A particle finite element-based model for droplet spreading analysis

Article in Physics of Fluids - April 2020
DOI: 10.1063/5.0006033

CITATIONS
0

READS
20

7 authors, including:

Elaf Mahrous
University of Delaware
2 PUBLICATIONS 0 CITATIONS
SEE PROFILE

Alex Jarauta
University of Alberta
11 PUBLICATIONS 51 CITATIONS
SEE PROFILE

Pavel Ryzhakov
Universitat Politècnica de Catalunya
38 PUBLICATIONS 370 CITATIONS
SEE PROFILE

Adam Weber
Lawrence Berkeley National Laboratory
249 PUBLICATIONS 7,853 CITATIONS
SEE PROFILE

Some of the authors of this publication are also working on these related projects:

- Transport in Porous Media View project
- Fuel Cell Performance and Durability (FC-PAD) View project

All content following this page was uploaded by Alex Jarauta on 28 April 2020.

The user has requested enhancement of the downloaded file.
A particle finite element based model for droplet spreading analysis

Elaf Mahrous, a) 1, 2, Alex Jarauta, b) 2, Thomas Chan, 3 Pavel Ryzhakov, 4, 5, Adam Z. Weber, 3 R. Valéry Roy, 1, d) and Marc Secanell 6, e)

1) Department of Mechanical Engineering, University of Delaware, Newark, DE 19716, USA
2) Energy Systems Design Lab (ESDLab), University of Alberta, Edmonton, AB T6G 2G8, Canada
3) Energy Conversion Group, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
4) Universitat Politècnica de Catalunya, BarcelonaTech, 08034 Barcelona, Spain
5) Centre Internacional de Méthodes Numériques a l’Enginéria (CIMNE), 08034 Barcelona, Spain
6) Corresponding author; Energy Systems Design Lab (ESDLab), University of Alberta, Edmonton, AB T6G 2G8, Canada

(Dated: 28 April 2020)

A particle finite element method (PFEM) based model is proposed to analyze droplet dynamics problems, particularly droplet spreading on solid substrates (wetting). The model uses an updated Lagrangian framework to formulate the governing equations of the liquid. Curvature of the liquid surface is tracked accurately using a deforming boundary mesh. In order to predict the spreading rate of the droplet on the solid substrate and track the corresponding contact line motion, dissipative forces at the contact line are included in the formulation in addition to the Navier-slip boundary conditions at the solid-liquid interface. The inclusion of these boundary conditions makes it possible to account for the induced Young’s stress at the contact line and for the viscous dissipation along the solid-liquid interfacial region. These are found to be essential to obtain a mesh-independent physical solution. The temporal evolution of the contact angle and contact line velocity of the proposed model are compared with spreading droplets and micro sessile-droplet injection experiments, and are shown to be in good agreement.

Keywords: Droplet spreading; Surface tension; Dissipative forces; Young’s stress; Wettling; Capillary wavelength; PFEM

INTRODUCTION

Droplet dynamics modeling is an active area of research in the computational fluid dynamics (CFD) community due to its many applications, such as inkjet printing as, cooling towers, and water transport in fuel cell porous media, and gas channels. In these applications, characterized by dominant capillary forces, the liquid phase is found in contact with solid substrates that can be hydrophobic, hydrophilic, or chemically heterogeneous. Droplet dynamics models typically encounter several challenges when studying these phenomena: a) tracking of the free liquid surface, b) identifying the interaction forces between liquids and substrates, and hence tracking the transition between inertial and viscoelastic regimes, and c) obtaining mesh-dependent solutions.

For sessile droplet problems involving contact between a liquid and a solid substrate, Young’s stress is induced at the contact line as the droplet spreads. This leads to a special slip regime where the contact line velocity evolves proportionally to the dynamic contact angle. The classical Navier-Stokes equation alone does not account for the contact line motion of the liquid on a no-slip substrate and therefore cannot relieve the moving contact line singularity, which leads to nonphysical velocity evolution and energy dissipation known as “Huh and Scriven’s paradox.” For droplets and thin films on hydrophilic surfaces, lubrication approximation theory can be used as a valid simplified and cost-efficient numerical model to regularize the contact line singularity. However, this theory is not valid for hydrophobic surfaces and pinned contact line analysis. Thus, more sophisticated models are needed for analyzing droplet dynamics (droplet deformation, pinning, and spreading) in the case of hydrophobic and chemically heterogeneous substrates. For such cases, the contact line singularity can be relieved by introducing i) a slip zone at the contact line, that accounts for the normal and tangential stresses, and the capillary effect due to the contact line motion, and ii) a slip zone away from the contact line, that accounts for shear and viscous stresses acting inside the solid-liquid interfacial region.

The simplest attempt to resolve the singularity at the contact line consists in applying a static contact angle condition where the direction of the vector normal to the liquid-air surface at the contact line is constant and equal to the value of the equilibrium contact angle for the considered substrate. However, this approach cannot account for droplet pinning, and therefore, cannot predict the dynamics of spreading droplets. A dynamic contact angle condition is needed to account for this phenomenon. The most basic dynamic contact line condition imposes a slip boundary condition, i.e., contact line velocity normal to wall surface is zero, when a critical con-
tact angle is reached. This condition implies that no energy is dissipated as the contact line moves on the solid substrate, and that the velocity of the contact line is not restricted, which contradicts experimental observations.

In order to achieve a physically relevant contact line velocity, several authors proposed a contact line boundary condition that depends on a dissipative force term. Spelt proposed a linearly dependent contact angle condition that is a function of the sign of the contact line velocity. Manservisi and Scardovelli added a dissipative, resistive force applied to the contact line as a function of the capillary number. Buscaglia and Aeus presented a variational formulation of a surface tension model that included a dissipative force acting on the contact line that was proportional to the velocity of the contact line; however, their model did not account for contact line pinning, which often takes place on rough substrates. In addition to the dissipative force condition, Ren and observed that the normal stress inside the solid-liquid interface exhibits a large jump across the contact line, which varies linearly with its velocity, and hence should be balanced and considered as an additional boundary condition. Moreover, Venkatesan et al. observed that the tangential stress at the contact line is proportional to its tangential velocity, which was included as an additional term in their numerical formulation.

