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The Harten, Lax, and van Leer with contact restoration (HLLC) scheme has been modified and extended in
conjunction with time-derivative preconditioning to compute flow problems at all speeds. It is found that a simple
modification of signal velocities in the HLLC scheme based on the eigenvalues of the preconditioned system is
only needed to reduce excessive numerical diffusion at the low Mach number. The modified scheme has been
implemented and used to compute a variety of flow problems in both two and three dimensions on unstructured
grids. Numerical results obtained indicate that the modified HLLC scheme is accurate, robust, and efficient for
flow calculations across the Mach-number range.

I. Introduction

H ISTORICALLY, numerical algorithms for the solution of the
Euler and Navier–Stokes equations are classified as either

pressure-based or density-based solution methods. The pressure-
based methods, originally developed and well suited for incom-
pressible flows, are typically based on the pressure correction tech-
niques. They usually use a staggered grid and solve the governing
equations in a segregated manner. The density-based methods, origi-
nally developed and robust for compressible flows, use time-arching
procedures to solve the hyperbolic system of governing equations
in a coupled manner.

In general, density-based methods are not suitable for efficiently
solving low Mach number or incompressible flow problems, be-
cause of large ratio of acoustic and convective timescales at the
low-speed flow regimes. To alleviate this stiffness and associated
convergence problems, time-derivative preconditioning techniques
have been developed and used successfully for solving low-Mach-
number and incompressible flows by many investigators, including
Chorin,1 Choi and Merkle,2 Turkel,3 Weiss and Smith,4 and Dailey
and Pletcher,5 among others. Such methods seek to modify the time
component of the governing equations so that the convergence can
be made independent of Mach number. This is accomplished by
altering the acoustic speeds of the system so that all eigenvalues be-
come of the same order, and thus condition number remains bounded
independent of the Mach number of the flows.

Over the last two decades characteristic-based upwind methods
have established themselves as the methods of choice for prescrib-
ing the numerical fluxes for compressible Euler equations. When
these upwind methods are used to compute the numerical fluxes
for the preconditioned Euler equations, solution accuracy at low
speeds can be compromised, unless the numerical flux formulation
is modified to take into account the eigensystem of the precondi-
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tioned equations. Prior attempts in modifying Roe’s flux-difference
splitting scheme and advection upstream splitting method (AUSM)
family flux-splitting schemes for flows at all speeds can be found in
Refs. 4 and 6, respectively.

The Harten, Lax, and van Leer (HLL) scheme developed by
Harten et al.7 is attractive because of its robustness, conceptual sim-
plicity, and ease of coding, but it has the serious flaw of diffusing
contact surfaces. This is mainly because the HLL solver reduces
the exact Riemann problem to two pressure waves and therefore ne-
glects the contact surface. Toro et al.8 discussed this limitation, and
proposed a modified three waves solver, named HLLC, where the
contact is explicitly presented. This HLLC scheme is found to have
the following properties: 1) exact preservation of isolated contact
and shear waves, 2) positivity preserving of scalar quantity, and 3)
enforcement of entropy condition. The resulting scheme greatly im-
proves contact resolution and has been successfully used to compute
compressible viscous and turbulent flows on both structured grids9

and unstructured grids.10 The objective of the effort discussed in this
paper is to progress the HLLC scheme toward a unified formula-
tion suitable for accurate and efficient simulation of flow problems
across the Mach-number range in conjunction with time-derivative
preconditioning. It is found that a simple modification of signal ve-
locities in the HLLC scheme based on the eigenvalues of the precon-
ditioned system is only needed to reduce excessive numerical diffu-
sion at the low Mach number. The preconditioned Euler and Navier–
Stokes equations are solved using an implicit time-marching method
on unstructured grids. The resulting system of linear equations is
solved using a matrix-free generalized minimum residual+lower–
upper symmetric Gauss–Seidel (GMRES+LU-SGS) method.11,12

The modified HLLC scheme is used to compute inviscid fluxes at
the interface. A variety of computations has been made for a wide
range of flow conditions, for both inviscid and viscous flows, in both
two and three dimensions to evaluate the accuracy and performance
of the HLLC scheme. The numerical results obtained indicate that
the modified HLLC scheme is accurate, simple, robust, and effective
for flow calculations at all speeds.

