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Abstract

The classical incremental theory of plasticity is not able to predict
plastic strain accumulation during cyclic loading. This because plastic
deformation may occur only during loading conditions and when the
stress point lies on the yield surface F. On the other hand, F remains
fixed in the stress space during unloading conditions, so that successive
loading does not produce any plastic deformation until the stress point
does not reach again F'. This work presents a generalization of the
classical theory, which allows to describe plastic strain accumulation

" during cyclic loading. This is obtained postulating that F follows
always the stress point. Moreover, it is assumed the existence of a
surface F, which bounds always F' and of an elastic surface ﬁ, which
bounds the stress states at which only elastic strain may occur. In
the limit case F' = F the presented generalized theory recovers the
classical one.
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1 Introduction

Experimental evidence shows that many solid materials present progressive
accumulation of plastic (irreversible) deformations under cyclic loading. In
some cases this progressive accumulation may cause serious effects; for ex-
ample, in a saturated soil, it may eventually cause the liguefaction of the
solid skeleton.

The standard Incremental Theory of Plasticity (MELAN [1938]) is at
the present the most popular constitutive theory for the mathematical de-
scription of irreversible deformations in solid materials. This is a purely
mechanical theory, which has been developed with the following main as-
sumptions:

1. time independence of the material response;
2. small deformations and displacements.

However, this incremental theory, as originally formulated, cannot describe
a progressive accumulation of plastic deformation under cyclic loading.

For example, consider an isotropic material subjected to a triaxial cyclic
loading test in which the deviatoric stress invariant value ¢ is confined within
the range [0, ¢*]. Assume for simplicity that the yield surface of this material
is represented by a Von Mises surface type, that is

F(o,k) = g - N(k)

where the initial value of the hardening parameter k is equal to zero. During
the first loading phase, the yield surface expands following the stress point
and, consequently, plastic deformations are mobilized and the hardening
parameter increases its value reaching eventually a limit value k* such that

Flo,k*)=¢*-N(k*)=0

According to the standard incremental theory, the space region bounded by
this yield surface is the new elastic region. Thus, all next loading phases can-
not mobilize any plastic deformation, being the relative stress path always
confined within the elastic stress region.

In the last 20 years a number of theoretical works have aimed to overcome
the above described limitation of the standard theory. Some of them assume
the existence of three, generally distinct, stress surfaces, (DAFALIAS et al.
[1975], DAFALIAS et al. [1977], KRIEG et al. [1975], MROZ et al. [1978b],
MROZ et al. [1978], PREVOST [1977)):
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o a yield surface F' which is assumed to follow always the stress point,
even during unloading conditions;

o a bounding surface F;
e an elastic surface F’;
and

F

~

F

N N
e

Loading conditions whose relative stress point increments are directed out-
side F' may mobilize plastic deformations, unless the current stress point lies
inside the elastic region bounded by F. The size of the plastic deformations
results to be a function of a relative distance of the current stress point from
F.

As a rule, the above proposed modification of the standard theory allows
to describe the accumulation of plastic deformations during cyclic loading.
However, we still have to identify the law of variation of the size of the
plastic deformation and the interrelationship between the evolution of these
three stress surfaces.

In this paper we first deeply investigate the standard incremental theory;
then, we present a possible theoretical framework which allows to answer the
above two questions. The practical use of this theory is explained by means
of a small example.

2 Notation Convention

The (symmetric) Cauchy stress tensor o;; and the relative deviatoric stress

tensor
o s = Okk
Sij = Oij — 03 3

where §;; is the usual Kronecker symbol, are respectively indicated as

T
o = {011,022,033,012,013,023,021,031,032} (1)

T
s = {s11,522,533, 512, 513, 523, 521, S31, 532 } (2)



2 NOTATION CONVENTION 4

As stress invariant quantities we elect

I(”)
p = 3 Mean pressure
il
qg = (3,]250)) 2. Equivalent shear stress (3)
(o) : :
1 . _33:;3 J3 ' | . Angular invariant
0 = garcsin [ J2(0)3/2} " of stress
where
Il(a) = 0ii =m’o
JQ(G) = %s;js,-j = %sTs (4)
I = det [si5]
and

-1/6<60<7/6

m = {1,1,1,0,0,0,0,0,0}"
With the notations
op , b6q , 66

we indicate the infinitesimal variations of p, g, 6.
The (symmetric) linear Lagrangian strain tensor €;; and the relative
deviatoric stress tensor

€kk
€ij = €ij — bij—
are respectively indicated as
{6117622,633#12,613,623,621,631,632}T (5)
e = {611 » €22, €33, €12, €13, €23, €21, €31, 632}T (6)
As strain invariant quantities we elect
€ = Il(e); Volumetric strain
1
J(E) 2
€& =2 : Equivalent shear strain (7)
(¢) : .
1 . 33:;3 J. Angular invariant
€g = qarcsin [— —37— : :
i 0 3 [ J2(6)3 2’ of strain
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where
Il(c) = 6 = mTe
Jéc) = %e;je;j = %eTe (8)
I = dete;]

and

-6 < e <7/6

With the notations
be, , bes , beg

we indicate the invariants of the incremental strain ée. In general, these
quantities do not coincide with the incremental variations of the strain in-
variants unless for the case of volumetric strain.