Obtaining a mesh-independent solution is an additional modeling challenge. Several authors have studied the dependence of the numerical solution of wetting phenomena on the mesh size. In reference, Manservisi and Scardovelli studied the spreading behavior of droplets by utilizing the Lagrangian front tracking approach, and concluded that adding the dissipative energy term reduces the spreading rate until a nearly no-slip condition is achieved. Akhami et al. conducted a numerical study using the Volume-of-fluid (VOF) method to understand the dependence of the dynamic contact angle evolution on the mesh size. They observed that this dependence could be reduced by relating the dynamic contact angle to the capillary number and to the mesh size. More recently, Buscaglia and Aeus introduced a variational formulation and analyzed the effect of adding dissipative forces as constant values on the mesh dependency of the solution. They concluded that increasing the dissipative force term leads to a less mesh-dependent solution. In addition, Venkatesan et al. used an Arbitrary Lagrangian-Eulerian (ALE) finite element formulation and introduced a slip coefficient in the Navier-Slip term that is a function of the mesh size, Weber number, and Reynolds number. They managed to alleviate the spurious mesh dependency. However, they observed that the proposed relation did not work properly for hydrophobic surfaces.

Even though a substantial effort has been invested in developing robust and efficient numerical models for contact line dynamics of sessile droplets, a physically accurate and mesh-independent model does not currently exist to the best of our knowledge. In addition, most of the aforementioned models were applied to fixed-mesh methods. Our previous work has shown that a moving-grid particle finite element method (PFEM)-based model is well suited to droplet modeling. Application of a PFEM model has proven to be particularly advantageous when dealing with surface tension dominated problems, as it allows to accurately track the evolution of the liquid domain boundary and to account for surface tension, without introducing enrichment shape functions or smearing the surface tension via continuous force approach. However, neither a dissipative force term on the contact line nor a viscous dissipation term on the solid-liquid interface has been implemented and tested in PFEM-based droplet models. The objective of this article is to identify an appropriate dynamic contact line condition for the PFEM-based fluid flow solver proposed in and to verify that it provides a mesh-independent solution. In the present work, our proposed droplet dynamic model is equipped with i) an effective slip contact angle boundary condition that balances the induced Young's stress, and ii) a solid-liquid slip boundary condition, away from the contact line, that accounts for the viscous dissipation along the solid-liquid interface.

The article is organized as follows. Section II includes a description of the moving grid model for droplet dynamics. Special emphasis is given to the boundary conditions applied at the solid-liquid interface including the contact line. Numerical results are shown in Section III, including a detailed analysis of the manner in which dissipative forces can produce a less mesh-dependent solution. The model is validated by comparing numerical results for droplet spreading on hydrophilic and hydrophobic surfaces with experimental data. We performed further experimental validation with a droplet injection setup, which includes two different smooth substrates.

II. PHYSICAL MODEL

A. Governing equations

Let us consider a domain which represents a liquid droplet in contact with a solid substrate, as shown in Fig. 1. The boundary of the domain is split into three regions . The part of the domain boundary corresponding to the liquid in contact with a substrate, excluding the contact line, is designated as . The contact line is denoted by . The rest of the boundary of the liquid phase is denoted by which corresponds to the droplet free surface. For two-dimensional problems, the contact line reduces to two triple points. The droplet is assumed to be surrounded by its saturated liquid-vapor phase. It is assumed that the velocity of the vapor is negligible, i.e., it exerts no mechanical action upon the droplet and thus the droplet can be analyzed as an isolated entity.

The governing equations for the liquid phase are the momentum and mass conservation equations. The fluid is considered incompressible, viscous, and Newtonian. Thus, the governing equations read:

\[ \rho \left( \frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla) \mathbf{v} \right) - \nabla \cdot (2\mu D\mathbf{v} - p \mathbf{l}) = \rho g \quad \text{on } \Omega \]  
\[ \nabla \cdot \mathbf{v} = 0 \quad \text{on } \Omega \]  

where \( \rho \) is the fluid density, \( \mathbf{v} \) is velocity, \( t \) is time, \( \mu \) is the fluid dynamic viscosity, \( D\mathbf{v} = (\nabla \mathbf{v} + \nabla^T \mathbf{v})/2 \) is the strain rate.
is proportional to the velocity of the contact line \(v\), respectively, and and are the same.

At the interface \(\Gamma_I\), a Cauchy stress boundary condition in the normal direction of the stress is applied corresponding to the surface tension force:

\[
f_{\Gamma_I} = \sigma \cdot n = \gamma \kappa n \quad \text{at } \Gamma_I
\]

where \(f_{\Gamma_I}\) is the surface tension force, \(\sigma\) is the Cauchy stress tensor, \(n\) is the outer unit normal to \(\Gamma_I\), \(\gamma\) is the surface tension coefficient, and \(\kappa\) is the curvature of the interface. According to Eq. (3), the normal stress is balanced by the surface tension force \(\gamma \kappa n\).

At the interface \(\Gamma_S\), the applied boundary condition corresponds to the shear stresses in order to account for viscous dissipation. It is obtained by projecting the Cauchy stress tensor on the normal direction of \(\Gamma_S\):

\[
f_{\Gamma_S} = \sigma \cdot n = -\beta_{\Gamma_S} v \quad \text{at } \Gamma_S
\]

where \(f_{\Gamma_S}\) and \(\beta_{\Gamma_S}\) are the dissipative force and the slip coefficient applied at the solid-liquid interface, respectively, and \(v\) is the slip velocity of the fluid at the contact line.

A variety of models have been proposed in the literature for the slip coefficient, \(\beta_{\Gamma_S}\), at the solid-liquid interface such as, Navier-slip condition \(\langle \beta_n \rangle_{14-16,44}\), prescribed slip profile condition \(\langle \beta_s \rangle_{15}\), and a constant slip coefficient that depends on the grid size \(\langle \beta_t \rangle_{22}\). The Navier-slip model is considered in this work, as it accounts for the shear rates and viscous dissipation along the solid-liquid interface during droplets deformation \(\langle 14-16,21 \rangle\).

At the contact line, an effective slip boundary condition is applied corresponding to the total dissipative force, including the contribution of i) the capillary effect \(\langle \zeta \rangle\), ii) normal stress coefficient \(\langle \beta_n \rangle\), and iii) Navier-slip coefficient \(\langle \beta_s \rangle\), and is proportional to the velocity of the contact line \(\langle 14-16,22 \rangle\):

\[
f_{\partial \Gamma} = -\beta_{\partial \Gamma} v \quad \text{at } \partial \Gamma
\]

where \(f_{\partial \Gamma}\) is the dissipative force applied at the contact line, \(\beta_{\partial \Gamma}\) is the effective slip coefficient at the contact line, and \(v\) is the slip velocity of the fluid at the contact line.

The details on the dissipative forces applied at the contact line and the solid-liquid interface are presented next.

