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New assumed strain triangles for non linear shell analysis*

F. G. Flores, E. Onate, F. Zarate

Abstract A comparison between new and existing triangular
finite elements based on the shell theory proposed by Juan
Carlos Simo and co-workers is presented. Particular emphasis
is put on the description of new triangles which show

a promising behaviour for linear and non linear shell analysis.

1

Introduction

Considerable effort has been devoted in recent years to the
development of efficient and reliable shell elements for linear
and non linear analysis. Mainly two different approaches for the
formulation of the elements have been used: the so called
“degenerated solid” elements (Ahmad, Irons and Zienkiewicz
1970; Stanley, Park and Hughes 1986) and elements developed
within the frame of a shell theory. Although the debate between
“degenerate” versus “shell” formulation is still open, it is

not the object of this work to discuss this subject. The interested
reader is addressed to recent work of Biichter and Ramm (1992)
and Biichter, Ramm and Roehl (1994) on this matter.

A general non linear shell theory very adequate for finite
element computations has been recently proposed by Simo and
Fox (1989), Simo, Fox and Rifai (1989, 1990), Simo, Rifai and
Fox (1990) and Simo and Kennedy (1992) and excellent
results were shown for the well known four node assumed shear
strain quadrilateral. This fact motivated the authors to explore
the possibilities of triangular elements based on this shell
theory. Thus, the object of this work is to assess the behaviour
of some linear assumed strain and quadratic triangular elements
in the context of Simo’s shell formulation. Particular emphasis
is put on the extension of some successful assumed shear
strain plate bending triangles developed by Ofiate and
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The layout of the paper is as follows. In next section a brief
summary of Simo’s shell theory is presented. Full details can
be found in Simo and Fox (1989) and Simo, Fox and Rifai (1989).
Then the different triangular shell elements analysed are
described. Finally, examples of applications showing the
performance of the triangular elements for some linear and non
linear shell problems are given.

2
Summary of the shell theory chosen
A brief description of the shell theory developed by Simo and
co-workers is presented here.
The configuration of the shell in R’ is defined by

a) the shell mid-surface ¢ defined by the transformation
@:of - R %
b) the director field t defined by the transformationt:.«/ — S?

Vector t defines the direction of the fibers across the
thickness which remain straight during deformations (Fig. 1).
The domain o7 = R*is assumed compact with smooth boundary
0o/ and points characterized by (¢, &%) = .o/. Let us call 8, = 0./
and 0,.«/ < 0./ the parts of 0.o/ with prescribed values of
@ and t, respectively. S* is the sphere with unit radius which
contains t, thus defining the inextensibility of the director field.

With this notation, the geometry of the shell can be defined
by

F={xeR3lx =@+ &, Ec[h™,h"]} (1)
where [h~, h "] defines the shell thickness. Using a standard
basis {e,, e,, e,} in R’ we can write (greek indices vary from 1
to 2)
o=9'e, @ =¢ple t=te, )

The following measures over the mid-surface are defined

A =dEdg  du = jdede 3)
with
J'=(e’x9) " j=(@]x @)t (4)
and
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Fig. 1. Basic definition of shell geometry

In (3-5), ()" denotes geometrical variables associated with
the reference configuration #°.

A convective system is now defined over the deformed and
reference configurations as

0,6 =128 {9t = {a),al} (6)

The deformation gradient over the mid-surface (£ = 0) in
x0 = @°(&', &) is given by the linear appplication

Fi=a,Qa%+t®a%=a,®a" (7)

The following tensors defining the metric of the system are
defined on the actual configuration

a,,=a,-a (8)
Vu= @yt 9)
Kug =@, t,p (10)

Using identical definitions for the reference configuration
&°, the following generalized Lagrangian strains can be defined

a) Mid-surface strains

0

) a, —4ap
3(?):5 1122*022 (11)
2 (a12 - a(l)z
b) Transverse shear strains
it
&@02[ ﬂ (12)
Y2— "2
c) Curvature strains
Ky — K(l)l
l((D,t) = Kzz_K(z)z (13)

0
20y, — Ky,

The resultant stresses can be written in terms of stress
measures over the deformed or current configurations as

ht

| 1 .
n* == [ 6g*jd&® =~ [ Pg?j°d (14)
Jn J

h* h*

1 1
f=tx=] Sogidd —t o] SPRE=T xR * 05
K™ h

I N

lzl,_ O'gajdfazl,_f Pg’jod¢ (16)
J J W

where g’ = 0x/0¢'. o-and P are the Cauchy and st
Piola-Kirchhoff stress tensors, respectively. On the other hand
n” and m” are the resultant stresses and bending moments along
a line & = constant and 1 is the resultant stress across the
thickness. Vector m” is termed “director bending moment” and
it allows to define the following “effective resultant stresses” as

b P — b (17)

§*=q"— 1m* (18)

where 2 and 4’ are obtained from the relationship
=9 13
t, = Ao, +At (19)

It can be shown that the resultant stresses m* n* and q* are
conjugate of the generalized strains defined in (11-13). The
constitutive equation between both sets of magnitudes can be
written as
=l g =i (20)

¢y,

where / is the internal energy and

nt

1
p==[ pjd€ (21)
J

p being the material density. Details on the constitutive
relationship for both elasticity and elasto-plasticity using an
hyperelastic framework can be found in Simo and Fox (1989)
and Simo and Kennedy (1992).

