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Abstract. Due to their critical location in the human anatomy, intervertebral discs
(IVD) are subject to complex loading conditions. Experimental and numerical studies
on intervertebral discs under static loading are widely analysed in the literature, giving
insight into the mechanical characteristics of IVD. Nevertheless, due to complex experi-
mental protocols and challenging simulations, their dynamic behaviour is scarcely studied.
Further studies are necessary to better understand the mechanisms in degenerative disc
disease and support the design of robust disc prothesis. The goal of this work is to exam-
ine the nonlinear effects of time-dependent loading on the mechanical response of IVD,
through numerical simulations.

A finite element model which accounts for the complexity of the IVD (heterogeneity,
fiber anisotropy, hyperelasticity, viscoelasticity) is developed. The hyperelastic Holzapfel-
Gasser-Ogden (HGO) material model was implemented to describe the nonlinear be-
haviour of the annulus fibrosus and the dissipative behaviour of the fibers is also consid-
ered through a finite strain viscoelasticity model.

Vibrations about a nonlinear prestressed state will be considered to model physiological
dynamic loading such as whole body vibration. A complementary aspect focuses on the
viscoelastic behaviour of the IVD, by quantifying the dissipated energy through hysteresis
loops. The influence of inputs parameters (preload, strain-rate and excitation frequency)
on the dynamic responses will be also analysed.

1 INTRODUCTION

Low back pain is a common problem that will affect most people in their life. Degen-
erative disc disease (DDD) is a medical condition in which a damaged spinal disc causes
pain. In general, causes of spine pathology are multifactorial, but the 21st century way
of life may lead to accelerated anatomic changes and an early loss of function of the
intervertebral disc (IVD). The mechanisms behind DDD are still unclear, especially the
relationship between external loads and disc damage. The IVD plays a major role in
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the normal mechanical function of the spine : it is the principal joint between two verte-
brae and it allows the three-dimensional mobility of the spine (torsion, flexion and lateral
bending). The IVD also acts as a shock absorber within the spine that is particularly
important in daily activities.

The IVD consists of two components :

- the nucleus pulposus (NP), the central gelatinous material. It has an important
water content and a high deformable isotropic behaviour. It represents about 50%
of the IVD

- the annulus fibrosus (AF), a multilayer structure around the NP. Several concentric
lamellas composed of collagen fibers constitute a high stiffness structure which keeps
the NP inside the IVD.

The mechanical response of the IVD is governed by the composition and structural
organization of its components. The interaction between these two components leads to
a reliable function of the IVD, and the whole IVD’s behaviour is jeopardized if one of
them is degenerative (due for instance to the dehydration of the NP or a lack of stiffness
of the AF). Some experimental analysis are reported on both human and animal IVDs
[7] and highlight the influence of external loading (loading rate, strain rate) and physi-
cal parameters (age, spinal level, anatomy) on DDD. However, experimental studies are
very challenging due to the large influence of testing environment and sample precondi-
tioning. In particular, in vivo boundary conditions are hardly reproducible in a testing
environment. Therefore, numerical models are necessary to better understand mecha-
nisms behind degenerative disc disease. The flexibility of numerical models, based on
material properties obtained experimentally, offers a great possibility to apply complex
static or time-dependent boundary conditions.

This study is devoted to the nonlinear and dissipative simulation of the IVD about
a prestress state. The IVD is preloaded by the mass of the upper body creating an
internal pressure inside the NP. The nonlinear behaviour of the IVD to static loading is
reported in literature on experimental tests and numerical simulations. But the dynamic
behaviour about this preloaded state, is still little known. Through this study, we explore
the relationship between external loads and dynamic disc properties. Such studies could
be a modern database in the development of disc prothesis, aiming at designing reliable
disc replacement and providing the required individual treatment.

The first section focuses on the specific constitutive model for the AF, a fiber-reinforced
viscoelastic structure. Then, a finite element model of a lumbar L4/5 IVD is described,
integrating the material model implemented for the AF. Various computational simula-
tions are finally presented in Section 3 to describe the behaviour of IVD for different
loading scenarios.