### B. Forces acting at the contact line, \(\partial \Gamma\)

Let us consider a steady droplet in contact with a flat surface forming a static contact angle \(\theta\), Fig. 2. Under this condition, the equilibrium is expressed as the balance of the liquid surface tension \(\gamma_s\), or simply denoted by \(\gamma\), solid surface energy \(\gamma_v\), and interfacial tension \(\gamma_i\). When normalized to a unit length, these forces are the interfacial tensions between the three phases (solid/liquid/vapor). By projecting the equilibrium forces on the solid plane, one obtains the well known Young’s equation \(\langle 45,46 \rangle\):

\[
\gamma_v \cos \theta_s = \gamma_i - \gamma_d
\]

The contact line velocity that corresponds to this equilibrium state is \(v = 0\). In this case, the boundary condition applied to the contact line is the following: if the contact angle is within a given range of values, i.e., \(\theta \in [\theta_{\text{min}}, \theta_{\text{max}}]\), the contact line is fixed. A fixed contact line is usually referred to as a pinned contact line. The values of minimum and maximum contact angle to achieve contact line pinning, which depend on both the liquid and the substrate, are determined experimentally \(\langle 9,11 \rangle\).

As the droplet starts to spread, Eq. (6) does not hold any longer and therefore a slip boundary condition is applied for the velocity at the contact line \(\partial \Gamma\):

\[
\beta_{\partial \Gamma} v = \gamma (\cos \theta_s - \cos \theta)
\]

where \(u\) is the tangential component of the velocity vector at the contact line, i.e., \(u = v \cdot t\), and \(\theta\) is the dynamic contact angle. The proportionality coefficient between the contact line velocity and Young’s stress is the effective slip boundary condition defined as \(\langle 15 \rangle:\)

\[
\beta_{\partial \Gamma} = \zeta + \beta_s + \beta_n
\]
where $\zeta$ is the dynamic capillary effect coefficient, $\beta_s$ is the Navier-slip coefficient, and $\beta_n$ is the normal stress coefficient.

The capillary effect coefficient is expressed as follows:

$$\zeta = \frac{\gamma}{u} R(Ca)$$  \hspace{1cm} (11)

where $R(Ca)$ is a function of the capillary number calculated from the contact line velocity. In several experimental studies, expressions for $R(Ca)$ were obtained by fitting empirical data. Among these studies, the models proposed by Jiang\textsuperscript{49}, Bracke\textsuperscript{50}, and Seeberg are commonly used\textsuperscript{51}. The numerical and dynamic contact angle simulations in reference\textsuperscript{32} concluded that Jiang’s model was able to predict higher capillary flow velocities among these three empirical models. For capillary-driven spreading droplet, the contact line velocity is of the order of an impact velocity of a droplet\textsuperscript{35,53}; therefore, Jiang’s expression is used in this work, i.e.,

$$R(Ca) = (\cos \theta + 1) \tanh (4.96Ca^{0.702})$$  \hspace{1cm} (12)

where $\theta$ is the static contact angle, and $Ca = u \mu / \gamma$ is the capillary number calculated using the contact line velocity. Thus, the coefficient $\zeta$ in Eq. (11) is expressed as follows:

$$\zeta = \frac{\gamma}{u} (\cos \theta + 1) \tanh (4.96Ca^{0.702})$$  \hspace{1cm} (13)

The Navier-slip coefficient, $\beta_s$, in Eq. (10), is a function of the shear stress, and it is calculated using\textsuperscript{14–16,21}:

$$\beta_s = \frac{1}{u} \mu \nabla (v \cdot t) \cdot n$$  \hspace{1cm} (14)

In addition, larger jump in normal stresses is introduced across the contact line as its velocity increases\textsuperscript{15}. The normal stress jump across the contact line is balanced by including the coefficient $\beta_n$, which is expressed as follows:\textsuperscript{35}:

$$\beta_n = \frac{1}{u} \mu \nabla (v \cdot t) \cdot t$$  \hspace{1cm} (15)

where $u$ is the tangential component of the velocity vector at the contact line, i.e., $u = v \cdot t$.

After considering the contributions of the capillary effects, the Navier-slip as well as the normal stresses in Eq. (10), the coefficient $\beta_l \Gamma$ is used to obtain the total dissipative force and to apply the boundary condition defined by Eq. (5).

C. Forces acting at the solid-liquid interface away from the contact line, $\Gamma_{SS}$

When a viscous fluid is in contact with a solid substrate, the velocity of the fluid at the fluid-solid interface is equal to the velocity of the solid. If the solid is at rest, a no-slip boundary condition is applied in this region. In wetting problems, however, the no-slip condition contradicts the physical dissipation phenomena on the solid-liquid interfacial zone. It has been observed that introducing a Navier-slip boundary condition on droplet spreading problem partially resolves this contradiction, and also reduces the mesh-dependency of the numerical solution\textsuperscript{14–16,21,22}. Therefore, at the solid-liquid interface, $\Gamma_{SS}$, the Navier-slip boundary condition is applied in the present work, according to Eq. (4). Accordingly, the slip coefficient $\beta_l \Gamma_{SS}$ at the solid-liquid interface $\Gamma_{SS}$ is expressed as follows:

$$\beta_{lSS} = \beta_s = \frac{1}{u} \mu \nabla (v \cdot t) \cdot n$$  \hspace{1cm} (16)

where $u$ is the tangential component of the velocity vector at the solid-liquid interface. Eq. (16) is used in combination with Eq. (4) to apply the boundary condition at the solid-liquid interface.

D. Mesh size and time step criteria

As the droplet spreads, capillary waves are generated at the contact line and move toward the free surface, i.e., from $\Gamma_{TV}$ towards $\Gamma_{SS}$\textsuperscript{54,55}. For a spreading droplet, the maximum spreading velocity is of the order of the droplet impact velocity\textsuperscript{35,56}. At this velocity, Yuriko et al.\textsuperscript{57} concluded that the capillary wave is observed when $We > 1$, where the Weber number defined by

$$We = \frac{\rho R u_{max}^2}{\gamma}$$  \hspace{1cm} (17)

where $\rho$ is the liquid density, $R$ is the droplet radius, and $u_{max}$ is the maximum value of the tangential component of the velocity vector at the contact line. The latter value, $u_{max}$, can be estimated experimentally, and it is known to depend on both the fluid and the substrate\textsuperscript{35,56–58}. In this article, different values of $u_{max}$ are used based on the experimental scenarios illustrated in Section III.

