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Abstract: The economic and health impacts resulting from the greenhouse effect is a major concern in
many countries. The transportation sector is one of the major contributors to greenhouse gas (GHG)
emissions worldwide. Almost 15 percent of the global GHG and over 20 percent of energy-related
CO2 emissions are produced by the transportation sector. Quantifying GHG emissions from the road
transport sector assists in assessing the existing vehicles’ energy consumptions and in proposing
technological interventions for enhancing vehicle efficiency and reducing energy-supply greenhouse
gas intensity. This paper aims to develop a model for the projection of GHG emissions from the road
transport sector. We consider the Vehicle-Kilometre by Mode (VKM) to Number of Transportation
Vehicles (NTV) ratio for the six different modes of transportation. These modes include motorcycles,
passenger cars, tractors, single-unit trucks, buses and light trucks data from the North American
Transportation Statistics (NATS) online database over a period of 22 years. We use multivariate
regression and double exponential approaches to model the projection of GHG emissions. The results
indicate that the VKM to NTV ratio for the different transportation modes has a significant effect
on GHG emissions, with the coefficient of determination adjusted R2 and R2 values of 89.46% and
91.8%, respectively. This shows that VKM and NTV are the main factors influencing GHG emission
growth. The developed model is used to examine various scenarios for introducing plug-in hybrid
electric vehicles and battery electric vehicles in the future. If there will be a switch to battery electric
vehicles, a 62.2 % reduction in CO2 emissions would occur. The results of this paper will be useful in
developing appropriate planning, policies, and strategies to reduce GHG emissions from the road
transport sector.

Keywords: transport systems; greenhouse gas emissions; multivariate regression; double exponential
smoothing; climate change

1. Introduction

The greenhouse effect is a major concern in many countries. This is due to the high degrees of
GHGs emissions released into the atmosphere [1]. One of the contributors to GHG emissions is the
emissions from the transportation sector. The growing number of cars and trucks has triggered an
incredible rise in GHG emissions. In 2007, 23% of the worldwide GHG emissions came from the
transportation sector with 73% of it coming from the road transportation sector [2].

The transport services sector has witnessed a rapid rise in the past four decades, with the continuous
increase in carbon dioxide CO2 emissions from this sector becoming an important worldwide issue.
According to the International Transport Forum [3], CO2 emissions from the road transport sector
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represent 30% of the overall carbon dioxide emissions from fossil fuel burning. The transport sector
accounts for around 15% of total GHG emissions. Moreover, there was a 45% increase in global CO2

emissions from 1990 to 2007. This continuing rise in CO2 emissions from road transport is an immense
challenge for road authorities and governments [3].

Since 2008, GHG emissions from the transport sector have begun to diminish. Despite this trend,
in 2012, the transport sector’s emissions were still 20.5% above 1990 levels and needed to decrease by
67 percent by 2050 to meet the 2011 Transport White Paper target of 60 percent of 1990 emissions [4].

Currently, globalization, GHG outflows, energy concerns, vehicle innovations, and development
of enhanced statistical modeling techniques provide an opportunity to revisit total vehicle miles
travelled, energy utilization and GHG emissions predictions for passenger transport [5].

Most recently, there has been growing concern about the implications of GHG emissions from the
transportation sectors. As a result, strategies and policy measures are being developed to reduce GHG
emissions around the world [6].

Several options are put forward to forecast GHG emissions. However, the validity of these
methods has been affected by the non-consideration of non-linear variables in the model. Also, the
quantity of emissions generated from road traffic is dynamic and uncertain [7]. Due to this complex
and uncertain interaction of variables contributing to GHG emissions, the inclusion of non-linear
variables is important for the forecast of GHG emissions to improve the model’s predictions.

Modelling environmental data is a complex task because of the underlying correlation between
multiple variables. Therefore, studies are being conducted to improve the forecast for GHG emissions.
In the literature, several methods have been proposed to forecast GHG emissions. Usually, historical
data are important for the development of those models. The majority of the forecasting methods aim
at improving the accuracy of the results [1].

The latest research has been typically inclined to focus on the influences of GHG emissions towards
the environment [8]. Most of the studies attempted to propose policies which can be implemented
to reduce GHG emissions. These policies usually target the road sector, consisting of activities such
as fiscal measures that include automotive and fuel taxes. Other policies involve seeking voluntary
consensus with vehicle companies so that they can work towards a reduction of energy consumption
by cars and trucks. Likewise, policy on targeted campaigns that encourage people to purchase
fuel-efficient vehicles has been also suggested. Further, the introduction of vehicle usage charges
for the reduction of CO2 emissions by encouraging efficient use of the vehicles has been proposed.
The impacts of several other factors which include vehicle energy consumption, fleet demand and load
can be forecasted and evaluated through quantitative modelling [9]. Most of these models make use of
a “bottom-up” or a “top-down” method, which lead to similar results, measured as cost-efficiency
per ton of CO2 reduced [9]. The bottom-up modelling tools are developed from micro-level data
(for example, a fuel/energy efficiency model developed from disaggregated information of the vehicle
stock). In contrast, top-down models are based on equations capturing historical relationships between
macroeconomic parameters (for example, a top-down fuel/energy use model would be developed
using macroeconomic equations) that estimate the demand for fuels or energy consumption from roads
transport [10]. Having said that, modelling tools that forecast CO2 emissions have many constraints.
In particular, the unavailability of detailed data is a big constraint (e.g., fuel/energy consumption per
vehicle, average annual distance travelled). Likewise, the use of many equations to satisfy various
assumptions has also been a challenge. Moreover, such equations are sometimes difficult to use
effectively due to the rigidity of the methodology and assumptions [9].

Objective and Scope of Study

This paper aims to develop a multivariate linear regression and double exponential smoothing
model for the projection of GHG emissions from the road transport sector in the North America
region. We used the ratio between the number of transportation vehicles (NTV) and vehicle kilometers
travelled (VKT). The ratio considers the six modes of transport: light trucks, tractors, motorcycles,
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passenger cars, buses and single-unit trucks. The proposed approach will enable researchers and
planners to calculate the GHG generated from the road sector and will assist in developing appropriate
measures towards travel demand management and introducing clean vehicle technologies. A review
of the related literature reveals that there is a lack of study that has examined the GHG emissions from
the road transport sector considering the VKT and NTV ratio for different modes of road transport.

The structure of the paper is as follows. Part 2 provides a literature review, followed by the research
methodology in Part 3. Part 4 presents the results obtained from a multivariate linear regression
model and double exponential smoothing models to predict GHG emissions. The final part presents
recommendations for future research and conclusions.

2. Literature Review

Emission variables in the transportation field have been considered in several studies in the
literature. These variables are generally influenced by the transport routes, distance travelled, age and
size of the vehicles [11].