2 ANISOTROPIC VISCOELASTIC MODEL FOR ANNULUS FIBROSUS

In this section, the specific material law implemented for the AF in the finite element
model is presented. A hyperelastic large deformation formulation is used to define the
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Figure 1: Main functional spinal unit composition.

nonlinear behaviour of the IVD. The Holzapfel-Gasser-Ogden (HGO) material model was
implemented to represent the mechanical contribution of collagen fibers, and its viscous
behaviour is also taken into account via a finite strain viscoelastic formulation [2]. The
main features of this model are presented here.

The position vector of a particle is denoted X in the reference configuration Ω0 (at
t=0), and x(X, t) in the current configuration Ω after transformation. A Lagrangian
description is used, with Ω0 as reference configuration.

2.1 Hyperelasticity framework for fiber-reinforced composite

The deformation gradient is defined as F(X, t) = ∂x(X, t)/∂X. We also introduce
the right Cauchy-Green tensor C = FTF and the Green-Lagrange strain tensor E =
0.5(C − 1). The volume ratio is defined as the jacobian determinant of the transforma-
tion J(X, t) = det(F(X, t)) > 0. The deformation of biological tissues are classically
splitted into a volumetric (spherical) part and an isochoric (deviatoric) part. This de-
composition can be applied to both F and C tensors. We classically denote F̄ and C̄ the
isochoric transformation tensors and Fv and Cv the volumetric transformation tensors.
This decomposition leads to F = F̄Fv and det(F̄) = 1 while det(Fv) = J(X, t). This
development can be extended to the Cauchy-Green tensor C, so that we may write the
isochoric deformation tensor as:

C̄ = J(X, t)−
2
3 C (1)

The anisotropic structure of the AF requires the definition of two unit vector fields
a0

1(X) and a0
2(X) characterizing the fiber direction at point X in the reference configura-

tion Ω0. The action of the deformation gradient on a0
1(X) and a0

2(X) defines the stretch
of the fiber

λa1a1(x, t) = F(X, t)a0
1(X), λa2a2(x, t) = F(X, t)a0

2(X) (2)

where λai (i = 1, 2) is the fiber stretch along the direction a0
i . As fiber directions ai(x, t)
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are unit vector fields, is it possible to express the square of each fiber stretch as (λai)
2 = C :

A0
i , where A0

i = a0
i ⊗ a0

i (i = 1, 2) define the structural tensor of family fibers. Through
hyperelastic continuum theory, a strain energy density W is defined by derivating the
stress-strain relationships. For fiber reinforced composites, this strain energy density can
be decomposed into an isochoric part Wiso(C̄,A

0
1,A

0
2), itself separable into fiber (index f)

and matrix (index m) components Wiso,f (C̄,A
0
1,A

0
2) and Wiso,m(C̄), and an volumetric

part Wvol(J)

W = Wiso,m(C̄) +Wiso,f (C̄,A
0
1,A

0
2) +Wvol(J)

= c1(Ī1 − 3) + c2(Ī2 − 3) +
k1

2k2

(
ek2(Ī4−1)2 + ek2(Ī6−1)2 − 2

)
+ k0(1− J)2

(3)

where Ī1, Ī2, Ī4 and Ī6 are modified invariants associated to the tensors C̄, A0
1 and A0

2.
We can identify in this expression the matrix contribution governed by Ī1 and Ī2, and the
fiber contributions governed by Ī4 and Ī6. The fibers cannot be subjected to compression,
so we consider Wiso,f (C̄,A

0
1,A

0
2) only for Ī4 ≥ 1 and Ī6 ≥ 1. Then, the hyperelasticity

theory from a lagrangian point of view links the second Piola-Kirchhoff stress tensor S to
the energy density by:

S = 2
∂W

∂C
= Siso,m + Siso,f + Svol (4)

where Siso,m (resp. Siso,f ) is derived from Wiso,m (resp. Wiso,f ). They represent stress
tensors associated to the isochoric transformation. Similarly, Svol, derived from Wvol,
represents the stress tensor associated to the volumetric transformation.