Incidentally, we remark that, according to the above notation convention,
deviatoric stress and strain vectors may be respectively calculated as

s = o-—mp ' 9)
e = e-m2 (10)

3 Elasto-Plastic Strain Definition

According to the incremental theory of plasticity, an infinitesimal stress
increment do causes an infinitesimal strain increment de, which is the sum
of an elastic (fully recoverable) component é€(®) and a plastic (irreversible)
component §e(P), namely

be = 6el®) + e (11)

The elastic strain may be calculated according to the Generalized Hooke’s
Law:
-1
6e®) = DC)§o = (C(e)> bo (12)

where D(€) and C(®), respectively the Compliance and the Stiffness elastic
matrices, may be function of the current o and €. The plastic strain instead

is defined as
6€?) = )b (13)

where

b=

8G’_{8G’ 0G 0G 0G 0G 090G 9G oG 8G}T

do (90’11 ’ 80'22 ’ 0033’ 80'12’ 80’13’ 80’23, 80’21 ’ 80'31 ’ 80'32
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and

G = G(o,k)

is a scalar function known as the Potential Function. The vector k collects
n hardening parameters k; functions of the stress history, Section 5. Finally,
6, known as the plastic multiplier, is a non negative, even indeterminate,
scalar; its value, Section 6, depends on the so called Yield Function, Sec-
tion 4.

Notice that, since the stress & can be expressed as, Eq. 9,

o=s+mp
the potential function may be written in the form
G = G(p,s, k)

According to the plastic strain definition in Eq. 13, it is possible to prove
that the plastic strain invariants result to be given by (FUSCO [1993])

oG

6P = A=
X = (14)
6P = 6,\\/§]]VSG|| (15)
where
T T
V.G = 0G dsii | _ [ 0G _ 6 9G
aSH (90’,‘1' 6Sij 3 8Skk
oG oG 1 [ 9G \?]"*
Vs = s Tvs 1/2 “19s.8s. 3 <_>
V<Gl (VG Gy 0si; 0sij 3 \ Ospy
If G is function of invariant quantities only, i.e. G = G(p,q,0,k), it results
T
b= {(;?TG:]} = c¢ym + ¢35 + c3v (16)
where
_ 106
a = 3 dp

3 /0G tan3600G
o - 3=
9 G
_2q3 cos 30 90
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and the element of v are given by

o B
ij 3] 3 kk
where
[ (s22533 — 833) (S13523 — S33512) (512823 — $22513) ]

o] (811833 — s%3) (S12813 — $11523)

[wij] = s
17 .
Symmetric (811822 — 835)

o = O _ &

kk — askk - 2= 3
Moreover,

1/2

-+

- F[(5) 3 ()]
4 The Yield Function

The incremental theory of plasticity assumes that the type of material re-
sponse is controlled by a so called Yield Surface, of equation

F = F(o,k) (17)

where k, Section 5, collects the same hardening parameters of the potential
function G. Sometimes F is assumed to coincide with G, in which case the
constitutive model is said to obey to an associative flow rule.

The yield surface is assumed to bound always the location of each current
stress point so that, if (o, k) represents the current material state, the only
admissible alternative conditions are

F(o,k) =0; o lieson F
(18)
F(o,k) < 0; o lies inside F

while
F(o,k)>0

is not admissible. Consider a loading process of an infinitesimal increment
(60,6k), starting from a current configuration (o,k). By definition:
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e Elasto-plastic deformations occur if, and only if, during the loading
process the current stress point always lies on the yield surface, that
is

F(o,k)=0 and F(o + 60,k + k) =0 (19)
Thus, only in these cases, 6\ > 0,
e In any other case, that is
F(o,k) <0 and F(o + 60,k +6k) <0 (20)
F(o,k)=0 and F(o + 60,k +6k) <0 (21)
the material response is purely elastic and, consequently, 6\ = 0.

It is immediate to verify that the rule in Eq. 19 for establishing elasto-plastic
conditions is equivalent to requiring:

F(o,k) = 0
(22)
0F(o,k) = aTéo + Eéki =0
ok;
where i = 1,2,...,n, and

_B_F_{(')F OF OF OF OF O0F OF OF 6F}T
&= B (9011’3022’(9033’8012’3013’3023’3021’8031’3032

Jdo

The second equation, known as the Consistency Equation, can be derived
expressing F(o + 0o,k + 6k) by the ezact Taylor series

F(o + 60,k + 6k) = F(o,k) + 6F(0,k)

5 The Hardening Parameters

The hardening parameters collected in k have to represent the past plastic
history of the material point. In general, therefore, they must depend on
the total plastic deformation. However, the incremental theory of plasticity
does not necessarily need an explicit functional relationship for k; in fact,

we will see that it is sufficient to establish incremental relationships of the
type
bk; = a—ki—éh (23)
" 0h;

fori=1,2,...,nand 7 =1,2,...,m, where:
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e The partial derivatives %}L and the initial values of k; have to be known
quantities.

e The infinitesimal increments 6k; of the internal variables h; must be
expressible as

8hj = f;(6eP) = c;6\ (24)
for j = 1,2,...,m, where c; are m scalar values. The notation fi(8€®)
indicates any scalar function of the nine scalar variables §¢®) (1,8 =

1,2,3).
From Egs. 23 and 24 we obtain
ok; ok;
0ki = —6h; = ——c;6) 2
gk, = Bl (25)
fore=1,2,...,nand j = 1,2,...,m. Notice that this incremental relation-

ship assures that during elastic processes, where by definition 6\ = 0, the
hardening parameters do not vary; consequently, F and G remain fixed in
the stress space.