In the literature, various approaches have been proposed by the researchers to forecast GHG
emissions. These approaches can be classified into five main categories: time series study, decomposition
analysis, regression analysis, bottom-up method and system optimization tool.

Saboori et al. [12] applied time series analysis to examine the nexus between the emissions of CO2

from the transport sector and the economic growth of OECD countries. Forecasting the CO2 emission
trends from the vehicles, vehicular energy intake and population to improve management of CO2

emissions have been a recent focus in Taiwan [13]. Meyer et al. [14], present a demand analysis of
passenger vehicles in 11 regions and the associated CO2 emissions.

Likewise, Tokunaga and Konan [15] and Konur [16] used panel data to provide estimations of
CO2 from the transportation sector. Tolón-Becerra et al. [17] focus on the emission reduction targets
of EU countries. A study found a relationship of a co-combination of fuel price (FP) and pay per
capita on transport fuel consumption (FC) [18]. Also, the relationship between CO2 discharges and
vitality utilization have been highlighted in the literature [18–22]. Begum et al. [23] examined the
implications of GDP, FC and population on the emissions of CO2. Several recommendations were put
forward by Ivy-Yap and Bekhet [24] that have the potential to reduce CO2 emissions such as the use
of low-carbon technologies. Additionally, Talbi [25] used the Vector Autoregressive (VAR) model to
investigate the impact of energy consumption, economic growth, urbanization and fuel rate on CO2

emissions. The influencing factors for the changes in CO2 emissions from the transportation sector
were also further analyzed. Magazzino et al. [26] used the time series analysis and a Machine Learning
approach to develop a relationship between municipal waste generation, GDP, and GHG emissions.

The growing CO2 emissions can influence changes in modal shift, fuel mix, economic growth,
transport energy intensity, and emission coefficients. Using a decomposition method, Timilsina and
Shrestha [27] found that transportation energy intensity and economic growth are the major variables
for CO2 emissions. Furthermore, economic growth roles in the contribution of CO2 emissions in
ASEAN-5 and EU27 economies have been established [28,29].

Lakshmanan and Han [30] applied decomposition analysis and found that population and GDP
were the main causes of CO2 emissions in the transport sector. Further, Logarithmic Mean Division
Index (LMDI) and Kaya Identity approaches were used by Li [31] to estimate the CO2 emissions of
urban freight, identify key parameters of emissions change, and to use those parameters to predict
CO2 emissions from the transport sector. Likewise, a multivariate generalized Fisher index (GFI)
decomposition model based on the extension of Kaya Identity was built by Fan and Lei [32] to estimate
the influence of the energy structure, energy intensity, per unit traffic turnover, transportation intensity,
economic growth and population size on carbon emissions in the transportation sector of Beijing.

By using regression analysis, Sadorsky [33] investigated the connection involving GDP, salary,
urbanization, and vitality demand and discovered that CO2 emissions could be reduced by shifting to
renewable energies. While high CO2 emissions are accumulated in dense road network (e.g., cities
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with high population density), low CO2 emissions are distributed in low population density areas
with scattered road networks (e.g., rural areas) [34]. Alhindawi et al [35,36] identified the main factors
of GHG emissions for the roads sector using the ratio between vehicle-kilometers and number of
transportation vehicles for six transportation modes. Likewise, Xu et al. [37] found the influence of
vitality structure, population, vitality intensity and GDP on CO2 emissions. GDP was found out to be
the main factor for CO2 emissions, followed by the vitality structure and population. Friedrich and
Trois [38], through a combination of regression analysis and life cycle assessment approach, estimated
the GHG emissions for solid waste management. They used specific emission factors for various waste
management processes and included upstream, downstream and operational GHG emissions. To
study the relationship between road transport energy consumption, transport CO2 emissions, and
economic activity in Saudi Arabia, the autoregressive distributed lag (ARDL) approach was used by
Alshehry and Belloumi [39]. The impact of GDP, energy intensity, carbon intensity, and total population
on carbon dioxide emissions in China’s transport industry was investigated by Lin and Benjamin [40].
They used the quantile regression analysis and found that rather than urbanization, it is the GDP,
energy intensity, and carbon intensity that have a greater impact on carbon emissions. Danish et al. [41]
applied autoregressive distributive lag (ARDL) and vector error correction model (VECM) to examine
the relationship between transport energy consumption, economic growth and CO2 emissions to
account for the effect of Foreign Direct Investment (FDI) and urbanization. The results also showed
a significant impact of transport energy consumption on CO2 emissions from the transportation
sector. Van der Zwaan et al. [42] conducted a study on CO2 emissions of transport divisions and the
decarbonization strategies in Europe. In Italy, strategies have been developed through COPERT III
methodology in the analysis of road transport emissions [43]. This method was also used to study
vehicles emissions in urban areas [44–46]. A multi-model, a time series and bottom-up approaches,
were used by Paladugula et al. [47] to estimate the energy consumption and emissions from India’s
transportation sector. In the literature, many optimization models have been proposed to forecast CO2

emissions and recommend solutions to reduce CO2 emissions. Several studies have utilized linear
programming models to investigate the benefits of energy choices that can assist in the reduction of
CO2 emissions by industries [48–50]. Furthermore, a mixed-integer model has been recommended
by Hashim et al. [51] that further sheds light on the effects of fuel switching and balancing on power
generation. Their study shows that shift to fuel efficiency is one of the most effective choices to reduce
CO2 emissions. This was supported by other research that used mixed-integer linear programming for
waste to vitality to ensure costs reductions were related to CO2 emissions and electricity generation [52].
Güzel and Alp [53] examined the impacts of the transport sector on climate change in Istanbul.

Generally, after a period of time, the road transport sector’s GHG outflows demonstrate a
pattern [54]. Therefore, through the use of statistical forecasting techniques, researchers and planners
can anticipate future outflows. Brown [55] and Brown and Meyer [56] pioneered the double exponential
smoothing (DES) method to predict the variety of a noise, and a trend for forecasting. This technique
has since been advanced by Goodman [57], Gardner [58] and Gijbels et al. [59] for various applications.
For example, Goodman [57] made a remaining examination to upgrade the appraisal of the exactness of
DES models, while Gardner [58] developed a general exponential smoothing technique that considers
regularity. Likewise, Gijbels, Pope and Wand [59] added knowledge to the existing exponential
smoothing hypothesis by using a DES model inside a nonparametric regression structure.