II. Governing Equations
The Navier–Stokes equations governing unsteady compressible

viscous flows can be expressed in the conservative form as

∂U
∂t

+ ∂F j

∂x j
= ∂G j

∂x j
(1)

where the summation convention has been employed. The flow vari-
able vector U, the inviscid flux vector F, and viscous flux vector G
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LUO, BAUM, AND LÖHNER 1161

are defined by

U =




ρ

ρvi

ρe


 , F =




ρv j

ρviv j + pδi j

v j (ρe + p)




G =




0

σi j

vlσl j + k
∂T

∂x j


 (2)

Here ρ, p, e, T , and k denote the density, pressure, specific total
energy, temperature, and thermal conductivity of the fluid, respec-
tively, and vi is the velocity of the flow in the coordinate direc-
tion xi . Note that total energy is related to the total enthalpy H by
e = H − p/ρ, where H = h + |v|2/2 and h = CpT . Here, Cp is the
specific heat at constant pressure. This set of equations is completed
by the addition of the equation of state

p = (γ − 1)ρ
(
e − 1

2 v jv j

)
, T = (

e − 1
2 v jv j

)/
Cv (3)

which is valid for perfect gas, where γ is the ratio of the specific
heats and Cv is the specific heat at constant volume. The components
of the viscous stress tensor σi j are given by

σi j = µ

(
∂vi

∂x j
+ ∂v j

∂xi

)
+ λ

∂vk

∂xk
δi j (4)

The thermal conductivity k and viscosity coefficient µ are as-
sumed to be a function of the temperature and are determined using
Sutherland’s empirical relation. It is assumed that λ and µ are related
by Stokes’s hypothesis

λ + 2µ/3 = 0 (5)

The left-hand side of Eq. (1) constitutes the Euler equations gov-
erning unsteady compressible inviscid flows.

III. Preconditioning System
The derivation of the preconditioned governing equations begins

by transforming the original system of equations from the conser-
vative variables U to the primitive variables Q as follows:

∂U
∂Q

∂Q
∂t

+ ∂F j

∂x j
= ∂G j

∂x j
(6)

where Q = [p, vx , vy, vz, T ]t and Jacobian ∂U/∂Q is given by

∂U
∂Q

=




ρp 0 0 0 ρT

ρpvx ρ 0 0 ρT vx

ρpvy 0 ρ 0 ρT vy

ρpvz 0 0 ρ ρT vz

ρp H − 1 ρvx ρvy ρvz ρT H + ρCp




(7)

with

ρp = ∂ρ

∂p

∣∣∣∣
T

, ρT = ∂ρ

∂T

∣∣∣∣
p

(8)

The preconditioned Navier–Stokes equations are then obtained by
replacing the original nonpreconditioned Jacobian matrix ∂U/∂Q
with a preconditioning matrix �:

�
∂Q
∂t

+ ∂F j

∂x j
= ∂G j

∂x j
(9)

The following preconditioning matrix �, originally proposed by
Choi and Merkle2 and extended further by Weiss and Smith,4 is
used in the present work:

� =




� 0 0 0 ρT

�vx ρ 0 0 ρT vx

�vy 0 ρ 0 ρT vy

�vz 0 0 ρ ρT vz

�H − 1 ρvx ρvy ρvz ρT H + ρCp




(10)

where � is given by

� = (
1
/

V 2
r − ρT /ρCp

)
(11)

Here Vr is a reference velocity. The choice of the reference velocity
Vr is crucial for success of the preconditioning method. If the mag-
nitude of the reference velocity is equal to the local speed of sound,
the preconditioned system (9) recovers to the nonpreconditioned
system (1). To make all eigenvalues of preconditioned system (1)
have the same order of magnitude, the reference velocity must be
of the same order as a local velocity. In this work, the following
reference velocity Vr is used:

Vr = min[c, max(|v|, K |v∞|)] (12)

where |v| is the local velocity magnitude, |v∞| is a fixed reference
velocity, c is the speed of sound, and K is a constant. Note that
following Turkel3 the reference velocity Vr in Eq. (12) is limited
to prevent anomalous behavior at the near-stagnation conditions. In
the present work, |v∞| is set to be the freestream velocity and K is
fixed at 0.5.

For the low-Reynolds-number viscous flows, the reference veloc-
ity should not be smaller than the local diffusion velocity µ/ρ	d,
where 	d is the characteristic mesh size length. Thus,

Vr = max(Vr , µ/ρ	d) (13)

The resultant eigenvalues of the preconditioned system are given by

λ

(
�−1 ∂F

∂Q

)
= v′ − c′, vn, vn, vn, v

′ + c′ (14)

where

vn = v · n (15)

v′ = vn(1 − α) (16)

c′ =
√

α2v2
n + V 2

r (17)

α = (
1 − βV 2

r

)/
2 (18)

β = ρp + ρT /ρCp (19)

Here n denotes the unit outward normal vector to the interface. Note
that all eigenvalues remain of the order of v as long as the reference
velocity is of the same order as the local velocity.