Many formulations of elasto-plastic constitutive models assign directly
the hardening parameters k, without introducing the internal variables h;.
In our notation, this is equivalent to assume:

hj = ki
forj=4,1=1,2,...,n,5=1,2,...,m, with m = n. This implies that

ok;

—t — B

Oh; "

The most common choices of k; are
o the hardening parameter k; equal to a constant (perfectly plastic model),
ki = hj = constant

Being 6h; = 0, it follows
C; = 0

o the hardening parameter k; equal to the total plastic work,

ki=h; = /aTée(p)

Being 6h; = o78e?), from Eq. 13 it results:

¢; = O'Tb
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e the hardening parameter k; equal to the pg-th component of €(),
k,' = hj = 6%)

Being 6h; = 66,(,’;), from Eq. 13 it results:
G

00y,

¢

e the hardening parameter k; equal to the total plastic volumetric strain,
k,‘ = h,j = /661(11’)

Being éh; = 8¢P), from Eq. 14 it results:

oG
C]=a—p

e the hardening parameter k; equal to the accumulation of the incre-
mental plastic shear strain

kiEhjzegp)=/5€gp)

Being 6h; = 5e£p), from Eq. 15 it results:

2
& =219,

6 The Plastic Multiplier

By definition, Section 3, the value of the plastic multiplier is never negative
and in a purely elastic process

A=0
In an elasto-plastic process, instead, its value may be calculated as follows

e if 0o is assigned

aTéo .
ifA#0
a={ 4 # (26)

indeterminate if A =0
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o if de is assigned

A . T.(G
—a o’ fA+—
A=) Atarc@ TAF-aET) (27)
indeterminate if A = —a”c(%)
where
6c(®) = Cclge (28)
c® = clp (29)
and the scalar quantity A, known as the Plastic Modulus, is defined as
1 OF OF 0k;
A= _ﬁa_k,&kt = _(—9171'(9_}1]'0‘7 (30)

fori=1,2,...,nand j=1,2,...,m.
In fact, according with the positions in Eqs. 25 and 30, the consistency
equation in Eq. 22 takes on the form

aéo — A6N =0 (31)

from which we can verify the statement in Eq. 26.
On the other hand, according to Eqs. 12, 11 and 13, we can express

b0 = C)gele) = c©) (5e _ 66(”)) = CEge — 6AC©)p
that is, Egs. 28 and 29,
b0 = 6a(® — 6)c(®

Substituting this expression of do in Eq. 31 we have the following alternative
form for the consistency equation:

aTéa'e) — (aTc(G) + A) dA=0 (32)

from which we can verify the statement in Eq. 27.
In general, the plastic modulus A value, calculated as in Eq. 30, may be
negative, null or positive. In a perfectly plastic model it trivially results

A=0

so that, when éo is assigned and elasto-plastic response occurs, 6] is always
an indeterminate, non negative, scalar.
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7 Stress Based Elasto-Plastic Criterion

By definition, Section 4, for
F(o,k) <0 (33)

the material response is always elastic, regardless of the applied stress in-
crement éo. Elasto-plastic response can occur if, and only if, Eqs. 22 and
31,
F(o,k)=0
(34)
0F = aT6o — AN =0

Accordingly, we can establish the following stress based criterion, which
predicts the material response for any given stress increment éo applied on
any material state (o, k):

1. Elasto-plastic response occurs if
F(o,k)=0
and

A>0 ; aTéoe >0
A=0 ; aTéoc =0
A<0 ; aTéa =0

The case in which
A>0 ; a"éo >0

takes the name of hardening, since, being the stress increment éo
directed outside F', it denotes a subsequent expansion of F.

2. Elastic response occurs if
F(o,k) <0

or
F(o,k)=0

and

A>0 ; a"éo <0
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3. Either elastic or elasto-plastic response may occur if
F(o,k)=0
and
A<0 ; aTéo <0

This is the only ambiguous situation which the classical theory of
plasticity does not solve by itself. If plasticity occurs, this case takes
the name of softening, since, being the stress increment §o directed
inside F', it denotes a subsequent contraction of F.

4. Stress increments by which
F(e,k)=0
and
A<0 ; aTéo >0

are not admissible; that is, according to the theory, the material cannot
sustain such type of stress increment. In any other case the theory
provides always a material response, in case with indeterminate plastic
strains, when A is zero.