There are various studies which have demonstrated the use of DES models in different fields which
include ecological contamination. For instance, a DES model was used in South Korea to anticipate
the arrangement of ozone and how it contributes to air pollution [60]. In England, a DES model was
used to gauge power request and help in minimizing the regular effects which are associated with
the utilization of power [61]. In China, a DES model was used in the creation of an indicator for the
indication of defilement of stream water [62]. Furthermore, a DES model was used in the assessment
of CO2 contamination by urban traffic roads [63]. In the US, a DES model was used to look to assess
the diminishing pattern of CO2 emissions as well as performing forecasts [54].
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This section provided a comprehensive review of the tools, methods and factors used for the
forecast of GHG emissions. Tables 1 and 2 provide a summary of the methodology adopted in the
existing literature to predict GHG emissions in various industry sectors. Table 1 shows the pros
and cons of different forecasting approaches. Table 2 shows the summary of models used in the
transport sector along with the regions where those studies have been conducted. As can be seen,
linear regression analysis and DES models have been less examined, particularly for predicting GHG
emissions from the road transportation sector. Therefore, by considering linear regression analysis and
DES models, the present study will contribute towards the modelling of GHG emissions estimation
and thereby identify critical factors that impact GHG emissions from the road transport sector.

Table 1. Comparison of Advantages and Disadvantages of Different Forecasting Approaches (Source:
Authors’ synthesis).

Techniques Pros Cons

Bottom-up
approach

� Able to determine a standard end-use
energy use

� Encompasses occupant behaviors
� Detailed data files not necessary (only billing

knowledge and simple study information)
� Simple to produce and apply

� Relies on past usage data
� Limited ability to measure the effect of

retrofitted or new solutions
� Presents a lesser number of data and

reduced flexibility
� Needs a large sample size
�Multicollinearity

Decomposition
models � It is simple to comprehend � A cycle element is required to be input by the

forecaster as it is not estimated through the tool.

System
optimization

� Can be easy to use
� Have a small number of variables to modify
� Capable to function parallel calculation

� Is usually effective

� Can be difficult to define initial
design parameters

� Cannot work out the problems of scattering

Time series analysis

� It is a powerful technique for prediction as it
considers the seasoned patterns.

� Utilizes past behaviour for predictions. It
assists to examine the current functioning of the

series by utilizing past data.
� Assists in comparing the performance of two
different series of a different type for the same

duration.

� It is expensive considering that predictions are
dependent on the past data designs that are used

to anticipate the future market action.
� Results may not be perfect.

� The many variables that altered the Variances
of a series cannot be perfectly adjusted.
� The different variables which affect the

timeline may not be static for a longer period,
and so the prediction may not be accurate.

Regression analysis � Simple to apply and understand The calculation process may be cumbersome.

Double exponential
smoothing

� It is easy to learn and implement.
� The accuracy level for forecasts is usually high

� It gives more significance to recent
observations and weights them accordingly.
� The spikes in the data aren’t quite as

detrimental to the forecast as previous methods.

� It limits our ability to forecast demand
using seasonality.
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Table 2. A Summary of Literature Outlining the Methodology Adopted for GHG Emissions from the Transport Sector (Source: Authors’ synthesis).

Author/Year Sector Country Time Period Methodology/Approach

Lakshmanan and Han (1997) Transport USA 1970–1991 Decomposition

El-Fadel et al. (1999) Transport Lebanon forecast 1997–2020
Automobile Emission Inventory MVEI, Intergovernmental Panel at

Climate Modify IPCC, Motor Vehicle Emission Selection MVEI,
Intergovernmental Board on Climate Improve IPCC

Singh et al. (2008) Transport India 1980–2000 Time series

Kamarudin et al. (2009) Transport Malaysia - Linear programming

Timilsina and Shrestha (2009) Transport Asian countries 1980–2005 Decomposition

Sultan (2010) Transport Mauritus - Time series, Autoregressive distributed lag (ARDL) approach

Borjesson and Ahlgren (2012) Transport Sweden 1995–2051 Linear programming

Shu and Lam (2011) Transport Louisiana 2002-2006 Multiple regression model

Wang et al. (2011) Transport China 1995–2007 Decomposition

Chandran and Tang (2013) Transport ASEAN 1971–2008 Johansen co-integration, Granger causality, Vector error correction
model VECM

Ackah and Adu (2014) Transport Ghana 1971–2010 Time series

Choi et al. (2014) Transport USA 1960–2011 Double exponential smoothing

Xu and Lin (2015) Transport China 2000–2012 Regression analysis

Mustapa and Bekhet (2015) Transport Malaysia 1990–2013 Multiple regression model

Alhindawi et al. (2016) Transport USA 1990–2012 Multiple regression model

Fan, F., & Lei, Y. (2016) Transport Beijing 1995–2012 Decomposition

Alshehry et al. (2017) Transport Saudi Arabia 1971–2011 Granger causality, Autoregressive distributed lag (ARDL) approach

Talbi, B. (2017) Transport Tunisia 1980–2014 Time series, Vector autoregressive (VAR) model

Lin, B., & Benjamin, N. I. (2017) Transport China 1980–2010 Regression analysis

Danish et al. (2018) Transport Pakistan 1990–2015 (ARDL) approach and VECM model

Paladugula, A. L. et al. (2018) Transport India up to 2050 Multi-model approach

Stephane el al. (2019) Transport India 2015–2050 Bottom-Up approach

Alhindawi et al. (2019) Transport USA 1990–2012 Adaptive Neuro-Fuzzy Technique

Güzel and Alp (2020) Transport Istanbul 2016–2050 Linear programming model
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3. Model Development

Although there are various methods in the literature to forecast GHG emissions, there are
differences in their scope and assumptions as they depend on data gathered from various countries.
This may lead to variations in the results obtained. Although Alhindawi et al. [35] used a Multivariate
Regression Model to forecast GHG emissions, its performance has not been compared with other
similar methods such as the double exponential model. Further, the applicability of such forecasting
tool in scenario analysis was not examined in Alhindawi et al. [35]. Therefore, in this study, the
emphasis has been on a general robust approach which can be used in analysing and identifying
various factors that influence the GHG emissions and developing a forecast of GHG emissions from
the road transport sector. Further, we conduct scenario analysis by examining the effect of introducing
plug-in hybrid electric vehicles and battery electric vehicles in the future in terms of greenhouse gas
emissions reduction. The study process is comprised of two sections:

1. A multivariate linear regression analysis (MRA).
2. A double exponential smoothing model (DES).

This model is constructed based on both NTV and VKT historical data which spans over a period
of 20 years from the North America region.

To develop a good MRA model which can be used in GHG emissions forecasting, each variable
needs to have a predicted value. In this paper, a forecasting tool which was based on the DES technique
was used in generating these predicted values. The DES method has been highly recommended in the
handling of historical data by Sullivan and Claycombe [64], Hyndman et al. [65] and is, therefore, a
suitable tool in this study.

3.1. Variables

3.1.1. Vehicle Kilometres by Mode (VKM)

The efficiency of a vehicle fleet in terms of its activity or the volume of traffic is expressed as vehicle
kilometers by mode (VKM). In transport planning, VKM is commonly used for estimating vehicle
emissions. Also, VKM can inform decision making and policies such as infrastructure investment
decisions and road safety policy. Therefore, accurate VKM estimations are critical [66].