Yuriko et al.\textsuperscript{57} also observed that the capillary wavelength, $\lambda$, corresponding to the contact line capillary propagation is estimated by:

$$\lambda = \frac{\gamma}{\rho u_{max}}$$  \hspace{1cm} (18)

Numerically, the mesh size at the contact line is restricted by the wavelength of the capillary wave propagation, and its maximum value $h$ can be estimated to be\textsuperscript{59}:

$$h = \frac{\lambda}{2}$$  \hspace{1cm} (19)
Substituting Eq. (18) into Eq. (19) yields:

\[ h = \frac{\gamma}{2\rho u_{\text{max}}} \]  

(20)

Moreover, the wave velocity corresponding to the dominant capillary wavelength is calculated as \[ c = \sqrt{\frac{2\pi \gamma}{\rho \lambda}} \]  

(21)

where \( c \) is the wave velocity. The critical time step corresponding to this capillary wave, \( \Delta t_{\text{cap}} \), can also be estimated as \[ \Delta t_{\text{cap}} = \frac{1}{2f} \leq \frac{h}{c} \]  

(22)

where \( f \) is the maximum frequency in s\(^{-1}\) corresponding to the capillary wave propagation at the contact line. Substituting Eq. (21) and Eq. (20) into Eq. (22) yields:

\[
\Delta t_{\text{cap}} \leq \sqrt{\frac{2}{\pi \rho \lambda}} \frac{\gamma}{u_{\text{max}}}.
\]

(23)

Ryzhakov et al.\(^{61,62}\) suggested the time step to be used for the PFEM approach should scale to half of the critical time step in order to avoid element degradation or inversion, which yields:

\[
\Delta t_{\text{cap}} = \sqrt{\frac{2}{\pi \rho \gamma \lambda}} \frac{\gamma}{u_{\text{max}}}.
\]

(24)

E. Discretized governing equations

The particle finite element method (PFEM)\(^{38,43,63-67}\) is used in the present work to discretize Eqs. (1) and (2) in space. The PFEM adopts the updated Lagrangian description of the governing equations. The fluid domain is discretized by a standard finite element mesh. The nodes can be interpreted as immaterial particles that move according to their convective velocity. At each solution step the domain deforms. Thus, in order to avoid excessive mesh degradation re-meshing is performed at each time step using Delaunay triangulation. For droplet dynamics problems re-meshing procedure ensures that the domain boundaries are preserved. Linear interpolation functions for both velocity and pressure are used over 3-noded triangles in 2D. In the present implementation the discretization in time is performed using the Newark-Bossak scheme. However, in the present section, it is illustrated using the Backward-Euler scheme for sake of simplicity\(^{43}\). A more complete algorithm for a two-phase flow model can be found in\(^{14,37}\). The problem statement is the following: given a known velocity and pressure \( \bar{v}_n \) and \( \bar{p}_n \) at time \( t_n \), find the values of these variables at the next time step \( t_{n+1} \) (\( \bar{v}_{n+1} \) and \( \bar{p}_{n+1} \)) by solving:

\[
M \ddot{\bar{v}}_{n+1} + \bar{F}_n = \bar{F} + \bar{F}_d + \bar{F}_{\partial \Gamma} + \bar{F}_{\Gamma_S}\]

(25)

\[
D \ddot{\bar{p}}_{n+1} = 0
\]

(26)

where \( M \) is the mass matrix, \( \Delta t \) is the time step, \( L \) is the Laplacian matrix, \( \bar{F} \) is the vector of external forces, \( \bar{F}_d \) is the surface tension force vector, \( \bar{F}_{\partial \Gamma} \) is the dissipative force vector acting at the contact line, \( \bar{F}_{\Gamma_S} \) is the dissipative force vector acting at the solid-liquid interface away from the contact line, and \( D \) is the divergence matrix. Local cell matrices and vectors are defined in Appendix A.

The dependence on the unknown configuration, \( X_{n+1} \), introduces a geometrical nonlinearity that is solved using a Newton method. The governing equations are first written in their residual form:

\[
\bar{r}_m = \bar{F} + \bar{F}_d + \bar{F}_p + \bar{F}_{\partial \Gamma} + \bar{F}_{\Gamma_S} - (M \ddot{\bar{v}}_n + \bar{F} + \bar{F}_d + \bar{F}_{\partial \Gamma} + \bar{F}_{\Gamma_S}) \]

(27)

\[
\bar{r}_c = D \ddot{\bar{p}}_n + 1
\]

(28)

Eqs. (27) and (28) are then linearized, and the system is solved iteratively. The resulting linearized system of governing equations reads:

\[
\begin{pmatrix}
\delta \bar{r}_m \\
\delta \bar{r}_c
\end{pmatrix} =
\begin{pmatrix}
\frac{1}{\Delta t} M \delta \bar{v}_n + L \delta \bar{v}_n + H_{\Gamma_S} \delta \bar{p}_n \\
D \delta \bar{p}_n
\end{pmatrix}
\]

(29)

where \( H_{\Gamma_S} \) originates from the linearization of the surface tension force term, \( \bar{F}_p \). This term is responsible for the implicit treatment of the surface tension, and it allows for using large time steps. The derivation of this term, as well as the stabilization terms which have been omitted for sake of simplicity, can be found in reference\(^{34}\). The linear velocity-pressure elements used in our model do not fulfill the compatibility condition\(^{68}\) and therefore pressure must be stabilized. In this work, the algebraic sub-grid scales (ASGS)\(^{69-71}\) stabilization technique is implemented (see reference\(^{34}\) for details). Once the system in Eq. (29) has been solved for \( \delta \bar{v} \) and \( \delta \bar{p} \), the primary variables are updated according to \( \bar{v}_{n+1}^{k+1} = \bar{v}_{n+1}^k + \delta \bar{v} \) and \( \bar{p}_{n+1}^{k+1} = \bar{p}_{n+1}^k + \delta \bar{p} \), where \( k \) is the nonlinear iteration index, until convergence is achieved. As a final step, the nodal position in the moving mesh is updated according to the employed time integration scheme. In case of Backward Euler integration this yields \( X_{n+1}^k = X_n + \Delta t \bar{v}_{n+1}^k \). Solution algorithm and implementation methodology are further illustrated in Appendices B and C, respectively.

III. RESULTS AND DISCUSSION

A. Mesh dependence study

This example illustrates the effects of enriching the droplet model by including the dissipative forces at both the solid-liquid interface and at the contact line.
enrichment upon droplet spreading, contact angle evolution, and of the mesh dependency of the solution is analyzed.

Following the experimental settings of Buscaglia and Ausas, the geometry considered here is a sessile droplet with an initial radius of 0.125 mm, an initial contact angle of 90°, and a static contact angle of θs = 45° (see Fig. 3). The driving forces acting on the droplet are due to surface tension and gravity. Fluid density, viscosity and surface tension coefficient are set to ρ = 1000 kg m⁻³, μ = 8.90 × 10⁻³ kg m⁻¹ s⁻¹, γ = 0.072 N m⁻¹, respectively, in order to represent a water droplet. Initial pressure in the liquid is set to p₀ = 0 Pa.