To prove the above statements, consider only the non trivial case F(o,k) =
0. Elasto-plastic response occurs if, and only if, also the second equation in
Eq. 34 is satisfied. Since by definition 6\ > 0, it follows that elasto-plastic
response occurs if, and only if,

A>0 ; aTée >0 (35)
A=0 ; aTéo =0 (36)
A<0 ; aT6e <0 (37)

Consequently, elasto-plastic deformations can not occur for

A>0 ; aTéo <0 (38)
A=0 ;5 @60 7 0 (39)

A<0 ; aTéo >0 (40)
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These situations may indicate purely elastic or inadmissible material re-
sponses. In particular, by definition, in the case of a purely elastic response
6 = 0, consequently, from Eq. 25,

0k; =0 (41)
for i = 1,2,...,n. Moreover, according to Eq. 21,
F(o + 60,k +6k) <0

which, expressing F' into a Taylor series, yields to the conclusion that, in a
purely elastic response,

F(o,k)+a"60 + a—Fék,- <0 (42)
Ok;
fori=1,2,...,n. Being F(o,k) =0 and ék; = 0, we obtain
aTéo < 0 O (43)

Hence, the situations

A=0 ; aTéoc >0
A<0 ; aTéoe >0

in Eqs. 39 and 40 can not be elastic; therefore they are not admissible,
as stated in 4. The uniqueness of these inadmissible conditions is trivially
verified.

Then, consider the possible elasto-plastic material response predicted in
Eq. 37. According to Eq. 43, the case

A<0 ; aTéo <0

may also represent a purely elastic material response. This justifies therefore
the ambiguity stated in item 3.

With the above observations it becomes easy to verify the statements in
items 1 and 2.

8 Strain Based Elasto-Plastic Criterion

By definition, Section 4, if
F(o,k)<0 (44)
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the material response is always elastic, regardless of the applied strain in-
crement ée. FElasto-plastic response can occur if, and only if, Eqs. 22 and
32,
F(o,k)=0
(45)
6F = a”60(®) — (a7c(®) + 4) 61 = 0

Accordingly, we can establish the following strain based criterion, which
predicts the material response for any given strain increment ée applied on
any material state (o, k):

1. Elasto-plastic response occurs if
F(e,k)=0
and
A> —aTcl®) ; aT§a(® >
A=-aTc® ., aT§a(e) =
A< -aTc® ; aTiele) =g
2. Elastic response occurs if

F(o,k) <0

or

F(o,k)=0
and

A>—aTc®) ;. aTiale) <

3. Either elastic or elasto-plastic response may occur if
F(o,k)=0
and
A< —a%c® . aTiale) <

This is the only ambiguous situation which the classical theory of
plasticity does not solve by itself.
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4. Strain increments by which
F(e,k)=0
and
A< -aTc® ; aTéc® >0

are not admissible; that is, according to the theory, the material cannot
sustain such type of strain increment. In any other case the theory
provides always a material response, in case with indeterminate plastic
strains and stress increment, when A = —aT¢(9),

The proof of the above statements is analogous to that reported in Section 7.
It is only important to take into account that, in the case of purely elastic
response,

6a® = Cge = 6o

It is interesting to observe that, in the case of associative flow rule and C(¢)
positive definite matrix, it results

a’c(® = aT’Cc®a > 0

This implies that the ambiguous and the not admissible situations in items
3 and 4 may occur only when A < 0. Moreover, the condition

A< —aTcl® = _aTCle)y
is obviously more restrictive than the condition
A<LO

which, when éo is assigned, may cause ambiguous and not admissible situ-
ations, Section 7.

9 The Elasto-Plastic Constitutive Equation

The mathematical developments reported in the previous Sections lead to
the conclusion that the strain increment de resulting from a stress increment
do, starting from a material state (o,k), can be calculated as

be = DE)§o + 6)b (46)
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where, if a purely elastic response occurs,
A=0

while, if plasticity develops,
a’éo .
Y ifA#0
o =
indeterminate if A =0
The type of mechanical response is established according to the stress based
criterion, Section 7. We remind that, when A < 0, some §o may be not

admissible or cause ambiguous situations.
The inversion of Eq. 46 gives

6o = C(°) (§e — 6Ab)
where 6\ may be expressed as in Eq. 27. Hence, the stress increment éo

resulting from a strain increment 6e, starting from a material state (o,k),
can be calculated as

bo = Cée (47)
where, if a purely elastic response occurs,
Cc=c®

while, if plasticity develops,

Cc = c_ck

(G)u(F)T
c’c : — T o(G).
c® = ] Agatc@r lorA#-ald
indeterminate for A = —aTc(G);
P = clry

The type of mechanical response is established according to the strain based
criterion, Section 8. We remind that, when A < —a”c(9) some e may be
not admissible, or cause ambiguous situations.

It is interesting to remark that

e If A = 0 and elasto-plastic response occurs, C is singular. In fact,
in this case, being §) indeterminate, Eq. 46, the strain increment e
mobilized by any admissible éo is indeterminate; this implies that the
matrix C in Eq. 47 is singular.

o If C(®) is symmetric and the flow rule is associative, C is symmetric.
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10 The New Proposal: the Main Hypotheses

In this Section we present the general theoretical framework by which it is
possible to extend any classical elasto-plastic model in order to account for
possible plastic deformations at any stress level. The basic assumptions are:

1. There exists a Bounding Surface
F = F(o,k) (48)

which, as the name indicates, bounds always the location of the current
stress point. Accordingly, if (o,k) represents the current material
state, the only admissible alternative conditions are

{-F(O',E) =0; ie. o lieson F.