3.1.2. Number of Transportation Vehicles (NTV)

This study includes various categories of vehicles including light trucks, tractors, combination
trucks as well as passenger cars [66]. An increase of NTV will result in higher GHG emissions.

3.2. Data Sources

The researchers collected the historical data used in this study on Vehicle-kilometers by Mode
(VKM) and Number of Transportation Vehicle (NTV) of road transport, 1990–2012, from the official
data source of the North American Transportation Statistics (NATS) online database [67]. These data
are utilized to build the regression model and to forecast the GHG emissions using the estimation from
a double exponential smoothing model. Table 3 shows the complete set of the data used in this study.
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Table 3. Data Set for the Model (Ratio (Vehicle-Kilometers Travelled by Mode (Millions of
Vehicle-Kilometers)/Number of Transportation Vehicles (Equipment)).

Year * GHG
Emissions

Ratio (Vehicle-Kilometres by Mode (Millions of Vehicle-Kilometres)/Number of
Transportation Vehicles/Equipment)

Passenger
Cars Motorcycles Light Trucks Bus Single-Unit

Trucks Tractor

1990 1,235,100 16,951.2 3611.02 19,154.65 14,697.27 18,615.41 88,845.13
1995 1,352,700 18,029.19 4045.73 19,340.74 15,072.14 20,087.7 109,567.97
1996 1,388,200 18,234.27 4123.62 19,007.95 15,201.91 19,580.98 109,556.01
1997 1,416,900 18,637.02 4240.05 19,496.62 15,785.29 20,337.56 112,012.62
1998 1,461,200 18,915.58 4265.81 19,589.92 15,760.13 19,088.13 103,424.3
1999 1,511,800 19,068.06 4101.93 19,242.62 16,920.13 19,633.12 105,025.63
2000 1,521,500 19,273.95 3876.61 18,783.83 16,371.25 19,145.87 103,640.19
2001 1,527,400 19,028.74 3161.7 18,019.17 15,179.82 20,427.1 102,001.97
2002 1,562,500 19,636.86 3071.85 18,287.93 14,481.08 21,607.19 98,071.69
2003 1,571,300 19,833.21 2869.81 18,163.64 14,054.47 21,394.12 118,171.31
2004 1,604,400 20,052 2824.23 17,998.3 13,762.55 20,489.92 113,972.05
2005 1,612,100 20,132.35 2701.72 17,573.58 13,919.78 19,753.29 111,076.55
2006 1,609,800 20,093.44 2903.45 17,574.81 13,281.68 19,445.7 105,453.36
2007 1,614,100 17,236.04 4823.72 24,091.42 27,996.16 23,788.94 112,486.14
2008 1,540,100 16,560.69 4319.92 24,552.89 28,287.41 24,632.22 114,434.35
2009 1,500,100 16,704.39 4221.33 24,521.05 27,443.22 23,142.86 103,211.24
2010 1,509,000 17,144.27 3711.09 24,895.69 26,239.55 21,684.42 110,940.84
2011 1,489,900 17,089.15 3575.54 23,499.82 33,315.12 21,314.6 107,497.11
2012 1,487,100 18,128.56 4053.84 19,121.97 31,059.15 20,623.94 106,475.9

* This varies depending on the data. Generally, the data includes 1990, 1995–2012.

3.3. Data Limitations

NTV data are based on information collected by the Department of Transportation in the U.S.
The vehicle categories include passenger cars, light trucks and combination truck tractors. Data for
light trucks include pick-up trucks, vans and sport utility vehicles. Combination truck tractors were
categorized under “tractors”. Passenger cars include taxis. Buses include local motor buses [67].

Passenger cars, light trucks and motorcycles are included in the VKM data. In 1997, the Department
of Transportation in the U.S. updated the VKM data on the highway mode for several years. The main
change included the relocation of some vehicles from the passenger car category to the light truck
category [67].

The discontinuities in the data set as stated above may lead to some errors in the regression
model’s estimation. However, when a detailed good data set is available, the generality of the proposed
method and the results obtained in this study could be further examined in the future.

3.4. Regression Analysis and Double Exponential Model

Regression analysis has been generally used in the examination of multifaceted information which
is achieved through the creation of mathematical statements that shows how a response is related to a
set of independent variables or predictors. GHG emissions are used as the response variable in this
model. The VKM to NTV ratios for the six transportation modes are used as the causal variables in
this study. These modes are depicted as follows; Light Trucks (LT), Passengers Cars (PC), Tractors (T),
Motorcycles (C), Single Unit Truck (SUT) and Buses (B). It should be noted that there could be other
several causal variables, but due to data unavailability, only the above parameters were considered in
this study. Additionally, aggregated data analysis has been conducted by the researchers rather than
carrying out a disaggregation of data into multiple modules of transport. In order to avoid the average
squared residual which is associated with a recent one-step-ahead during forecasting, exponential
smoothing is done by specifying a smoothing factor. According to Hyndman et al. [65] and Sullivan
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and Claycombe [66], the equation and formula which are used in double exponential forecasting are as
shown below(Equations (1)–(6)):

Ft+m = at + btm (1)

where:

• Ft+m is the forecast’s representation after the performance of m of periods.
• at depicts the forecasted intercept while bt is the forecasted slope.
• The intercept at and the slope bt are approximated as shown in Equations (2)–(4):

at = 2S′t − S′′ t (2)

bt =
α

1− α
(S′t − S′′ t) (3)

0 ≤ α < 1 (4)

α is the smoothing constant which is used when weighing the past and current observations and
it lies in this range; 0 < α < 1. When the value of α is less than one it is considered to have less of a
smoothing effect, and this gives a greater weight the latest changes that have taken place in the
data. When the value of α is closer to 0 it is concluded that it has a greater smoothing effect hence
it becomes less responsive to changes that have been conducted recently. The selection has no
specific formal procedure which is correct for DES and single values for time Xt, and t respectively.
The values S′t and S′′ t are computed using the formula shown below in Equations (5) and (6).

S′t = αXt + (1− α)S′t−1 (5)

S′′ t = αS′t + (1− α)S′′ t−1 (6)

On the other hand, when α is higher it means that more weight has been given to the current
observations which are most recent. Before one runs a model, one needs to choose α first. This is
followed by a computation of forecasts which is achieved by the use of a variety of α values. The value
which results into a small mean squared error during the calculations is concluded to have shown the
expected future growth. Besides the selection of α value approximates, S′t−1 and S′′ t−1 values should
be assumed with the values of t = 1 since there are no values that exist at that period. This is achieved
after consideration of the equality of both values when compared with the original set of historical
data [64,65].

4. Results and Discussions

This section brings out a presentation and discussion of the main results which have been obtained
after carrying out an analysis of a multivariate regression of the GHG emissions model.