2.2 Addition of a viscoelastic contribution

In order to introduce a viscoelastic contribution in the model, we define Qα, α = 1, .., N ,
internal variables of isochoric stresses coming from the Clausius-Planck inequality [2]. We
split each isochoric stress tensor into an equilibrium part, denoted by the ∞ symbol, and
non-equilibrium parts:

S = (S∞iso,m +
N∑
α=1

Qα,m) + (S∞iso,f +
N∑
α=1

Qα,f ) + Svol (5)

A generalization of the 1D linear Maxwell model to the three-dimensional and nonlinear
problem is used to describe the evolution of each internal variable. In Eq.(5), N represents
the number of viscous branches considered in the viscoelastic model and Qα is the internal
stress of the αth branch. The equations governing the evolution of each internal variable
Qα (α = 1, ..., N) are:

Q̇α,m +
Qα,m

τα,m
= βα,mṠ

∞
iso,m, Q̇α,f +

Qα,f

τα,f
= βα,f Ṡ

∞
iso,f (6)
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The initial configuration is set as Qα,m(t = 0) = 0 and Qα,m(t = 0) = 0. Couple of
viscous parameters τα,m and βα,m (resp. τα,f and βα,f ) are introduced for each αth matrix
(resp. fibers) branch as relaxation time and energy factor parameters.

We consider a time interval t ∈ [0, T ] with time discretization characterized by ∆t =
tn+1 − tn. The evaluation of each quantity at time tn is denoted by the index n (e.g.
S(tn) = S|n). For numerical implementation, Eq.(6) is expressed as convolution integrals,
which can be discredized by a mid-point method to obtain the recurrence update formula
for Qα,m|n+1 and Qα,f |n+1. For Qα,m, the recurrence update formula is:

Qα,m|n+1 = Hα,m|n + βα,me
−∆t/2τα,m(S∞iso,m|n+1) (7)

where the matrix history term is defined as:

Hα,m|n = e−∆t/2τα,m
(
e−∆t/2τα,m(Qα,m|n)− βα,m(S∞iso,m|n)

)
(8)

Similar equations can be derived for the fiber contribution.
The constitutive model above is implemented in a finite element method framework. Since
the hyperelastic formulation required a Newton-Raphson procedure, the elasticity tensor
(tangent moduli) is calculated at each Newton-Raphson iteration. For time-dependant
simulations, a Newmark integration scheme is used.

2.3 Numerical example on representative volume element of AF

In order to clearly understand the physical mechanisms of the constitutive model, a
small representative volume of the AF is considered, meshed by a single 20-node hexahe-
dron element. We focus on the relative influence of the viscoelastic contribution of the
matrix and the fibers. Four cases are studied, as illustrated in figure 2. For simplicity
sake, only one Maxwell branch is considered for the fibers and the matrix (N = 1 in
Eq.(5)).
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Figure 2: A rheological interpretation of isochoric contribution of the AF. Four cases are
studied: (S0) without viscoelastic contribution, (S1) with only fibers viscoelastic contribu-
tion, (S2) with only matrix viscoelastic contribution, (S3) with viscoelastic contribution
on both matrix and the fibers

Planar symmetric boundary conditions are applied to three faces of the cube while a
time-dependent pressure P (t) = 1 · sin(5 · t) MPa is applied on the upper face (see figure
3, left). Fibers orientations are defined by an angular parameter α = 30°. Hyperelastic
parameters are set to k1 = 1 MPa and k2 = 200 for fibers and to c1 = 0.25 MPa and
c2 = 0 MPa for the matrix part. A compressible material is considered with a Poisson’s
ratio ν = 0.45, and k0 is defined as k0=(c1 + c2)/(1− 2ν).
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Figure 3: Representative volume element of the AF (left) and hysteresis curves for the
four studied cases (right).