F(o,k) < 0; ie o lies inside F

while
F(o,k)>0

is not admissible.

2. The vector k collects n hardening parameters k; whose incremental
variation is controlled by 7 internal variables h]—~, namely

Ok b (49)

6Fi = =
oh

fori=1,2,...,nand j = 1,2,...,m. It is required that the infinites-
imal increments 6h1—» must be expressible as in Eq. 24, that is

§hz = F5(6eP)) = 5:6) (50)
where 6€(®) and 6\ are defined as reported in item 9.
3. There exists a new type of Yield Surface
F = F(o,k,k) (51)

which always follows the location of the current stress point. Accord-
ingly, the only admissible material condition is

F(o,k,k) =0
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while

F(o,k,k) #0

is not admissible.

4. The vectors k and k are of equal size n and

(a)

(b)

There exist n scalar functions of the type
ki = ki(o,k) (52)

for ¢ =1,2,...,n, so that for any given material state (o,k), the
current location of the yield surface F(o,k,k) can be uniquely
determined.

If plasticity occurs, then the incremental variation of the harden-

ing parameters £; is controlled by the same 77 internal variables
hJ—- of k; plus other m internal variables h;, namely

ok; —  Ok; ‘

6k; = —6h~+ —6h; 53

S A T (53)

for i =1,2,...,n,7 =1,2,...,mand j = 1,2,...,m. Analo-

gously to the hypothesis on h;' in item 2, it is required that the
infinitesimal increments 6h; must be expressible as

8h; = f;(6eP)) = c;6A (54)

5. The space region bounded by F is a subspace of F, that is

F(o,k,k) C F(o,k) (55)
If the current stress point o lies on F, then F and F must coincide,
that is
F(o,k,k) = F(o,k) (56)
and
ki = k; (57)
3]61' 6_~,~
8h3- ah;-
ok;
——* = 0
ok, (59)

foralli=1,2,...,n,7=1,2,...,and j = 1,2,...,m.
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6. There exists an Flastic Surface
F = F(o,K) (60)

defined as R R
F(o,k) = F(o,k,k = k)

where k = l:(i) collects the » known scalar functions
E,’ = E,(E) (61)

where ¢ = 1,2,...,n. Notice that the above definition implies that if
the current stress point lies on F', then F' coincides with F'.

7. In general, for k; — E,-,

ok; e

ahj—-

B_hj — 00
A — 4

foralli =1,2,...,n; 3= 1,2,...,Mmand j = 1,2,...,m. '];he defi-
nition of the Plastic Modulus A is postponed to item 9. If F' and F
always coincide, then the above assumptions do not apply.

8. There exists a Potential Function for plastic deformations, of the form

G = G(a,k,k) (62)

9. Analogously to the standard incremental theory of plasticity, it is as-

sumed that an infinitesimal strain increment de can be expressed as,
Eq. 11,
be = 6el) + 6@ (63)

where:

o 6€(®) represents the elastic (fully recoverable) component which
may be calculated according to the generalized Hooke’s law, Eq. 12,

6el®) = (C(‘j))_1 bo (64)

where C(¢), the tangential elastic stiffness matrix, may be func-
tion of the current o and e.
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o 6€(P) is the plastic (irreversible) component, defined as

€ = 6)b (65)
where
> 0, if elasto-plastic response occurs.
i {
=0, if elastic response occurs.
oG
b = — =
oo

B {8G 0G 0G 0G 090G 080G 080G 0G BG}T

80'11 ’ (90'22 ’ 3033 ’ 30'12 ’ 80'13, 80'21 ’ 80'23’ 80‘31 ’ 80'32

The respect of the consistency equation on the yield surface F(o,k,k)
yields to the conclusion that, item 4 Section 11, the value plastic mul-
tiplier 6 can be calculated as:

o If o is assigned, Eq. 26,

a’do .
) if A#0.
sa={ 4 (66)

indeterminate, if A = 0.

e if e is assigned, Eq. 27,

aTéo(®) . T .(G)
———, if A# —aTcl%),

§x={ A+a’cld 2 (67)
indeterminate, if A = —aTc(%),

where

bol®) = Cl)ge
c®) = cOp

and the Plastic Modulus A is defined as

1 [0F - OF
) [a_ﬁ,f‘”" + g ok =

~ [BF Ok;_ OF ki OF Ok ]

A

O O 7 Ok; Ok T Ok, O, (68)
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where i = 1,2,...,n;j=1,2,...,mand j = 1,2,...,m.

According to the above definition of elasto-plastic deformation, the
stress increment do resulting from strain increment de, starting from
a material state (o,k), can be calculated by a relationship formally
identical to that in Eq. 47. The type of mechanical response is estab-
lished according to the following criterion.