The expression of the internal stress power due to
deformation can be written as

W= jP:FdV

v

=[[n“-¢g+rﬁ“-f,a+l«f]du
o

= [ [#"Ldy, + G0, + Pk, ) du
ot

I
{e—s

[A:L,e+q:L,0+m:L, yldu

Equation (22) is the basis for the derivation of the finite
element formulations following standard procedures. This
requires the definition of adequate admissible variations



(0@, ot) (Simo and Fox 1989). Note that the requirements of
inextensibility of t lead to the well known relationship

ot =

(3x1)

A OT (23)

(3x2) (2x1)

where A contains the first two rows of the orthogonal matrix
which transforms the global vector e, into t and 6T =
[6T,,0T,]". Equation (23) can be written in a more convenient
form as

St=00xt (24)

where d01is a vector normal to the plane formed by t and dt,
ie. 60-t=0.

3
Description of new triangular shell elements

3.1

Six node quadratic shell triangle with linear assumed
transverse shear (TQQL element)

This element is an extension of the quadratic plate triangle
presented in Zienkiewicz, Taylor, Papadopoulos and Onate
(1990) and Onate, Zienkiewicz, Suarez and Taylor (1992). The
geometry of the element is shown in Fig. 2. Both initially

flat (subparametric) and curved (isoparametric) versions of
the element have been considered. In the subparametric case,
the initial geometry is linearly interpolated in terms of the
vertex nodal values, whereas a quadratic approximation is
used in the isoparametric case. For flat triangles the jacobian
matrix is constant which considerably simplifies some
computations. In both flat and curved cases the displacement
and director fields are quadratically interpolated as

6
u=) N
I=1
(25)
- t
=) N't' with t=—
=1 ]l

where N' are the quadratic shape functions of the standard
six node C, triangle (Zienkiewicz and Taylor 1989/1991).

ol
.1

N

(0

(32 Iy

Fig. 2a-b. TQQL shell triangle (a) nodal points with degrees of
freedoms [u, AT], (b) sampling points for the tangential transverse
shear strain 7y,

The updated middle surface configuration and the director
field are obtained for step k + 1 by

P = iN’(é, n) (@) 4 uf*! (26)
I=1
6

tk+1: ZNl(é’n)tllﬁ—l (27)
I=1

with

t} ! = exp, [At]]:= cos (|| At} ) tf + %Atf (28)

1

Note that Atf is the increment between steps k and k + 1.

The local axes in this element have been defined as follows.
Axis x, is taken orthogonal to the element plane; x, is assumed
to lay in the intersection of the element with the global x,, x,
plane and x, = x, x x,.

Two versions of the element have been studied in this work.
The first one is based on the standard displacement formulation
for both bending and membrane fields whereas a linear
transverse shear strain field is assumed in the natural coordinate
system as

Ve =0y + ¢ + aun
(29)
Yy =%+ os€ + o1

Parameters o, --- o are obtained by sampling the tangential
shears in the six side points shown in Fig. 2b. The derivation
of the substitute (B-bar)transverse shear strain matrix for
this case follows the lines explained in Onate, Zienkiewicz,
Suéarez and Taylor (1992). Further details are given in Flores
and Onate (1993). Following the notation of Ofate et al. (1992)
this element is termed here TQQL (For Triangle, Quadratic
displacements, Quadratic rotations and Linear assumed
transverse shear fields). The flat version of this element is
termed TQQL,, whereas TQQL denotes the curved isoparametric
version.