The analysis of the upper displacement shows a hysteresis phenomenon. The first study
(S0) highlights the nonlinear static behaviour in tension and compression. The stiffness
of the representative volume element is higher in compression. This is likely due to the
contribution associated to the volumetric transformation (Svol) that is more important
in compression than in traction. Figure 3 shows that the dissipated behaviour is widely
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dependent on the source of the viscoelastic contribution. The fibers contribute relatively
more than the matrix to the dissipated energy of the AF representative volume element
in a load cycle.

3 SIMULATION ON PRELOAD LUMBAR DISC

In this section, we are interested in the dynamic behaviour of the IVD under several
loading scenarios. To that purpose, a finite element model of a lumbar L4/L5 IVD is
developed and both quasi-static and dynamic simulation are carried out.

3.1 Geometry, materials and preloading

The IVD geometry considered in this study (figure 4, left) represents a lumbar disc
L4/5, and has been defined from parametric equations describing the AF and NP profiles
[6]. The AF is defined by the HGO strain energy density (Eq.(3)) while the NP is defined
by the Mooney-Rivlin strain energy density :

WNP = WNP
iso +WNP

vol = c1,N(Ī1 − 3) + c2,N(Ī2 − 3) + k0,N(1− J)2 (9)

A viscoelasticity contribution is added on the isochoric part via a generalized Maxwell
model, as described in Section 2.2, for the NP and the AF (fibers and matrix). For the
AF, the same values of viscoelastic parameters are taken for the fibers and the matrix:
τ1,m = τ1,f = τ1,A and β1,m = β1,f = β1,A. All parameters are extracted from the literature
and result from curve fitting experimental data. The material properties considered for
the AF and the NP are listed in Tables 1 and 2. The constitutive equations have been
implemented in Comsol Multiphysics.

c1,A (Mpa) c2,A (Mpa) k0,A (Mpa) k1 (Mpa) k2 τ1,A (s) β1,A

0.25 0 5e6 1e6 200 0.1 1

Table 1: Material parameters of the HGO model and the generalized Maxwell model (1
branch) for the AF (data from [1]).

c1,N (Mpa) c2,N (Mpa) k0,N (Mpa) τ1,N (s) β1,N τ2,N (s) β2,N τ3,N (s) β3,N

0.12 0.03 15e6 0.042 0.500 0.051 0.199 6.000 0.132

Table 2: Material parameters of the Mooney-Rivlin model and the generalized Maxwell
model (3 branches) for the NP.

Figure 4 illustrates the various loading scenarios considered in this study. The loading
scenarios (A), (B) and (C) correspond to static/quasi-static simulations (no inertial ef-
fects) while the loading scenarios (D) and (E) are associated to dynamic simulations.
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In simulations (A) and (C), a static load is uniformly applied to the upper face of the
IVD. This load represents the upper body weight which is classically comprised between
400 N and 650 N. In this work, we consider an preload F = 600 N.
In simulations (B), (C) and (E), a time-dependent loading is applied to the upper face of
the IVD. In this work, we focus on harmonic loading f(t) = P0 cos(2π f t) (with P0 = 0.25
MPa). In the quasi-static simulations (B) and (C), the inertial effects are neglected con-
trary to the dynamic simulation (E).
The dynamic simulations (D) and (E) consider linear vibrations about a prestress state
corresponding to the application of the upper body weight. The mass of the IVD is
negligible compared to the mass of the upper body mass so that the oscillatory mass in
simulations (D) and (E) is the upper body mass M = 60 kg (the mass density of the AF
and the NP are not defined in the model).

Figure 4: Geometry of IVD and post-processing mapping (left) and boundary conditions
apply on the upper side of L4/5 IVD (right).