IV. Preconditioned HLLC Scheme
Over the past two decades characteristic-based upwind methods

have established themselves as the methods of choice for prescribing
the numerical fluxes for compressible Euler equations. When these
upwind methods are used to compute the numerical fluxes for the
preconditioned Euler equations, solution accuracy at low speeds can
be compromised, unless the numerical flux formulation is modified
to take into account the eigensystem of the preconditioned equations.
The particular version of the HLLC scheme is defined in Ref. 9
and can be easily modified to operate effectively at very low Mach
numbers by replacing the signal velocities with the preconditioned
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1162 LUO, BAUM, AND LÖHNER

signal velocities. The inviscid interface flux computed using the
preconditioned HLLC scheme can be expressed as

FHLLC
i j =




Fi , if Si > 0

F(U∗
i ), if Si ≤ 0 < SM

F(U∗
j ), if SM ≤ 0 ≤ Sj

F j , if Sj < 0 (20)

where

U∗
i =




ρ∗
i

(ρv)∗
i

(ρE)∗
i




= 1

Si − SM




(Si − vni )ρi

(Si − vni )(ρv)i + (p∗ − pi )n

(Si − vni )(ρE)i − pivni + p∗SM


 (21)

U∗
j =




ρ∗
j

(ρv)∗
j

(ρE)∗
j




= 1

Sj − SM




(Sj − vn j )ρ j

(Sj − vn j )(ρv) j + (p∗ − p j )n

(Sj − vn j )(ρE) j − p jvn j + p∗SM


 (22)

F∗
i ≡ F(U∗

i ) =




SMρ∗
i

SM (ρv)∗
i + p∗n

SM ((ρE)∗
i + p∗)


 (23)

F∗
j ≡ F(U∗

j ) =




SMρ∗
j

SM (ρv)∗
j + p∗n

SM ((ρE)∗
j + p∗)


 (24)

p∗ = ρi

(
vni − Si

)(
vni − SM

) + pi

= ρ j

(
vn j − Sj

)(
vn j − SM

) + p j (25)

and SM is defined as

SM = ρ jvn j

(
Sj − vn j

) − ρivni

(
Si − vni

) + pi − p j

ρ j

(
Sj − vn j

) − ρi

(
Si − vni

) (26)

Signal velocities Si and Sj are defined as

Si = min(v′
i − c′

i , v̂
′ − ĉ′) (27)

Sj = max(v′
j + c′

j , v̂
′ + ĉ′) (28)

with v̂′ and ĉ′ being Roe’s average variables for preconditioned ve-
locity and speed of sound. The only modification made in the HLLC
scheme is that the signal velocities Si and Sj are now defined using
the preconditioned eigenvalues. This modification is based on the
promise that the dissipative contributions should be scaled by the
velocity magnitude, rather than by the speed of sound, as the local
Mach number decreases. Note that in the supersonic regions, where
α = 0, Vr = c, c′ = c, v′ = vn , the preconditioned HLLC scheme re-
covers to the original HLLC scheme.

V. Numerical Results
The modified HLLC formulation has been incorporated into a

unstructured grid Navier–Stokes solver with turbulence modeling
capability,10,11 where the mean-flow and turbulence-model equa-
tions are decoupled in the time integration in order to facilitate
the incorporation of different turbulence models. The one-equation
turbulence model developed by Spalart and Allmaras13 is used to
compute turbulent flows in the present work. Both preconditioned
mean-flow equations and turbulence model are integrated in time

using an implicit scheme. The resulting system of linear equations
is solved using a matrix-free GMRES+LU-SGS method.11 The spa-
tial discretizations are carried out using a hybrid finite volume and
finite element method, where a finite volume approximation is used
to discretize the inviscid fluxes, and a Galerkin finite element ap-
proximation with piecewise linear elements is used to evaluate the
viscous flux terms. The numerical flux functions for inviscid fluxes
at the dual mesh cell interface are computed using the modified
HLLC scheme. The high-order accuracy in space is achieved using

Fig. 1a Mesh for lid-driven cavity problem.

Fig. 1b Computed velocity contours for lid-driven cavity problem at
M∞ = 0.005, Re = 400.