For this study, the maximum spreading velocity at the initial stage, i.e., t < 0.25 ms, is assumed, based on experimental analysis, to be uₘₐₓ ≈ 2.5 m s⁻¹. This data corresponds to a water droplet of ~2 × 10⁻⁴ m radius spreading on Triethoxysilybutraldehyde with a static contact angle of 43°. Therefore, this gives the estimations of λ = 1.165 × 10⁻³ m, v = 6.27 m s⁻¹, h = 5.8 × 10⁻³ m, and Δt = 4.6 × 10⁻⁷ s from Eq. (18), Eq. (21), Eq. (20), and Eq. (24).

Six cases are analyzed to illustrate the effect of the slip coefficient parameters at the contact line and at the solid-liquid interface excluding the contact line, β₀ and β₁, as shown in Table I:

<table>
<thead>
<tr>
<th>Case number</th>
<th>β₀</th>
<th>β₁</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case 0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Case 1</td>
<td>0</td>
<td>1 × 10⁻⁵ Pa s⁻¹</td>
</tr>
<tr>
<td>Case 2</td>
<td>0</td>
<td>1 × 10⁻³ Pa s⁻¹</td>
</tr>
<tr>
<td>Case 3</td>
<td>1 × 10⁻³ Pa s⁻¹</td>
<td>1 × 10⁻³ Pa s⁻¹</td>
</tr>
<tr>
<td>Case 4</td>
<td>0</td>
<td>β₁, using Eq. (16)</td>
</tr>
<tr>
<td>Case 5</td>
<td>ζ, using Eq. (13)</td>
<td>0</td>
</tr>
<tr>
<td>Case 6</td>
<td>ζ + β₁</td>
<td>β₁, using Eqs. (13)–(15)</td>
</tr>
</tbody>
</table>

Figure 4 shows the predicted spreading displacement defined as r in Fig. 3, and contact angle evolution when no dissipative forces are applied. To compare the general spreading behavior with Buscaglia and Ausas, a time step of Δt = 2 × 10⁻⁷ s is used. Four different mesh sizes were adopted in order to study the solution sensitivity to mesh size, prior to adding the proposed boundary conditions (i.e., Eq. (4) and Eq. (5)), as follows: i) h = 1.25 × 10⁻⁵ m with 340 elements, ii) h = 9.6 × 10⁻⁶ m with 598 elements, iii) h = 6.8 × 10⁻⁶ m with 1205 elements, and iv) h = 5 × 10⁻⁶ m with 2206 elements. Parameter h represents the minimum distance between the nodes of a triangular mesh. As observed by Buscaglia and Ausas, when no dissipative force boundary conditions are applied, the solution is mesh-dependent, and the contact angle evolution is highly oscillatory.

The coarsest and the finest meshes, i.e., h = 1.25 × 10⁻⁵ m and h = 5 × 10⁻⁶ m, are considered for further study. These are displayed in Fig. 5. For each mesh size, the six above-mentioned sets of dissipative forces and slip conditions were included.

Fig. 6 shows spreading displacement and contact angle evolution for coarse mesh simulations. The absence of the dissipative term (ζ), normal stress coefficient (β₀), or the Navier-slip coefficient (β₁) causes an oscillatory spreading behavior and contact angle evolution (Fig. 6(a), Fig. 6(c)). Experimental results do not show this oscillatory behavior for a fluid on hydrophilic substrates. Therefore, these spu-
The initial non-physical spreading evolution causes the contact line to exceed its equilibrium contact angle, i.e., $\theta_d < 45^\circ$. Hence, the contact line retracts toward its equilibrium state again. The contact line spreads back and forth in a manner proportional to the induced Young’s stress (Eq. (8)) until its effect vanishes and the droplet reaches its equilibrium condition.

The first two cases show that increasing the constant value of the Navier-slip coefficient at the solid-liquid interface, $\beta_\Gamma$, does not guarantee a physical spreading evolution. Adding a constant slip coefficient at the contact line, i.e., case 3, reduces the contact angle and spreading rate oscillatory behavior, and increases the convergence rate. Yet, these constant values do not produce physical contact angle and spreading evolution rates.

Adding the Navier-slip condition on $\Gamma_S$ (Eq. (16), case 4) reduces the contact line singularity and enhances the convergence rate towards the equilibrium condition (Fig. 6(b) and Fig. 6(d)). However, the contact angle continues to behave in a non-physical manner due to the absence of the dynamic capillary term ($\zeta$).

Adding the dynamic capillary term alone, case 5, at the contact line (Eq. (13)) results in unstable contact angle evolution and spreading rate (Fig. 6(b) and Fig. 6(d)). This is interpreted by the absence of the physical viscous dissipation and stress balance terms acting on the solid-liquid interface, including the contact line.

Adding the dissipative force terms at the contact line and at the solid-liquid interface ($\beta_\Gamma$ and $\beta_{\Gamma, S}$, respectively; using Eq. (10), and (16)) enhances the overall behavior of both contact angle and contact line evolution (Fig. 6(b) and Fig. 6(d)). The contact line reaches its equilibrium state after 0.0006 s, i.e. $\approx 85\%$ faster than without resorting to the proposed boundary conditions; the non-physical oscillatory spreading behavior vanishes. Furthermore, case 6 in Fig. 6(b) shows two physical zones. The first zone is the inertial zone, $0 < t < 4 \times 10^{-4}$ s, where the droplet spreads at a rate proportional to the induced Young’s stress. The second zone is the viscous zone, $t > 4 \times 10^{-4}$ s, where the viscous dissipation is dominating as the droplet reaches its equilibrium contact angle.$^{19,35,53,56}$

The proposed boundary conditions at the solid-liquid interface are critical to achieving physically relevant droplet spreading solutions with the use of coarse meshes. Results for the refined mesh, i.e., $h = 5 \times 10^{-6}$ m, are displayed in Fig. 7. In the absence of the dissipative term, normal stress coefficient, and Navier-slip coefficient, a smoother spreading displacement evolution is achieved, compared to the coarser mesh (Fig. 7(a) and Fig. 6(a)). Further, the equilibrium state is reached after 0.0012 s. However, a non-physical oscillatory contact angle temporal evolution with low amplitudes is observed in Fig. 7(a). A more refined mesh leads to a lower nodal velocity and slip length coefficient, $l_\beta$, at the vicinity of the contact line compared to a coarse mesh.$^{16,72}$ Accordingly, a higher slip coefficient, $\beta_s$, is imposed in the Navier-slip for-
FIG. 7. Evolution of spreading displacement for constant \( \beta_3 \) and \( \beta_5 \) (a) and using Eq. (10) and (16) (b). Contact angle evolution for constant \( \beta_3 \) and \( \beta_5 \) (c), and using Eq. (10) and (16) (d), see table I. Mesh size of \( h = 5 \times 10^{-6} \) m (fine mesh).