4.1. Regression Analysis Results

Minitab software was used in the analysis of this regression. It was also used together with the
application of an Analysis of Variance (ANOVA) test to check the significance of the multivariate linear
regression model.

Results which were obtained after conducting this analysis have been presented well in Table 4
below. All coefficients together with their expected signs have been well indicated. The negative
sign shows that the predicted value of the dependent variable will be a value which is less than zero
with a condition where the predictor values used are set to 0. This should always be the expectation
in cases where the dependent variable has a negative mean value. It is worth noting that it is the
overall and general relationship among variables which forms one of the most significant parts of the
regression model.
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This section utilizes some of the aforementioned six modes of transportation which are abbreviated
as passenger cars (PC), light trucks (LT), single unit trucks (SUT), buses (B), motorcycles (M) and
tractors (T). After standardization of all coefficients, PC has been established to have the largest absolute
value and then it is followed by LT, B and SUT respectively. Hence, PC is established as the most
important variable in this study. To establish the importance of the variable in a given model, an
estimation of the p-value is carried out. In this study, the p-values have been established and presented
in the table as shown below. Consideration was given to the variables that had a p-value of less than
0.05. The output below shows predictor values for LT, B, PC and SUT since their p-values fall within
the range of 0.0–0.05. The p-values for the Tractors and Motorcycles were 0.317 and 0.693 respectively.
Hence, they were excluded from the model.

Table 4. Regression Outputs for the GHG Emissions.

Variables Coefficient * p-Value Variation Inflation Factors (VIF)

Constant −1,883,486 0.000
Passenger cars (PC) 121.5 0.000 4.11

Light trucks (LT) 23.99 0.009 7.60
Bus (B) 5.69 0.011 3.22

Single-unit trucks (SUT) 26.34 0.004 2.70

Note: *: R2 = 90.8%, Adjusted R2 = 89.46%, Predicted R2 = 84.88%. Where, R2 is the percentage of the response
variable variation which shows how close the data fits the regression line, and adjusted R2 compares the explanatory
power of regression models that contain different numbers of predictors.* Coefficients are important at the 0.05 level.

4.2. Model Adequacy Check

To ensure verification of the multivariate linear regression model, it is important to ensure that
adequacy of the model has been checked. Regression analysis involves the use of an ANOVA tool that
tests the importance and validity of the model. This is carried out based on some few assumptions.
These include the residuals having an even distribution and a constant variance. These assumptions
are validated using a graph which analyzes the residuals. To determine whether a small set of data
are part of a given normal distribution, a plot showing normal probability is made. Since the straight
line represents data points, it is concluded that the distribution is normal. This is well depicted in
Figure 1a. The assumptions are checked further by plotting a residual vs fitted values as shown in
Figure 1b. According to these plots, a constant variance has been associated with errors. This has
led to the dispersion of the residuals being around zero. For instance, an increase or decrease of
residuals in a pattern with the fitted values leads to errors which do not have a constant variance.
This plot has points which seem to have a random dispersion around zero and this brings forward
an idea suggesting the error has a mean of 0 which is reasonable. The fitted values do not appear to
increase or decrease as a result of the vertical width of the scatter plot. Hence, the variance of the error
is assumed to be constant [68]. Therefore, this analysis demonstrates satisfactory results which fall
within the horizontal band. Secondly, in this model, there was no detection of influence or leverage
points. Thirdly, multicollinearity was also not detected in this model. When large Variation Inflation
Factors (VIFs), usually larger than 10, are detected, this means that there was a poor estimation of the
regression coefficients. This is normally caused by near-linear and multicollinearity dependencies
among the regression variables which leads to outcomes which are misleading. In this study, variables
which have VIF that is less than 10 has been demonstrated in Table 4. These results can be translated to
indicate the non-existence of multicollinearity in this model. Fourthly, the model points represent the
behavior of its data adequately as the coefficient of multiple determinations (R2), the adjusted R2 and
the predicted R2 statistics are 91.8%, 89.46%, and 84.88% respectively.

Finally, the contribution of each vehicle category towards emissions of GHG is depicted by the
last model (Equation (7)). Based on tests conducted previously, it can be concluded that the proposed
model represents data accurately and has no violations towards the main assumptions. The equation
for this model is as shown below in Equation (7).
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GHG Emissions = −1, 883, 486 + 121.5 Passenger cars + 23.99 Light trucks + 5.69 Bus +
26.3 Single− unit trucks

(7)

For example:

GHG Emissions (1990) = −1,883,486 + (121.5 × 16,951.2) + (23.99 × 19,154.7)
+ (5.69 × 14,697.27) + (26.34 × 18,615.41) = 1,209,563

The Error% (1990) = Predicted value − Actual value
Actual value × 100% = 1,209,563 − 1,235,102

1,235,102 × 100% = 2.06%
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By application of Equation (7), there has been calculation of percentage error in order to draw
a comparison between GHG real value and expected value. This has given a result value of 1.48%
percentage error (Table 5).

Table 5. Error Calculation.

Year
Greenhouse Gas Emissions

Error%
Actual Predicted

1990 1,235,100 1,209,562 2.07
1995 1,352,700 1,385,915 2.46
1996 1,388,200 1,390,240 0.15
1997 1,416,900 1,474,145 4.04
1998 1,461,200 1,477,176 1.09
1999 1,511,800 1,508,326 0.23
2000 1,521,500 1,506,378 0.99
2001 1,527,400 1,485,209 2.76
2002 1,562,500 1,592,651 1.93
2003 1,571,300 1,605,486 2.18
2004 1,604,400 1,602,625 0.11
2005 1,612,100 1,583,690 1.76
2006 1,609,800 1,567,259 2.64
2007 1,614,100 1,574,545 2.45
2008 1,540,100 1,527,430 0.82
2009 1,500,100 1,500,092 0.00
2010 1,509,000 1,517,261 0.55
2011 1,489,900 1,507,596 1.19
2012 1,487,100 1,497,831 0.72

1.48

Application of the DES model, which was described in Equation (1), can be used to calculate GHG
emissions forecasted variables over a long period of time which could even be from 1990–2060. This is
made possible by the use of smoothing constants (α’s) as depicted in Table 6. By using a predicted
period of 1990 to 2012, the resulting variables have been used in the calculation of percentage error of
projection, which is depicted in Table 7.

Table 6. Smoothing constants (α’s) for the different variables.

Transportation Mode α%

Passenger cars 1.2359
Light trucks 1.2195

Bus 0.8210
Single-unit trucks 1.1328

Table 7. The Projection Error % for the Different Variables.