3.2 Results

The finite element model was validated under static conditions (A) with experimental
results from the literature. When post-processing the results of the other simulations, we
focus on the vertical displacement of one node of the upper face. The left-hand side of
Digure 5 evidences a nonlinear hardening behaviour of the IVD. Results of simulations (B)
and (C) show that for a given strain rate (here f = 0.5 Hz), the dissipated energy in a load
cycle is lower if the static preload is applied. The right-hand side of Figure 5 illustrates the
influence of the quasi-static loading strain rate on the nonlinear an dissipative behaviour
of the IVD. An increasing strain rate produces a weaker hardening behaviour and reduces
the energy dissipated in a cycle. Further studies will be conducted to quantify accurately
the dissipated energy.
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Figure 5: Quasi-static analysis (A), (B) and (C) (right). Influence of the quasi-static
loading strain rate on the nonlinear an dissipative behaviour of the IVD.

To better understand the dynamic behaviour of the IVD, modal analysis are first carried
out (D). Experimental studies are usually concerned with the first tension-compression
mode and resonant frequencies ranging from 9 Hz to 30 Hz are reported in the literature
for an oscillating mass M = 40 kg [3, 5]. The resonant frequency computed is in good
agreement with the experiments (see figure 6). Figure 6 compares the resonant frequency
of the first tension-compression mode with and without a static preload (linear vibrations
about a nonlinear prestress state) for sereval values of upper body mass. The increase
of stiffness due to the nonlinearity of the IVD affects significantly the resonant frequency
(about 25% increase for M = 40 kg).
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Figure 6: Modal analysis (D): influence of the oscillating mass and static preload on the
resonant frequency of the first tension-compression mode of the IVD.

Finally, dynamic simulations are performed in the time-domain to study the linear
response of the IVD about a nonlinear prestress state. An upper body mass of M = 60 kg
is considered for the application of the static preload and the frequency of the harmonic

9



J.-B. GARCHER, L. ROULEAU and J.-F. DEÜ

load varies from 5 Hz to 30 Hz. Larger amplitudes are observed in Figure 7 near the
resonant frequency at 18 Hz, as predicted by the modal analysis with preload. The IVD’s
dynamic response is computed with and without the viscoelastic contribution of the AF
and the NP. Figure 7 indicates that the dissipated energy in the IVD due to the viscoelastic
behaviour of the AF and the NP causes a significant reduction of the amplitude’s response
near the resonance frequency. This viscoelastic effect becomes negligible at 5 Hz and
30 Hz.
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Figure 7: Dynamic analysis (E). Influence of the excitation frequency and of the viscoelas-
tic contribution.

4 CONCLUSION

A finite element model of a L4/5 lumbar IVD has been presented. A hyperelastic
model combine with a generalised Maxwell model adapter to the finite strain theroy has
been considered for both the AF and the NP. The hyperelastic model implemented for the
AF, the HGO model, was chosen to respect the anisotropic structure of fiber-reinforced
tissues. Preliminary simulations were performed to validate the model by comparison
with experimental values reported in the literature, and to better understand to role of
the AF and the NP in the nonlinear and dissipative behaviour of the IVD. Further studies
will be carried out to quantify accurately the dissipated energy.

Some numerical aspects are still challenging in this finite element framework, such as
the treatment of incompressiblity. Note that the Poisson’s ratio of the AF is about ν =
0.45, which can be numerically treated as any compressible material by a penalty method
with the coefficient k0. However, the NP is considered as a nearly-incompressible material
(ν = 0.49), so a mixed-formulation is used for the whole IVD simulation. Although
displacement fields are less sensitive to the Poisson’s ratio than the pressure/stress, other
ways of treating the material incompressiblity could be implemented in order to limit
numerical errors [4].
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The multiple phenomena observable at organ scale show the complexity to predict
the dynamic response of IVD. Future work will focus on parametric studies in order to
identify the most prevalent parameters in behaviour changes. Due to the large range of
global parameters, a patient-specific work could be an interesting approach to set some
parameters related to the IVD’s geometry or the mass of upper body for instance. A
model order reduction based on the previous model could be used to propose individual
treatment for DDD.
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