10. By definition, if ~
F(o,k,k) <0 (69)

the material response is always elastic, regardless of the applied stress
increment 6o or strain increment de. If, instead,

F(o,k,k) >0 (70)

the type of material response is established according to a stress based
criterion or to a strain based criterion, identical with those derived
in Sections 7 and 8 for the case of the standard incremental theory
of plasticity. However, in the generalized incremental theory, these
criteria are given as definitions. In fact, according to item 3, the
current stress point lies always on the yield surface F; consequently,
the mathematical procedure followed in Sections 7 and 8 for deriving
the stress and strain criteria cannot be applied.

11 Remarks

It is important to make the following remarks on the main hypotheses listed
in Section 10:

1. When purely elastic response occurs, the bounding surface F' remains
fixed in the stress space, that is

k; = constant

for all © = 1,2,...,n. In fact, by definition, in a purely elastic re-
sponse 6\ = 0; consequently, according to the hypothesis in item 2 in
Section 10,

foralli=1,2,...,n.
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2. The requirements on the partial derivatives of k; in Eqs. 58 and 59
are consequences of Eq. 57. In fact, when the current stress point o
lies on F, from Eq. 57 it results that

ok; = 6k; (71)
Hence, if plasticity occurs, Eqs. 53 and 49,

Oki —  Ok; Ok;

—0h-+ ——6bh; = — 6h—

ohs T om0 = Oh;
Since this equality must be true for any arbitrary value of 651—- and 6h;,
the requirements in Eqgs. 58 and 59 immediately follow.

3. The requirement in item 7 on the limit value for A guarantees that,
if F' does not always coincide with F and the stress point lies on the
elastic surface, then:

e the infinity value of A makes 6\ = 0, Eqs. 66 and 67, and con-
sequently é€(”) = §Ab = o, Eq. 65. This assures the continuity
of any deformative process in which the stress point crosses the
elastic surface.

e The positiveness of the A value makes admissible any stress incre-
ments applied on a material state lying on F.In fact, according
to the stress based criterion in item 10 in Section 10, the only not
admissible situation may occur if 4 < 0, case (d).

4. The expressions of 6\ and 4 in Egs. 66-68 may be proved noticing
that the expansion of the yield surface F defined in Eq. 51 into the
ezact Taylor series about a material state (o, k, k) yields to

F(o + 60,k + 6k, k + ék) = F(o,k,k) + 6F(o, K, k)

Since by definition the material state always satisfies the yield surface
F', then

F(o + 60,k + 6k, k + 6k) =
F(o,k,k) = 0
and, consequently, we can identify the following consistency equation
OF — OF

k =aT —bk; —O0Kk; =
0F (0K, k) = b0 + S 6K + gty = 0 (72)
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that is
aTéo — A6X =0 (73)
whene 1 [OF oF
A= 5 8_Eiéki + a_kt,'éki] (74)

The consistency equation in Eq. 73 is formally identical with that
reported in Eq. 31. Then, proceeding as in Section 6, we eventually
obtain the expressions for ) in Eqs. 66 and 67.

In the case of plastic deformation, ék; and 6k; may be expressed as
Eqs. 49 and 53, respectively. Thus, the expression of 4 in Eq. 74 takes
the form reported in Eq. 68.

12 Recovery of the Classical Theory
It is easy to verify that the generalized theory of plasticity proposed in
Section 10 recovers the standard incremental theory if:

o The bounding surface F coincides with the yield surface of the stan-
dard theory.

e The elastic and the bounding surfaces coincide, i.e.
F(o,k) = F(o,k)

According to items 5 and 6 in Section 10, this is assured with the
position:

k=k

e When the current stress point lies on F, the potential surface G is
made to coincide with that of the standard theory.

In fact, we have that:

e Being F=F, plasticity may occur only when the stress point o lies
on F.

e In general, if o lies on F, it can be proved that the plastic modulus
expression in Eq. 68 reduces to the standard form
1 0F _ _ oF oF;_

- ar k= (75)

A = 1 b ——=i L3
oF; oh; 7
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Consequently, the elasto-plastic strain definition and the loading criteria in
items 9 and 10 of Section 10 result to be identical with those of the standard
theory.
The reduced form of A in Eq. 75 can be proved noticing that, when o
lies on F, Eq. 71,
8k; = 6k;

Hence, we can simplify the expression of Eq. 68 into

A=

I[BF 8F] - _[817‘ 8F] Ok; _ (76)

- =% | = T 6 1 = b = | =—C=
& lax; T ok o o T ok, Oh;

During a loading process in which the current stress point does not leave
the bounding surface F' = F, we have that

6F = 6F
that is . oF o
_ F
T6 —_(Skl —_(Sk, = _T6 —O0R;
20Tt SR ok, 7+ o5tk

from which, being a = @ and ék; = 6k;, we can establish that

oF OF oF | —
— ) = = | 6k; =0
[(8/0,’ + 8ki> ak,}

Since this equality must be true for any arbitrary value of the n increments
6k;, it follows that .
oF OF OF
oF; ok ~ oF,
for each ¢ = 1,2,...,n. Substituting Eq. 77 into Eq. 76 we obtain the
expression of A in Eq. 75.