Transportation Mode Error%

Passenger cars 2.39
Light trucks 5.04

Bus 7.73
Single-unit trucks 4.95

GHG error 1.94

A summary of GHG emissions predictions has been made using the DES technique as shown
in Figure 2. It has been predicted that by the year 2060, GHG emissions could rise to a figure
around 2,957,400 K Metric Tons (Scenario 1). This increase is expected due to the increased modes of
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transportation. According to the Union of Concerned Scientist nationwide [69], GHG emissions for
battery electric vehicles, the plug-in hybrids and gasoline vehicles are 144, 204 and 381 as depicted in
Table 8. These figures are measured in terms of grams of CO2 per mile. Based on this data, Table 9
presents five possible scenarios that could result from shifting from one type of vehicles to another as
described below:

• Gasoline-Plug-in vehicles—This would lead to about 46.5% reduction of national CO2 emissions
(Scenario 2).

• Gasoline-battery electric vehicles—This would result in 62.2% decrease in CO2 emissions
(Scenario 3).

• Use of 50% of battery electric and 50% of plug-in electric hybrid vehicles—CO2 emissions would
reduce by 54.3% (Scenario 4)

• 25% plug-in electric, 50% gasoline, 25% battery vehicles—This would result in 27.16% reduction
of 27.16% (Scenario 5)
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Table 8. Average Emissions Nationwide [69].

Type of Vehicles GHG Emission (Grams of CO2 Equivalents per Mile)

Gasoline vehicles 381
plug-in electric hybrids 204
battery electric vehicles 144

Table 9. The Reduction Value in GHG Emissions for Five Scenarios.

Scenario
No.

Gasoline
Vehicles %

Plug-in Electric
Hybrids (%)

Battery Electric
Vehicles (%) GHG Emission

1 100 2,957,400 K metric tons of CO2
Equivalents before 2060

2 100 46.5% decrease in CO2 emissions
3 100 62.2% decrease in CO2 production
4 50 50 54.3% reduction in CO2 emissions
5 50 25 25 27.16% reduction in CO2 emissions
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5. Conclusions

GHG emissions from the road transport sector pose a significant challenge. To cut these emissions,
planners and decision makers need to formulate appropriate policies and strategies to reduce emissions
from the transport sector.

At present, models that forecast GHG emissions have some constraints. In particular, the
unavailability of detailed data (e.g., fuel consumption per vehicle, average annual distance travelled)
poses a constraint to the development of the forecasting tool. Further, the models are complicated with
numerous equations to satisfy many assumptions. Also, the methodology and assumptions made are
sometimes too rigid, which makes such models and equations difficult to be used in practice [9]. By
use of the multivariate linear regression model and double exponential smoothing analysis, this paper
was able to examine GHG emissions factors which are associated with the road transportation sector.
It made use of data collected in a span of 20 years (1990–2012) in the North America region. From
the six modes of transportation, the VKM to NTV ratios were identified. The results indicate that the
VKM to NTV ratio for the different transportation modes has a significant effect on GHG emissions,
with the coefficient of determination adjusted R2 and R2 values of 89.46% and 91.8%, respectively.
The model has 1.48% error which is associated with the difference between the actual value and the
value which had been predicted. It is found that the most crucial regression model variable is the use
of a personal vehicle.

This study made use of a DES model in order to carry out predictions of variables which affect
the emission of GHG. This gave a 1.94% error between the real and the predicted value. From these
results, it is predicted that by 2060, the emission of CO2 will rise to a figure around 2,957,400 K metric
tons. This will happen if we continue using gasoline vehicle types only. A switch to battery electric
would lead to a potential 62.2% decrease in emission of CO2. If we shift from 50% use gasoline vehicles
and 25% use of plug-in vehicles as well as 25% of battery vehicles, this will yield a decrease of CO2

emission to 27.16%. Use of both battery electric and plug-in vehicles on a 50% basis will result in 54.3%
reduction of CO2 emissions. In the present study, the data set from one region (North America region)
was used to test the model. Data sets from other regions or countries may be used in the future to test
the robustness of the proposed method and reduce any geographical bias. Because the model was
based on the results of historical data, it may not include new fuel-efficient technologies or processes
that may evolve in the future. This means the model may need to be re-tested with newer sets of data
which could further improve the model. Having said that, the generality of the approach should be
applicable in the forecast of GHG emissions.

Many countries are aiming to reduce fuel/energy consumption and tailpipe GHG emissions
of vehicles as road vehicles are a noticeable source of GHG emissions. For example, the European
Commission set out a 60% reduction of transport emissions from 1990 levels by 2050. The GHG
emissions forecasting tool as developed in this study may be used by planners and policymakers to
estimate CO2 emissions resulting from different modes of road transport and the vehicle kilometers
travelled. Further, the estimation of CO2 emissions can assist decisionmakers in developing a variety
of policies or action plans to reduce the GHG emissions from the road transport sectors. For example,
strict registration policies to promote the use of newer fuel-efficient vehicles, providing subsidies for
fuel-efficient vehicles or implementing additional levies for older and polluting road vehicles could be
implemented. This may help to reduce the greenhouse effect. In the future, researchers should conduct
more analysis which is more detailed occurring at a disaggregated level and involving different and
various transportation modes. While carrying out this study, a number of suggestions arose for further
work on the topic of modelling GHG emissions from the transportation systems. First, an analysis which
is more detailed occurring at a disaggregated level and involving different and various transportation
modes including freights in fuel efficiencies needs to be conducted. Second, a more thorough analysis
of the emissions factors for different kinds of travel and weekday-to-annual expansion factors may be
insightful in terms of evaluation of GHG emissions in a community. Furthermore, it is recommended
the five different scenarios as examined in this study are evaluated from a cost and economic point of
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view. Thirdly, more variables could be considered, such as the age of vehicles and new technology
class of vehicles, that have a much lower carbon footprint as compared to older vehicles.
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21. Ediger, V.Ş.; Akar, S. ARIMA forecasting of primary energy demand by fuel in Turkey. Energy Policy 2007, 35,
1701–1708. [CrossRef]

22. Wang, S.S.; Zhou, D.Q.; Zhou, P.; Wang, Q.W. CO2 emissions, energy consumption and economic growth in
China: A panel data analysis. Energy Policy 2011, 39, 4870–4875. [CrossRef]

23. Begum, R.A.; Sohag, K.; Abdullah, S.M.S.; Jaafar, M. CO2 emissions, energy consumption, economic and
population growth in Malaysia. Renew. Sustain. Energy Rev. 2015, 41, 594–601. [CrossRef]

24. Ivy-Yap, L.L.; Bekhet, H.A. Examining the feedback response of residential electricity consumption towards
changes in its determinants: Evidence from Malaysia. Int. J. Energy Econ. Policy 2015, 5, 772–781.