Fig. 1c Computed X-direction velocity distribution along vertical ge-
ometric centerline at M∞ = 0.005, Re = 400.
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LUO, BAUM, AND LÖHNER 1163

Fig. 2a Mesh for backward-facing step (nelem = 135,832; npoin = 72,434; nboun = 9034).

Fig. 2b Computed Mach-number contours for backward-facing step problem at M∞ = 0.128, Re = 33.42 ×× 103.

Fig. 2c Computed velocity streamline traces for backward-facing step problem at M∞ = 0.128, Re = 33.42 ×× 103.

Fig. 2d Comparison of streamwise velocity profiles at selected locations for backward-facing step problem at M∞ = 0.128, Re = 33.42 ×× 103.

Fig. 2e Comparison of pressure coefficient distribution on the bottom
wall for backward-facing step problem at M∞ = 0.128, Re = 33.42 ×× 103.

a reconstruction algorithm based on the primitive variables and
monotone upwind schemes for scalar conservation laws approach.
The developed method has been validated and verified for a number
of benchmark test cases. A grid-convergence study indicates that
the present algorithm is second-order accurate in space. Only a few
typical examples are presented here to demonstrate the accuracy,
effectiveness, and robustness of the present method.

A. Lid-Driven Cavity Flow
The two-dimensional lid-driven cavity flow problem was studied

extensively and served as a benchmark test case for the incompress-

ible Navier–Stokes calculations. This test case is chosen to study
the accuracy and effectiveness of the developed method for low-
Reynolds-number viscous flows. The grid used in the computation
is shown in Fig. 1a. It contains 5398 elements, 2800 grid points, and
200 boundary points. The computation was performed at a Mach
number of 0.005 and a Reynolds number of 400. Figure 1b shows
the computed velocity in the flowfield. The u-velocity component
along the vertical centerline is shown in Fig. 1c. The solution of
Ghia et al.,14 which is considered a standard benchmark solution,
used a very fine 129 × 129 grid points and is also shown for com-
parison. The virtually identical agreement indicates that the present
method yields very accurate solution to the low-Reynolds-number
incompressible Navier–Stokes equations.

B. Turbulent Backward-Facing Step Flow
The second validation case was the turbulent flow computation

around a backward-facing step. The configuration of the backward-
facing step is that of Ref. 15: the expansion ratio (channel inlet
height:channel outlet height) is 1:1.125. Figure 2a shows a view
of the grid used in the computation. It contains 135,832 elements;
72,434 grid points; and 9034 boundary points. The computational
domain extends four step heights upstream of the step and 40 step
heights downstream from the step. Inlet Mach number is 0.128, and
the Reynolds number based on the step height and inlet velocity is
33.42 × 103. Such a high Reynolds number is used to ensure that
the boundary layer is entirely turbulent prior to passing over the
step. Figure 2b shows the plot of Mach-number contours. A close-
up view of the particle traces based on the streamwise velocity is
shown in Fig. 2c, where one can clearly see the separation region
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1164 LUO, BAUM, AND LÖHNER

along with the corner eddy and reattachment region. The stream-
wise velocity profiles at various axial locations are compared with
those of the experimental data in Fig. 2d and show very good agree-
ment. A plot of the pressure coefficient distribution for the bottom
wall is shown in Fig. 2e and again shows fairly good agreement
with the experimental results. The observed discrepancy between
the computed solution and the experimental data might be caused
by the one-equation turbulence model used in the present calcula-
tion, where the accurate modeling of large separations is still a big
challenge. Nevertheless, this test case clearly demonstrates the ac-
curacy and robustness of the modified HLLC scheme for predicting
separated turbulent flows at the low Mach number.

C. Transonic Flow past RAE2822 Airfoil
The third test case was a simulation of transonic flow over a

RAE2822 airfoil at a Mach number of 0.73, a chord Reynolds num-
ber of 6.5 × 106, and an incidence of 2.8 deg. The flow condition is
denoted as test case 9 in the experimental report by Cook et al.16 This
test case is chosen to demonstrate the accuracy and performance of
the present method for solving transonic flow problems. The mesh
used in the computation shown in Fig. 3a contains 25,172 elements;
12,741 points; and 310 boundary points. The computed Mach num-
ber and pressure contours in the flowfield are displayed in Figs. 3b
and 3c, respectively. A shock wave forms at about 55% on the up-
per surface. The computed eddy viscosity is depicted in Fig. 3d.
A smooth distribution of eddy viscosity throughout the boundary
layer and vanishingly small values in the inviscid regions of flow
are observed. The computed surface-pressure and skin-friction dis-
tributions are compared with experimental data16 in Figs. 3e and 3f,

Fig. 3a Unstructured mesh used for computing turbulent flow over a
RAE2822 airfoil (nelem = 25,172; npoin = 12,741; nboun = 310).