(77)

13 A Generalized Von-Mises Strain Hardening
Model

Consider a material whose uniaxial response is of the type shown in Fig. 1.
Assume that the behavior of this material under monotonically increasing
loading conditions can be modeled with an isotropic elasto-plastic constitu-
tive equation of the type:
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Oa
F=L=Q
I=P B, D
E A Yl
R fo%
p

C
D G=M
H=N
dt—t
AE

Figure 1: Material response under uniaxial cyclic loading

o FElastic strain obeying the Hooke law for isotropic linear elastic mate-
rial.

o Failure condition represented by a Von-Mises surface of equation
Q=q-N=0 (78)

o Plastic strain obeying an associative flow rule with yield-potential
function represented by a Von-Mises surface of equation

F=¢-79,=0 (79)

where g, is a hardening parameter whose incremental variation is con-

trolled by the total plastic shear strain eﬁ”) only, that is

dg

G = —Y §¢p)

g, = deg”)des (80)
where

Egp) = /&gp)

T = g
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and ay(eﬁ”)), which has the dimension of a stress, is a function to be
determined experimentally.

In the following Section we present the extension of this simple Von-Mises
strain hardening elasto-plastic model to account for the uniaxial response
under cyclic load of the type in Fig. 1.

13.1 The constitutive equation

According to the recipe listed in Section 10, a generalization of the Von-
Mises strain hardening model to account for plastic accumulation can be
obtained as follows:

1. The bounding surface has equation
F=F(¢,3,)=9-7, (81)

where G, is the hardening parameter whose value is assumed to be
always a positive quantity.

2. The incremental variation of the hardening parameter g, is controlled

(

by the total plastic shear strain ') only, that is

dq
g, = 6(,!:) 6€£p) (82)
where .
q _
de(g) = ay(es”)) (83)

and ay(eﬁ”)), which has the dimension of a stress, is a function to be
determined experimentally.

3. The yielding surface has equation
F:F(q’qysz):q_tqy_qyzo (84)
with the conditions

t = 0
OS qy qu

In practice, F' does not depend on Gy
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4. With regard to the hardening parameter g,, we have that:

From the above defined yield function equation we find that g,
can be expressed as

% = 4(9,q,) = ¢ — 17, (85)
where t = 0, that is
Gy = ¢ (86)

If plasticity occurs, the incremental variation of g, is controlled

by the variable €{”) only, that is

dq
bqy = ng)&gp) (87)
where p
q
= (g ) - (s8)

S

and ay(qy, eﬁp)), which has the dimension of a stress, is a function
to be determined experimentally. However, the mathematical
framework of the model requires that, items 5 and 7 in Section 10,

— 7 (). -
ay(qy,egpn{ et =y (59)
’ y y:

The parameter @, is defined in item 6.

5. It is easy to verify that:

the space region bounded by F is a subspace of F, that is
F(q’qya Qy) g F(Qﬁy) (90)

if the current stress point o lies on F, then F coincides with F,
that is

F(q,9,,9) = F(4,7,) (91)
and
qy = q—y
dgy dg,
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6. The elastic surface F has equation
F=F(,73,)=q-3, (92)

where

4y = ay(7,) (93)
and @,(gy), which has the dimension of a stress, is a function to be
determingd experimentally. Notice that, according to item 6 in Sec-
tion 10, F' is derived from F as

F(qvqy) = F(q’qyaqy = é\y)

Moreover, we require

ay(qy) >0

for any §,, so that for & = o the mechanical response is purely elastic.

7. According to the definition of F' and assuming associative flow rule as
stated in the next item 8, the plastic modulus results to be given by

_ dgy
- del?)

(94)
Note that, if the experimental function in Eq. 88 respect the conditions
in Eq. 89, then for ¢, — @,

A— 400
as required in item 7 in Section 10.

8. The potential function for plastic deformations coincides with the yield
surface, associative flow rule, that is

GEF(Qaqy’qy):q_tqy_(Iy:O (95)
with ¢ = 0; in practice G does not depend on gy

9. According to the definition in item 9 in Section 10, the infinitesimal
strain increment ée is given by

b€ = 6€(9) 4 5 (96)

where:
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o the elastic (fully recoverable) strain increment can be calculated
according to the Hooke law for isotropic material,

6e¥ = () 5o (97)

where the elastic stiffness matrix C(¢) is a constant symmetric
positive definite matrix function of two constants E and v to be
determined experimentally:

¢ = E
c (I4+v)(1-2v)
1-v) v v 0 0
1—-v v 0 0
L i - (98)
0 0 0 (1-2v) 0
0 0 0 0 . (1-2) 5

o the plastic (irreversible) strain increment can be calculated as
6eP) = §Ab (99)

where, according to the above listed hypotheses, it eventually
results that

bq
) = =
A (100)
_ __O0F 3
A = ay(anfgp)) (102)

The above expression for 6\ can be obtained taking into account
that, for a stress invariant function F' = F(p,q,6,k), it results

oF oF oF
T il
a'do = apép-{- 8q6q+ 6966’

10. If the current stress point o lies inside f‘, that is
q<qy

the material response is purely elastic. Otherwise the type of me-
chanical response is determined according to the criteria in item 10 in
Section 10.
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13.2 The uniaxial response of the model