25. Talbi, B. CO2 emissions reduction in road transport sector in Tunisia. Renew. Sustain. Energy Rev. 2017, 69,
232–238. [CrossRef]

26. Magazzino, C.; Mele, M.; Schneider, N. The relationship between municipal solid waste and greenhouse gas
emissions: Evidence from Switzerland. Waste Manag. 2020, 113, 508–520. [CrossRef]

27. Timilsina, G.R.; Shrestha, A. Transport sector CO2 emissions growth in Asia: Underlying factors and policy
options. Energy Policy 2009, 37, 4523–4539. [CrossRef]

28. Chandran, V.G.R.; Tang, C.F. The impacts of transport energy consumption, foreign direct investment and
income on CO2 emissions in ASEAN-5 economies. Renew. Sustain. Energy Rev. 2013, 24, 445–453. [CrossRef]

29. Andreoni, V.; Galmarini, S. European CO2 emission trends: A decomposition analysis for water and aviation
transport sectors. Energy 2012, 45, 595–602. [CrossRef]

30. Lakshmanan, T.R.; Han, X. Factors underlying transportation CO2 emissions in the U.S.A.: A decomposition
analysis. Transp. Res. Part D Transp. Environ. 1997, 2, 1–15. [CrossRef]

31. Li, W.; Li, H.; Zhang, H.; Sun, S. The Analysis of CO2 Emissions and Reduction Potential in China’s Transport
Sector. Math. Probl. Eng. 2016, 2016, 1–12. [CrossRef]

32. Fan, F.; Lei, Y. Decomposition analysis of energy-related carbon emissions from the transportation sector in
Beijing. Transp. Res. Part D Transp. Environ. 2016, 42, 135–145. [CrossRef]

33. Sadorsky, P. The effect of urbanization on CO2 emissions in emerging economies. Energy Econ. 2014, 41,
147–153. [CrossRef]

34. Shu, Y.; Lam, N.S.N. Spatial disaggregation of carbon dioxide emissions from road traffic based on multiple
linear regression model. Atmos. Environ. 2011, 45, 634–640. [CrossRef]

35. Alhindawi, R.; Abu Nahleh, Y.; Kumar, A.; Shiwakoti, N. A multivariate regression model for road sector
greenhouse gas emission. In Proceedings of the ARRB 2016: Linking People, Places and Opportunities,
Melbourne, Australia, 16–18 November 2016; pp. 1–10.

36. Alhindawi, R.; Abu Nahleh, Y.; Kumar, A.; Shiwakoti, N. Application of a Adaptive Neuro-Fuzzy Technique
for Projection of the Greenhouse Gas Emissions from Road Transportation. Sustainability 2019, 11, 6346.
[CrossRef]

37. Xu, S.-C.; He, Z.-X.; Long, R.-Y. Factors that influence carbon emissions due to energy consumption in China:
Decomposition analysis using LMDI. Appl. Energy 2014, 127, 182–193. [CrossRef]

38. Friedrich, E.; Trois, C. Current and future greenhouse gas (GHG) emissions from the management of
municipal solid waste in the eThekwini Municipality–South Africa. J. Clean. Prod. 2016, 112, 4071–4083.
[CrossRef]

39. Alshehry, A.S.; Belloumi, M. Study of the environmental Kuznets curve for transport carbon dioxide emissions
in Saudi Arabia. Renew. Sustain. Energy Rev. 2017, 75, 1339–1347. [CrossRef]

40. Lin, B.; Benjamin, N.I. Influencing factors on carbon emissions in China transport industry. A new evidence
from quantile regression analysis. J. Clean. Prod. 2017, 150, 175–187. [CrossRef]

http://dx.doi.org/10.5539/ibr.v2n3p152
http://dx.doi.org/10.1016/j.jpolmod.2007.04.010
http://dx.doi.org/10.1016/j.enpol.2006.05.009
http://dx.doi.org/10.1016/j.enpol.2011.06.032
http://dx.doi.org/10.1016/j.rser.2014.07.205
http://dx.doi.org/10.1016/j.rser.2016.11.208
http://dx.doi.org/10.1016/j.wasman.2020.05.033
http://dx.doi.org/10.1016/j.enpol.2009.06.009
http://dx.doi.org/10.1016/j.rser.2013.03.054
http://dx.doi.org/10.1016/j.energy.2012.07.039
http://dx.doi.org/10.1016/S1361-9209(96)00011-9
http://dx.doi.org/10.1155/2016/1043717
http://dx.doi.org/10.1016/j.trd.2015.11.001
http://dx.doi.org/10.1016/j.eneco.2013.11.007
http://dx.doi.org/10.1016/j.atmosenv.2010.10.037
http://dx.doi.org/10.3390/su11226346
http://dx.doi.org/10.1016/j.apenergy.2014.03.093
http://dx.doi.org/10.1016/j.jclepro.2015.05.118
http://dx.doi.org/10.1016/j.rser.2016.11.122
http://dx.doi.org/10.1016/j.jclepro.2017.02.171


Sustainability 2020, 12, 9152 17 of 18

41. Danish; Baloch, M.A.; Suad, S. Modeling the impact of transport energy consumption on CO2 emission
in Pakistan: Evidence from ARDL approach. Environ. Sci. Pollut. Res. 2018, 25, 9461–9473. [CrossRef]
[PubMed]

42. van der Zwaan, B.; Keppo, I.; Johnsson, F. How to decarbonize the transport sector? Energy Policy 2013, 61,
562–573. [CrossRef]

43. Bellasio, R.; Bianconi, R.; Corda, G.; Cucca, P. Emission inventory for the road transport sector in Sardinia
(Italy). Atmos. Environ. 2007, 41, 677–691. [CrossRef]

44. He, L.-Y.; Chen, Y. Thou shalt drive electric and hybrid vehicles: Scenario analysis on energy saving and
emission mitigation for road transportation sector in China. Transp. Policy 2013, 25, 30–40. [CrossRef]

45. Dallmann, T.R.; Kirchstetter, T.W.; DeMartini, S.J.; Harley, R.A. Quantifying On-Road Emissions from
Gasoline-Powered Motor Vehicles: Accounting for the Presence of Medium- and Heavy-Duty Diesel Trucks.
Environ. Sci. Technol. 2013, 47, 13873–13881. [CrossRef]

46. Sider, T.; Alam, A.; Zukari, M.; Dugum, H.; Goldstein, N.; Eluru, N.; Hatzopoulou, M. Land-use and
socio-economics as determinants of traffic emissions and individual exposure to air pollution. J. Transp.
Geogr. 2013, 33, 230–239. [CrossRef]

47. Paladugula, A.L.; Kholod, N.; Chaturvedi, V.; Ghosh, P.P.; Pal, S.; Clarke, L.; Evans, M.; Kyle, P.; Koti, P.N.;
Parikh, K.; et al. A multi-model assessment of energy and emissions for India’s transportation sector through
2050. Energy Policy 2018, 116, 10–18. [CrossRef]

48. Börjesson, M.; Ahlgren, E.O. Assessment of transport fuel taxation strategies through integration of road
transport in an energy system model-the case of Sweden. Int. J. Energy Res. 2011, 36, 648–669. [CrossRef]