The contact angle evolution and spreading rate for both mesh sizes are compared before and after applying the complete set of proposed boundary conditions at the solid-liquid interface and contact line are shown in Fig. 8. Results obtained without imposing the dissipative force boundary conditions are grid dependent and display large, non-physical oscillations. In contrast, the results obtained with the numerical solver with the proposed boundary conditions are grid independent and nearly free of oscillations with a smooth physical transition between both the inertial and viscous regions for both spreading displacement and contact angle evolution.

The contact angle evolution and spreading rate for both mesh sizes are compared before and after applying the complete set of proposed boundary conditions at the solid-liquid interface and contact line are shown in Fig. 8. Results obtained without imposing the dissipative force boundary conditions are grid dependent and display large, non-physical oscillations. In contrast, the results obtained with the numerical solver with the proposed boundary conditions are grid independent and nearly free of oscillations with a smooth physical transition between both the inertial and viscous regions for both spreading displacement and contact angle evolution.

In order to assess the validity of the proposed numerical model, we compare in this section experimental and numerical results of several studies involving spreading of fluids on flat smooth surfaces with varying contact angles. Specifically, the following cases are studied:

1. Spreading of a water droplet on a hydrophobic substrate, i.e., Triethoxysilane, (with equilibrium contact angle of \( 117.0^\circ \))\(^{53}\).
2. Spreading of a squalane (C\(_{30}\)H\(_{62}\)) droplet on a silica substrate (with equilibrium contact angle of \( 38.8^\circ \))\(^{35}\).
3. Spreading of water on Teflon (hydrophobic) and kapton (hydrophilic) substrates (with equilibrium contact angles of \( 108^\circ \))\(^{73}\) and \( 75^\circ \))\(^{74}\), respectively.

The first two studies are based on published experimental studies, while the third case is based on experiments performed by the authors.

1. Hydrophobic substrate

The proposed model is used to simulate the sessile water droplet deposition experiments performed by Bird \textit{et al}.\(^{53}\). In
In order to reproduce this experiment, a droplet is placed on the substrate with an initial radius \( R_0 = 5 \times 10^{-4} \) m, contact angle of \( 180^\circ \), and liquid pressure of \( p_0 = 0 \) Pa. Then, the droplet is allowed to deform until equilibrium is achieved, i.e., \( \theta = \theta_i = 117^\circ \). Fluid density, viscosity and surface tension coefficient are set to \( \rho = 1000 \) kg m\(^{-3}\), \( \mu = 8.90 \times 10^{-4} \) kg m\(^{-1}\) s\(^{-1}\), \( \gamma = 0.072 \) N m\(^{-1}\), respectively. Assuming that the capillary waves at the contact line are dominants and \( u_{\max} \) of the order \( \sim 1 \) m s\(^{-1}\), two simulations were performed using the boundary conditions of Eq. (10) and (16), two element sizes, i.e., \( h = 4 \times 10^{-5} \) m with 1085 elements, and \( h = 8 \times 10^{-5} \) m with 282 elements, as displayed in Fig. 10, and a time-step size of \( 10^{-5} \) s.

Fig. 11 shows the spreading profile within the first millisecond when the initial capillary wave propagation is dominating at the contact line and moving toward the free surface. The profile obtained numerically is in good agreement with the experimental profile\(^{19,76} \). Fig. 12 shows the spreading displacement, spreading rate evolution observed experimentally and predicted numerically with two element sizes, i.e., \( h = 4 \times 10^{-5} \) m with 282 elements, and \( h = 8 \times 10^{-5} \) m with 1085 elements. Numerical and experimental results are in very good agreement, and the two meshes provide very similar results, i.e., the numerical results are mesh independent. The initial contact line velocity reaches \( 1 \) m s\(^{-1}\), which corresponds to the predicted velocity regime for an impact or spreading droplet starting from rest\(^{35,56} \). Furthermore, the inertial regime characterized by the capillary waves\(^{19,77} \) is captured numerically. This can be verified based on the transition time interval, \( T_i \), formula between the inertial dominated regime, \( T_i \), and the viscous dominated regime, \( T_v \), i.e., \( T_v < T_i < T_r \), such that\(^{19,76,78} \):

\[
\left( \frac{\rho R^3}{\gamma} \right)^{0.5} < T_i < \left( \frac{\rho R^3}{\gamma} \right)^{0.5} \left( \frac{\rho g R}{\mu^2} \right)^{0.125}
\]

(31)

where \( T_i \) is the transition time interval between the inertial and the viscous regimes, \( \rho \) is the fluid density, \( R \) is the initial droplet radius, \( \gamma \) is the surface tension coefficient, and \( \mu \) is the dynamic viscosity. Eq. (31) implies that the inertial regime for a water droplet of radius 0.5 mm is in the range of \( T_i < 1.3 \) ms, after which the transition regime takes place. Finally, Fig. 11
shows that the spreading regime depends on the initial droplet radius, i.e., the smaller the droplet initial radius the faster the transition from inertial to viscous regimes, in agreement with Eq. (31).

2. Hydrophilic substrate

In this section, the numerical model is used to reproduce the experimental results obtained by Seveno et al.\textsuperscript{35} where squalane is allowed to spread over a silica substrate. The static contact angle of squalane on silica is 38.8°.

To reproduce this experiment the same initial and boundary conditions are used as in the previous case, as shown in Fig. 9. The initial droplet diameter is 0.0018 m and the physical properties of the fluid are $\rho = 810 \text{ kg m}^{-3}$, $\mu = 0.0314 \text{ kg m}^{-1} \text{s}^{-1}$, and $\gamma = 0.0311 \text{ N m}^{-1}$. The expected spreading rate is of the order $10^{-1} \text{ m s}^{-1}$. Assuming $u_{\text{max}} = 0.5 \text{ m s}^{-1}$, the capillary wavelength and corresponding mesh sizes are obtained by Eq. (18) and Eq. (20) as $\lambda = 1.5 \times 10^{-4} \text{ m}$ and $h = 7.510^{-5} \text{ m}$ with 1014 elements, respectively. Also, since $We > 1$ as per Eq. (17), the capillary wave propagation should be expected from numerical model. The time step is chosen as $\Delta t = 10^{-7} \text{ s}$, according to Eq. (24) covering the range of contact line velocities of the order $10^{-1} \text{ m s}^{-1}$.

