we show an example of the numerical
results corresponding to the field of water velocities for the final time T = 86400 seconds
(corresponding to one day).

Figure 3: Computational water velocities obtained for the raceway mesh at final time.

All the numerical results obtained in the numerous computational tests developed for
the modelling step in the resolution of the optimal control problem have shown a good
performance. So, we are now focused on the optimization step for the resolution of the
optimal control problem, whose numerical results will be presented in a forthcoming paper.
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