49. Bai, H.; Wei, J.-H. The CO2 mitigation options for the electric sector. A case study of Taiwan. Energy Policy
1996, 24, 221–228. [CrossRef]

50. Wang, C.; Larsson, M.; Ryman, C.; Grip, C.-E.; Wikström, J.-O.; Johnsson, A.; Engdahl, J. A model on
CO2 emission reduction in integrated steelmaking by optimization methods. Int. J. Energy Res. 2008, 32,
1092–1106. [CrossRef]

51. Hashim, H.; Douglas, P.; Elkamel, A.A.; Croiset, E. Optimization Model for Energy Planning with CO2

Emission Considerations. Ind. Eng. Chem. Res. 2005, 44, 879–890. [CrossRef]
52. Tan, S.; Hashim, H.; Ho, W.; Lee, C. Optimal planning of waste-to-energy through mixed integer linear

programming. Int. J. Environ. Ecol. Eng. 2013, 7, 372–379.
53. Güzel, T.D.; Alp, K. Modeling of greenhouse gas emissions from the transportation sector in Istanbul by

2050. Atmos. Pollut. Res. 2020. [CrossRef]
54. Choi, J.; Roberts, D.C.; Lee, E. Forecast of CO2 Emissions from the U.S. Transportation Sector: Estimation

From a Double Exponential Smoothing Model. J. Transp. Res. Forum 2014, 63–81. [CrossRef]
55. Brown, R.G. Exponential smoothing for predicting demand. In Proceedings of the 10th National Meeting of

the Operations Research Society of America, San Francisco, CA, USA, 14–15 November 1956.
56. Brown, R.G.; Meyer, R.F. The Fundamental Theorem of Exponential Smoothing. Oper. Res. 1961, 9, 673–685.

[CrossRef]
57. Goodman, M.L. A New Look at Higher-Order Exponential Smoothing for Forecasting. Oper. Res. 1974, 22,

880–888. [CrossRef]
58. Gardner, E.S. Exponential smoothing: The state of the art. J. Forecast. 1985, 4, 1–28. [CrossRef]
59. Gijbels, I.; Pope, A.; Wand, M.P. Understanding exponential smoothing via kernel regression. J. R. Stat. Soc.

Ser. B Stat. Methodol. 1999, 61, 39–50. [CrossRef]
60. Oh, S.C.; Sohn, S.H.; Yeo, Y.-K.; Chang, K.S. A study on the prediction of ozone formation in air pollution.

Korean J. Chem. Eng. 1999, 16, 144–149. [CrossRef]
61. Taylor, J.W. Short-term electricity demand forecasting using double seasonal exponential smoothing. J. Oper.

Res. Soc. 2003, 54, 799–805. [CrossRef]
62. Xie, Z.-W.; Su, K.-Y. Improved Grey Model Base on Exponential Smoothing for River Water Pollution

Prediction. In Proceedings of the 2010 4th International Conference on Bioinformatics and Biomedical
Engineering, Chengdu, China, 18–20 June 2010; pp. 1–4.

63. Gupta, M.; Shum, L.V.; Bodanese, E.; Hailes, S. Design and evaluation of an adaptive sampling strategy
for a wireless air pollution sensor network. In Proceedings of the 2011 IEEE 36th Conference on Local
Computer Networks, Institute of Electrical and Electronics Engineers (IEEE), Bonn, Germany, 4–7 October
2011; pp. 1003–1010.

http://dx.doi.org/10.1007/s11356-018-1230-0
http://www.ncbi.nlm.nih.gov/pubmed/29353358
http://dx.doi.org/10.1016/j.enpol.2013.05.118
http://dx.doi.org/10.1016/j.atmosenv.2006.09.017
http://dx.doi.org/10.1016/j.tranpol.2012.11.006
http://dx.doi.org/10.1021/es402875u
http://dx.doi.org/10.1016/j.jtrangeo.2013.08.006
http://dx.doi.org/10.1016/j.enpol.2018.01.037
http://dx.doi.org/10.1002/er.1824
http://dx.doi.org/10.1016/0301-4215(95)00133-6
http://dx.doi.org/10.1002/er.1447
http://dx.doi.org/10.1021/ie049766o
http://dx.doi.org/10.1016/j.apr.2020.08.034
http://dx.doi.org/10.5399/osu/jtrf.53.3.4246
http://dx.doi.org/10.1287/opre.9.5.673
http://dx.doi.org/10.1287/opre.22.4.880
http://dx.doi.org/10.1002/for.3980040103
http://dx.doi.org/10.1111/1467-9868.00161
http://dx.doi.org/10.1007/BF02699017
http://dx.doi.org/10.1057/palgrave.jors.2601589


Sustainability 2020, 12, 9152 18 of 18

64. Sullivan, W.G.; Claycombe, W.W. Fundamentals of Forecasting; Reston Pub. Co.: Reston, VA, USA, 1977.
65. Hyndman, R.J.; Koehler, A.; Ord, J.K.; Snyder, R.D.; Hyndman, R.J. Forecasting with Exponential Smoothing the

State Space Approach; Springer: Dordrecht/Berlin, Germany, 2008.
66. Bureau of Infrastructure and Transport Research Economics. Road Vehiclekilometres Travelled: Estimation

from State and Territory Fuel Sales. Available online: http://www.bitre.gov.au (accessed on 4 July 2019).
67. NATS. North America Transportation Statistics. Available online: http://nats.sct.gob.mx/language/en/

(accessed on 10 February 2019).
68. Rudy, K. Checking Assumptions about Residuals in Regression Analysis. Available

online: http://blog.minitab.com/blog/the-statistics-game/checking-the-assumption-of-constant-variance-
in-regression-analyses (accessed on 10 June 2019).

69. Union of Concerned Scientists. How Clean Is Your Electric Vehicle? Available online: http://www.ucsusa.
org/clean-vehicles/electric-vehicles/ev-emissions-tool#.WhuXklWWaUk (accessed on 16 August 2019).

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://www.bitre.gov.au
http://nats.sct.gob.mx/language/en/
http://blog.minitab.com/blog/the-statistics-game/checking-the-assumption-of-constant-variance-in-regression-analyses
http://blog.minitab.com/blog/the-statistics-game/checking-the-assumption-of-constant-variance-in-regression-analyses
http://www.ucsusa.org/clean-vehicles/electric-vehicles/ev-emissions-tool#.WhuXklWWaUk
http://www.ucsusa.org/clean-vehicles/electric-vehicles/ev-emissions-tool#.WhuXklWWaUk
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Literature Review 
	Model Development 
	Variables 
	Vehicle Kilometres by Mode (VKM) 
	Number of Transportation Vehicles (NTV) 

	Data Sources 
	Data Limitations 
	Regression Analysis and Double Exponential Model 

	Results and Discussions 
	Regression Analysis Results 
	Model Adequacy Check 

	Conclusions 
	References