Fig. 13 shows the contact angle evolution versus the contact line velocity, followed by the contact angle evolution versus time. The numerically predicted contact line velocity evolution is in agreement with measured experimental data (see Fig. 13(a)) and is proportional to the temporal evolution of the contact angle (Fig. 13(b)). Furthermore, the initial squalane droplet velocity on silica is of the order of $\sim 0.1 \text{ m s}^{-1}$ (Fig. 13(a)) as indicated by Seveno et al.\textsuperscript{35}. Both numerical and experimental results show that the contact line spreading is initially dominated by inertial effects, followed by a reduction of the contact line velocity, where viscous effects dominate. This observation is in agreement with Eq. (31), where the transition time interval between the inertial and the viscous regimes is predicted as, $4.3 \times 10^{-3} \text{ s} < T_t < 6.4 \times 10^{-3} \text{ s}$. In this time interval, the contact angle value varies between approximately 150° and 125°. Therefore, the numerical oscillatory behavior in this region, as shown in Fig.13(a), is hypothesized to be due to the transition between the inertial and the viscous regimes.

3. Droplet injection experiments

To further validate the proposed model, water injection experiments on hydrophillic (Kapton, static contact angle of 75°\textsuperscript{74}) and hydrophobic (PTFE, static contact angle of 108°\textsuperscript{73}) substrates were performed by the authors. In the experiment, water was injected from a small hole of 6.0 mm diameter in the substrate using a peristaltic pump at two constant flow rates, i.e., 5 µL/s and 10 µL/s. Three experiments were per-
formed: i) water injection at a rate of \( Q = 5 \) µL/s on Kapton surface, ii) water injection at a rate of \( Q = 5 \) µL/s on PTFE, and iii) water injection at a rate of \( Q = 10 \) µL/s on PTFE. The injection profile is displayed in Fig. 17. Two cameras, positioned perpendicular to each other, were used to capture the injection process as shown in Fig. 14. The spreading displacement were extracted from the recorded videos using built-in tracking feature of ImageJ\(^{79}\), where the spreading regimes were identified by tracking the contact line every 0.2 second. The contact angle measurements were extracted using the “B-Spline Snake” feature of the drop-analysis plugin of ImageJ\(^{80}\). “B-Spline Snake” feature measures the contact angle locally following a concept of polynomial fit. Therefore, an error of ±2.5° was taken into account when measuring the contact angle, as shown in Fig. 15(b) and Fig. 16(b).

In order to perform the numerical simulations, an initial droplet configuration with a volume of \( \approx 0.04 \) and \( \approx 0.2 \) µL and initial contact angle of 75° and 108° for Kapton and PTFE, respectively, are selected. Fluid density, viscosity and surface tension coefficient are set to \( \rho = 1000 \text{ kg m}^{-3}, \mu = 8.90 \times 10^{-4} \text{ kg m}^{-1} \text{ s}^{-1}, \gamma = 0.072 \text{ N m}^{-1}. \) Initial pressure in the liquid is set to \( p_0 = 0 \) Pa. The injection rates were of the order of micro seconds; hence, the average spreading displacement for this experiment was of the order \( 10^{-3} \) m s\(^{-1}\), as shown in Fig. 15(a) and Fig. 16(a), which yields \( We < 1 \). Accordingly, the capillary effect at the moving contact line is neglected compared to the dominant surface tension force. The time step and mesh size used for these simulations are chosen as \( \Delta t = 3 \times 10^{-3} \) s and \( h = 1.5 \times 10^{-4} \) m, respectively.

**Kapton**

Fig. 15 shows the experimental and numerical results. Experimentally, the data was collected using videos instead of high speed capturing cameras, therefore, the spreading rate and contact angle evolution could not be tracked accurately at the initial stage, i.e., for \( t < 0.1 \) s. Accordingly, a jump in the spreading radius and contact angle evolution was observed experimentally at the initial stage. Similarly, the initial injection rate causes an initial jump as well for the spreading radius for \( t < 0.1 \) s.

It was observed experimentally and numerically that the spreading rate decreased as the droplet volume increased. Furthermore, the contact angle showed an average increase of 15°. This increase is interpreted in term of the work of adhesion. In general, the work of adhesion increases as the hydrophobicity of the surface decreases\(^{81}\). Accordingly, higher energy is required to detach or separate a liquid from hydrophilic surfaces due to the strong bonding between the liquid and the substrate\(^{81}\). During the initial stage of the injection process, this work of adhesion partially withstands the effect of the induced Young’s stress as the droplet spreads towards its equilibrium contact angle. Hence, the contact angle increases as the injection process starts, i.e., from 75° to \( \sim 90° \), as shown in Fig. 15(b). The maximum errors between the experimental data and the numerical results for both spreading rate and contact angle temporal evolution are estimated to be about 10%, as shown in Fig. 15(a).

**PTFE**

Figure 16 shows the spreading radius and contact angle evolution as a function of time obtained experimentally and numerically. Experimental and numerical droplet radius are in excellent agreement at high injection flow rate, while at the lower flow rate the numerical results underpredict the spreading radius. The contact angle is nearly constant throughout both the experiment and simulation, as opposed to the case of kapton where there was a gradual increase in the contact angle. The average maximum errors of both injection rates was about 10%. The contact angle evolution for both injection rates were in good agreement as well, with a maximum variation of 3°, i.e., about 2.5% (Fig. 16(b)).
 FIG. 15. Water-kapton injection analysis and comparison: (a), spreading displacement evolution, and (b) contact angle evolution.

As in the case of kapton, an initial jump was observed experimentally and numerically for the spreading radius for $t < 20$ ms. Moreover, it is observed that the spreading rate decreased as the droplet volume increased. However, in the case of PTFE, the sessile droplet showed higher spreading rate at the initial stage due to the reduced work of adhesion between the liquid and substrate (hydrophobic substrate).

Fig. 16 shows a comparison between the experimental and simulated droplet profiles during injection. The model is capable of capturing the droplet profiles during the early stages of the process. After the droplet has grown substantially, predicted profiles show some disagreement with the experimental observations. It is hypothesized that the reason for the discrepancy is the lack of three dimensional information. The current 2D model neglects out-of-plane forces, which may play a significant role in determining the droplet shape and spreading rate.

FIG. 16. Water-PTFE injection analysis and comparison: (a), spreading displacement evolution, and (b) contact angle evolution.

FIG. 17. Initial and final sessile droplet profiles for: (a) water injected at flow rate of 5 µL/s on kapton substrate, (b) water injected at flow rate of 5 µL/s on PTFE substrate, and (c) water injected at flow rate of 10 µL/s on PTFE substrate.

IV. CONCLUSIONS

A PFEM-based model for the simulation of droplet spreading on solid substrates was presented. Appropriate dynamic boundary conditions at the solid-liquid interface and the contact line were identified to provide physically meaningful results in droplet spreading simulations. A Navier-slip boundary condition is applied at the liquid-solid interface excluding the contact line. At the contact line, an effective slip coefficient was introduced as a function of capillary effects, and the balance of stresses acting on the vicinity of the contact line.