Fig. 3b Computed Mach-number contours for turbulent flow over a
RAE2822 airfoil (M∞ = 0.73, Re = 6.5 ×× 106, α= 2.8 deg).

Fig. 3c Computed pressure contours for turbulent flow over a
RAE2822 airfoil (M∞ = 0.73, Re = 6.5 ×× 106, α= 2.8 deg).

Fig. 3d Computed eddy-viscosity contours for turbulent flow over a
RAE2822 airfoil (M∞ = 0.73, Re = 6.5 ×× 106, α= 2.8 deg).

Fig. 3e Comparison of computed surface-pressure coefficient with ex-
perimental data for turbulent flow over a RAE2822 airfoil.

Fig. 3f Comparison of computed skin-friction coefficient with exper-
imental data for turbulent flow over a RAE2822 airfoil.

respectively, indicating an overall good agreement. The computed
lift coefficient of 0.801 and drag coefficient of 0.0160 are com-
pared favorably with the experimental values of 0.803 and 0.0168,
respectively.

D. Inviscid Flow past a Sphere
Inviscid flow past a sphere at a Mach number of 0.005 is com-

puted in this test case to demonstrate the accuracy and effectiveness
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LUO, BAUM, AND LÖHNER 1165

of the developed method for three-dimensional problems. Because
of the symmetrical nature of this problem, only a quarter of a
sphere was calculated. The mesh, which contains 73,397 elements,
14,281 grid points, and 3479 boundary points, is depicted in Fig. 4a.
The computed velocity in the flowfield is shown in Fig. 4b. Fig-
ure 4c illustrates the velocity distributions obtained by the so-
lutions with and without preconditioning and the pressure-based
incompressible solution. The analytical solution is also shown
in the figure for comparison. The solution without precondition-
ing was severely degraded, as the excess diffusion in the orig-
inal system corrupts the solution. The result obtained using the
present preconditioning method is comparable to, if not better
than, the one using the pressure-based incompressible method de-
veloped by the present authors.17 This test case clearly demon-
strates the accuracy of the present method for the three-dimensional
problem.

E. Viscous Flow past an Open-Wheel Race Car
As an example of application, the developed method has been

used to compute viscous flow past an open-wheel race car (e.g.,
the flow over rotating wheels). The computation was performed
at a freestream Mach number of 0.13134 and a Reynolds number

Fig. 4a Surface mesh used for computing flow past a sphere
(nelem = 73,397; npoin = 14,281; nboun = 3479).

Fig. 4b Computed velocity contours on the surface of the sphere at
M∞ = 0.005 and α= 0.0.

of 1 × 106. The mesh used in the computation, shown in Fig. 5a,
assumes a symmetrical model and contains 8,314,454 elements;
1,459,199 grid points; and 173,134 boundary points. The com-
puted velocity and streamline trace in the flowfield nearby the car
model are presented in Figs. 5b and 5c, respectively. The pres-
sure distribution on the moving ground plane centerline between
the experimental data and computational result is displayed in
Fig. 5d.

Fig. 4c Comparison of velocity profiles obtained by different numer-
ical methods.

Fig. 5a Surface mesh used for computing laminar flow past an open-
wheel race car (nelem = 8,314,454; npoin = 1,459,199; nboun = 173,134).

Fig. 5b Computed velocity contours on the surface of the race car at
M∞ = 0.13134, α= 0.0, and Re = 106.
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1166 LUO, BAUM, AND LÖHNER

Fig. 5c Computed streamline trace in the flowfield near the race car
at M∞ = 0.13134, α= 0.0, and Re = 106.

Fig. 5d Comparison of pressure coefficient distribution on the road
between the computational result and experimental data.

VI. Conclusions
The Harten, Lax, and van Leer (HLLC) scheme has been mod-

ified and extended to compute the flows at all speeds in conjunc-
tion with time-derivative preconditioning technique. The developed
methods have been used to simulate a wide variety of flow types and
speeds. The numerical results indicate that the slightly modified but
nonetheless simple formulation of the HLLC scheme is effective in

maintaining solution accuracy and efficiency for flow calculations
at all speeds.
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