In an uniaxial stress test, the material sample is subjected to a vertical
uniform stress field o,. In this case, therefore, the stress vector field is given
by

o =0,{1,0,0,0,0,0,0,0,0}" (103)

from which it follows that

~Okk _ O

s = o-mM—-= ?“ {2,-1,-1,0,0,0,0,0,0}" (104)
3 1/2
q = (gsTs) = |og| (105)

Under a uniform axial stress field, the model presented in Section 13.1 pre-
dicts a strain vector field

be = 6€(®) 4 5P - (106)
where, Eqs. 97 and 99,
=1 ) 4
6@ = (Cl9)™ g0 = 2 {1,-v,-1,0,0,0,0,0,0}" (107)
o; for pure elastic response
3 ) 1 1 T,
(P = 2 = o Y S .
b = ke = 0 {1,-4, $:0,0,0,0,0,0} ; if A#0 (108)
indeterminate; ifA=0
and,
A = ayog,€?)
(109)
® = / |5€((1p)
It is useful to note that, when plasticity occurs, it results, Eq. 108,
6o,
A= a,(log], ) = % (110)

563’))
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13.3 Experimental determination of the material proper-
ties

The constitutive model in Section 13.2 requires the experimental determi-
nation of the following material properties:

e the constant elastic parameters F and v;

e the plastic functional relationships, Eqs. 83, 88 and 93,

_ dq
a'y(G.(sp)) = de(z)

dg
ay (va €sp) ) = F(i)

ay(Qy) = q\y

All these material properties can be determined from the simple uniaxial
test shown in Fig. 1 as follows:

1. Weidentify in the linear paths in Fig. 1 below the dashed line A’C’E’G’T’"M’P’
the purely elastic response of the material.

2. With reference to these linear elastic paths and the elastic relationships
in Eq. 107, we can calculate the elastic material constants as

bo
F = 2
beq

1 be,
= (1=
Y 2 ( Eﬁaa)

3. We draw the diagram o, vs. e in Fig. 2 scaling the abscissa in Fig. 1

by the elastic strain, that is

P =, — el = ¢, — ol

* E
We note that, according to Eq. 109, for o, > 0, it results, Fig. 2,

eg”) = /léeg”)| = e((l”)



13 A GENERALIZED VON-MISES STRAIN HARDENING MODEL 33

£,

Figure 2: The uniaxial material response scaled by the elastic strain

4. We identify in the stress path ABD’F’'H’L’N’Q’ST in Fig. 2 the plastic
response of the material when the stress point lies on the bounding
surface; then:

o According to Eq. 81, along this path o, = |o,| = ¢ = Gy

o According to Eqs. 89 and 110, the functional relationship ay(eﬁ”))

can be identified by interpolating, with an opportune function,
various pairs
(@ () = o', el) = i)

where
,  dog

- del?)

is the slope of the stress path measured at Q(,p).

5. We identify in the dashed line A’C’E’G’I'M’P’ in Fig. 2 the boundary
for pure elastic deformation; the functional relationship 4y(q,) can be
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identified by interpolating, with an opportune function, the pairs

(ay(7,) = 0g ,3, = 07)
(ay(qy) = UaE ’qy = Ua,D )

6. We identify in the stress paths within the continuous line ABD’F’H’L’N’Q’ST
and the dashed line A’C’E’G’T’'M’P’ in Fig. 2 the plastic response of
the material when the stress point lies inside the bounding surface;
then:

e according to Eqs. 86 and 105 along this path ¢, = ¢ = |0,| = 04;

o the functional relationship ay(qy,egp)) can be identified by inter-
polating, with an opportune function, various pairs

(ay(qy’e.(sp)) = 0,’ qQy = Ua,fgp) = et(lp))

where
, do,

(p)

is the slope of the stress path, for example C’D’, measured at €5 ’.

13.4 Note on the hysteretic loop

We recall that the o, vs. elP) graph shown in Fig. 2 is obtained scaling the
elastic strain component from the assumed material behavior in Fig. 1, item
3 in Subsection 13.3.

In particular, the hysteretic loop sketched in Fig. 2 presents the following
geometrical characteristics:

e The paths C"CD, C”GH and C”MN result symmetric to the paths
C’C’D’, G”G’H’ and M”M’N’, with respect to the ) axis.

e The paths REF,RIL and RPQ are identical to the paths E”E’F’, I"I'L’
and P”P’Q’, with an opportune shift.

It is possible to prove that the proposed model is able to reproduce exactly
such type of response.
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In fact, we note that, according to Eq. 110, the slope of the material
plastic response depends only on the absolute value of the uniaxial stress T
and plastic strain €¢(1p ) , hamely

bo
& = A= ()
663}’) A ay(Qy’fs )
where
9y = q= laal

6giv) - /5€£P) :/|5€£P),

Thus, for example, the ¢, and el values at the point C’ are equal to those
at the point C. This implies that the slope at the point C and C’ coincide
and consequently the path CD has to result symmetric to the path C’D’.

14 Conclusions

The theoretical framework presented in Section 10 is a complete recipe to
set up a constitutive equation.

The remarks in Section 12 provide the mathematical condition for re-
covering the classical incremental theory of plasticity.

The small example in Section 13 shows that the proposed generalized
incremental theory permits, in line of principle, a simple extension of any
existing plastic model.
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