For the isoparametric (curved) case, a second version of
this element uses the following assumed membrane field (aimed
to avoid membrane locking)

gl [1Em ?
EEm =&, |= 1 &y | =AGnp
2¢,, 1Lén
B

(30)

where the parameters f3, -+ f§, are obtained by sampling the
membrane strains at selected points. Two possibilities have been
considered: (i) evaluating the assumed membrane strains at
the vertex nodes (element TQQL1) and (ii) evaluating

the tangential membrane strains at the two Gauss points along
each side and additionally sampling the three membrane strains
at the center of the element (element TQQL?2). Details of the
finite element matrices necessary for non linear computation
can be found in Flores and Onate (1993).
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3.2

Linear/quadratic shell triangle with a linear assumed shear
strain field (TLQL element)

This element is an extension of the TLQL plate triangle
presented in Zienkiewicz, Taylor, Papadopoulos and Onate
(1990) and also in Onate, Zienkiewicz, Suarez and Taylor (1992).
The mid-surface displacements are now linearly interpolated
in the terms of the corner values as

3
u= 3 &y (31)
I=1
whereas the following incomplete quadratic approximation
is used for the director field

3 6
t=> #t'+ > Nidle' (32)
I=1

I=4

In (31) and (32) ¢ are the standard linear shape functions
of the 3 node triangle, N' are the standard quadratic shape
functions for the 6 node triangle and 0" are hierarchical director
values. In the plate bending case e’ are side vectors, whereas
in this case we have taken

e'=(p’+t) — (o' +t")

e€=(p’+t)— (9’ +1t) (33)

eé=(p'+t)—(p*+1t)

Note that vectors e’ must be updated at every solution step.
In this way we ensure a smooth director field along each side.
The bending and membrane contributions are obtained
in a straightforward manner using a standard displacement
formulation. Finally, the transverse shear strain field is assumed
to vary linearly in terms of the three tangential shear strains
at the side-points shown in Fig. 3. The derivation of the
substitute shear strain matrix follows the lines explained in
Onate, Zienkiewicz, Suarez and Taylor (1992) for the analogous
plate element and it will not be repeated here.

3.3

Linear shell triangle with linear assumed shear strains

(TLLL element)

This element is an extension of the TLLL plate element recently
proposed by Ofate, Zarate and Flores (1994). Now the

: E
(172,00 (1.0) &
®(A0) ° Yt

(o] (u, AT)

Fig. 3. TLQL triangular shell element. Nodes and sampling points
for the tangential transverse shear strain y,

displacement and rotation fields and the assumed transverse
shear strains are linearly interpolated in terms of the vertex
nodal displacements, the mid-side rotations (defining an
incompatible rotation field) and the mid-side tangential shear
strain variables, respectively as shown in Fig. 4. Note that the
assumed shear field for this element is identical to that of the
TLQL of previous section.

The director field is interpolated in terms of the director
vectors at the mid-side nodes as

6
=3 N (34)
I=4
where
N =1-2¢ (35)

with &' being the standard linear shape functions of the 3 node
triangle.

n
é2\3 E3 o{w}
01{6,,0,}
o i
e 2
2 =
! 4 B

Fig. 4. TLLL triangular shell element. Nodes and sampling points
for the tangential transverse shear strain 7,

It is worth noting that many interesting analogies can be
found between this element and that derived by Van Keulen
(1993) (see also Van Keulen and Onate, 1995) as an
extension of the well known 6 dof triangle developed by Morley
(1971). More details about the derivation of the element
matrices for the TLLL element can be found in Onate, Zarate
and Flores (1994) and in Flores and Onate (1993).

4
Examples

4.1

Cylindrical roof

The well known Scordelis-Lo cylindrical roof shown in Fig. 5
is chosen first to compare the behaviour of the triangular
shell elements previously described with that of the popular

L=600.0

R=300.0

Thickness=3.0

E=30x10°

v=0

B.C.:in diaphragm u=0,w=0
Load: self weight,q=0.625

Fig. 5. Scordelis-Lo cylindrical roof. Geometry and material properties



Table 1. Convergence of the
vertical displacement at the
mid-side point of the edge

DOF QLLL TQQL;, TQQL TQQL1 TQQL2 | DOF TLQL | DOF TLLL

92 1.083 1.349 0.544 1.121 0.484 42 1.135 42 1.479
198 o 1.095 0.747 1.007 0.694 87 0.745 90 0.800
344 1.015 1.044 0.872 0.983 0.860 148 0.742 156 0.762

1344 1.000 = = = - 850 0.916 930 0.920
2060 - 1.005 0.994 1.003 1.000 3500 0.977 3660 0.977
four noded quadrilateral with linearly assumed transverse p given by the relation

shear strains (termed here QLLL) (Dvorkin and Bathe 1984;

Simo, Fox and Rifai 1989; Ofiate, Zienkiewicz, Suarez and Taylor 1 M
1992). o E
Table 1 shows the convergence of the normalized vertical
displacements of the free edge of the central section for different Using a displacement control Newton-Raphson algorithm
meshes. Elements TQQL and TQQL2 show slow convergence  (in this case the rotation of the free edge is taken as the control
due to membrane locking. Element TQQL, converges to d.o.f.) the shell is deformed into a complete circle (Fig. 7).
the correct result but it is rather flexible. The value of the normalized applied bending moment for the
different triangular elements is presented in Table 3.
4.2 4.4
Curved cantilever beam Hinged cylindrical panel under a point load

A popular example to evaluate membrane locking behaviour
of curved elements is the uniform bending of a curved
cantilever. The basic geometry and material data are shown
in Fig. 6. Numerical results have been obtained for different
values of the span angle ¢. The normalized bending moments
at the Gauss points for the different shell triangles are
presented in Table 2. Note the low performance of the
displacement-based element TQQL for increasing values

of ¢.