The mesh size dependency of the solution was studied. First, the importance of the capillary wave propagation phenomena, and its numerical consequences in choosing the mesh size and time step were pointed out. Then, mesh-dependency studies were performed to show that the proposed dynamic
boundary conditions alleviate the mesh-dependency of the solution.

The proposed droplet spreading model was validated by comparison with experimental results for a variety of liquids on hydrophobic and hydrophilic substrates. Spreading rates and contact angle temporal evolution obtained numerically were in good agreement with the experimental data. The model was able to capture the early spreading regime and the inertial to viscous transition regimes.

The model was compared with micro sessile-droplet injection experiments for water on hydrophilic and hydrophobic substrates. The experimental and numerical results were again in good agreement. A three-dimensional model must be developed in the future to account for out-of-plane geometric and physical effects for the simulation of spreading, injection and other interfacial dynamic phenomena.

DATA AVAILABILITY STATEMENTS

The data that support the findings of this study can be provided upon request.

ACKNOWLEDGMENTS

We are grateful to Drs. Howard Stone, James Bird, and Shreyas Mandre for their permission to use Fig. 11(a) published in reference\(^\text{33}\). We thank the Reviewers for their feedback and constructive comments. EM is thankful to Dr. Ajay Prasad for the fruitful discussion about the effect of shear stresses on droplet spreading phenomena.

Compliance with ethical standards

Funding EM acknowledges the financial support by Jubail University College and the Royal Commission for Jubail and Yanbu of Saudi Arabia. MS and AJ acknowledge financial support from the Natural Science and Engineering Research Council of Canada (NSERC) Collaborative Research and Development grant: NSERC CRDPJ 445887-12 and NSERC Discovery grant. PR was supported by AMADEUS project (reference: PGC2018-101655-B-I00) funded by the Spanish Ministry of Science, Innovation and Universities. TC and AZW acknowledge financial support by the Fuel Cell Performance and Durability Consortium (FC-PAD), by the Fuel Cell Technologies Office (FTCO), Office of Energy Efficiency and Renewable Energy (EERE), of the U.S. Department of Energy under contract number DE-AC02-05CH11231.

Conflict of interest The authors declare that they have no conflict of interest.

APPENDIX A: ELEMENTAL CONTRIBUTION TO MATRIX ENTRIES

Eqs. 25 and 26 are assembled using the local matrices and vectors, with components defined as:

\[
M^ab = \rho \int_\Omega N^a N^b \, d\Omega \quad \Omega = \int_\Omega N^a N^b \, J(X) \, d\Omega \quad (A1)
\]

\[
L^{ab} = \int_\Omega \frac{\partial N^a}{\partial x_i} \frac{\partial N^b}{\partial x_i} \, d\Omega = \int_\Omega \frac{\partial N^a}{\partial x_i} \frac{\partial N^b}{\partial x_i} \, J(X) \, d\Omega \quad (A2)
\]

\[
G_i^{ab} = - \int_\Gamma \frac{\partial N^a}{\partial x_i}(X)N^b \, d\Gamma = - \int_\Gamma \frac{\partial N^a}{\partial x_i}(X)N^b \, J(X) \, d\Gamma \quad (A3)
\]

\[
f^a_i = \rho \int_\Omega N^a \delta_i d\Omega = \rho \int_\Omega N^a \delta_i J(X) \, d\Omega \quad (A4)
\]

\[
P^{ab} = \int_\Omega N^a \frac{\partial N^b}{\partial x_i} \, d\Omega = \int_\Omega N^a \frac{\partial N^b}{\partial x_i} \, J(X) \, d\Omega \quad (A5)
\]

\[
f^a_{\beta,\beta} = - \int_{\Gamma X} \gamma KN^a n d\Gamma_X = - \int_{\Gamma X} \gamma KN^a n J(X) \, d\Gamma \quad (A6)
\]

\[
f^a_{\beta,\Gamma} = - \int_\Omega \beta_{\beta \Gamma} u_i N^a d\Gamma_X = - \int_\Gamma \beta_{\beta \Gamma} u_i N^a J(X) \, d\Gamma \quad (A7)
\]

\[
f^a_{\Gamma,\Gamma} = - \int_{\Gamma X} \beta_{\Gamma \Gamma} u_i N^a d\Gamma_X = - \int_{\Gamma X} \beta_{\Gamma \Gamma} u_i N^a J(X) \, d\Gamma \quad (A8)
\]

where \(N^a\) represents the standard finite element shape function at node \(a\), and the index \(i\) is used for the spatial components. The present model is based on the updated Lagrangian formulation (ULF), and therefore the integration domains in Eqs. (A1)-(A5), \(\Omega\), correspond to the updated configuration. The transformation between the reference configuration, \(\Omega\), and the updated one is performed using the Jacobians \(J(X)\) and \(J_\Gamma(X)\).

APPENDIX B: SOLUTION ALGORITHM

Given a known configuration \(X_0\), velocity \(\bar{v}_n\), and pressure \(\bar{p}_n\), at time \(t_n\), the procedure for obtaining the values of these variables at the next time step \(t_{n+1}\) is summarized in Algorithm 1. A complete general algorithm, including a two-phase flow model, can be found in reference\(^{37}\).

APPENDIX C: IMPLEMENTATION

The numerical method was implemented within Kratos Multi-Physics version 6, a C++ object oriented FE open-source framework\(^{32}\). For droplet spreading, the experimental data found in reference\(^{35,33}\) was extracted using WebPlotDigitizer software\(^{83,84}\).

REFERENCES

Algorithm 1: Simulation algorithm of the liquid phase problem using a PFEM formulation.

1. for $t = t_{n+1}$ do
2.   Current configuration is the known configuration, such that $X_{n+1}^k = X_n$;
3.   for nonlinear iteration $k$ do
4.     Obtain curvature at $X_{n+1}^k$;
5.     Update discrete operators in Eqs. (A1)-(A5);
6.     Compute $\mathbf{p}_{n+1}^k$, $\mathbf{f}_{n+1}^k$, $\mathbf{F}_{n+1}^k$, and $\mathbf{F}_{n+1}^k$ using Eq. (A6), Eq. (A7), and Eq. (A8), respectively;
7.     Solve system of equations for liquid phase, Eq. (29);
8.     Update both velocity and pressure, such that:
9.     $\mathbf{v}_{n+1}^k = \mathbf{v}_{n+1}^k + \delta \mathbf{v}$ and $p_{n+1}^k = p_{n+1}^k + \delta p$;
10.    Update configuration, such that:
11.   $X_{n+1}^k = X_{n+1}^k + \Delta t \cdot \delta \mathbf{v}$;
12.   Remesh;
13. end