A shallow cylindrical panel, pinned at two edges and free at
the other two, subjected to a central point load leads to

4.3

Roll-up of clamped beam

A clamped-free slender strip is subjected to a bending moment
at the free edge and it is deformed into a circular arc of radius

Fig. 7. Roll-up of a clamped strip. Reference and deformed

configurations
R=2540.00mm
L=20.00mm
Ef ;?67207";[3 oo 2 /M'/'ﬁ Table 3. Roll-up a clamped beam. Normalized bending
v: 0 ' A /2'/:13 moment for a complete circle configuration
: o 1n° o o <\¢
$=5°,10°20°,30 i /576 TQQL, TQQL  TQQLl1 TQQL2 TLQL TLLL
Basic mesh

1.002 0.980 1.016 0.990 0.989
Fig. 6. Cantilever curved beam. Geometry and material properties
P TQQL TQQLI TQQL2 TLQL TLLL Table 2. Curved cantilever

beam. Bending moment at Gauss
points. Numbers show the range

5 0.992 1.001 1.000 1.0093 1.0095 e b :
10 0.878-0.920 1.005 0.998 1.0052-1.0023  1.0053-1.0022 3 . i‘;‘?n“:he"m eﬁ Eng Htlomen
20 0.408-0.710 1.020 0.990-0.996 1.014-1.016 1.0158-1.0155 . iy

30 0.244-0.615 1.038-1.048 0.978-0.991 1.036-1.034 1.0374-1.0356  Sclutionis 1.0
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a snap-through behaviour with a reversal of curvature.
Depending on the thickness a snap-back is also possible. Two
different thicknesses have been considered for R/h = 200 and
R/h = 400. The geometry of the panel and the material
properties are shown in Fig. 7. For R/h =200 two regular
meshes (25 and 49 nodes) have been used to test convergence.
The displacement of the point under the load vs. the value of
theload is plotted in Fig. 9 for the triangular elements presented
here. It can be seen that for the fine mesh (Fig. 9b) the

results are almost coincident and all elements converge to

the correct results. Results for the case R/ = 400 using the
fine mesh are presented in Fig. 10. The TQQL1 element shows
a very flexible behaviour in this case.

4,5
Impact dynamics test
The triangular shell elements proposed seem particularly
advantageous for crashworthiness and sheet stamping problems
where the triangular discretization of complex shell geometries
is typically required.

A simple example of the ability of the shell triangles for
analysis of impact dynamics problem presented is given here.

R=2540.00 mm
L=254.00mm
h=12.70/6.35 mm
E=3102.75N/mm?
v=0.30

0=0.1rad

The problem is the study of the impact of a low-velocity

(V, =6.94 m/s) cylindrical bar against a clamped square plate
(Hallet 1987). The plate dimensions are 600 x 600 mm and
the thickness is 5.11 mm, whilst the projectile has a diameter
of 40 mm and a mass of 40.5 kg. Interface conditions are
frictionless and the material properties for both target and
projectile are E =211 x 10°N/n?’, v = 0.3, initial yield stress =
280 x 10°N/m’* and hardening modulus = 690 x 10° N/m> The
elastoplastic model used is described in Simo and Kennedy
(1993).

Due to symmetry conditioning an eighth of the plate is
considered. Six finite strain 8-node solid elements (Garcia
Garino 1993) have been used for the projectile and 24 TQQL
shell triangles for the plate. Vertical displacement contours are
shown in Fig. 11 for the instant of maximum deformation.
Also the displacements of the center of the plate and the blunt
surface of the projectile are plot with respect to time. The
maximum displacement of the plate was computed as 27.5 mm
at6.3 ms in comparison with the experimental values of 27.6 mm
at 5.47 ms which represents errors of — 0.4% and 14.5%
respectively. Similar good behaviour was found for the TLQL
and TLLL elements. Further details on this example and other
non linear dynamic studies using the new shell triangles can
be found in Flores and Ofate (1993).

5
Concluding remarks
A family of assumed strain triangles for non linear thick/thin
shell analysis has been presented. The elements follow the
shell theory by Simo and co-workers and can deal with large
displacements, large rotations and plasticity effects.

All the elements converge to the correct results when the
mesh is refined. For coarse meshes it has been observed that:
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