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Abstract. The purpose of this study is to develop a fluid-structure interaction analysis method using
IGA. For fluid analysis, the numerical method based on the VOF method is employed. The stabilized
finite element method with IGA is applied as the spatial discretization method and the Crank-Nicolson
method as the temporal discretization method. Several numerical examples are presented to demonstrate
the promise and potential of the present method to solve the solid-fluid interaction problems with free
surface(WCCM-APCOM 2022).

1 INTRODUCTION

IGA (Isogeometric Analysis)[1, 2] is a method that has been actively researched and applied in recent
years in numerical analysis in the fields of medicine, automobiles and precision machinery. IGA uses
the Spline function, which is used to represent CAD (Computer Aided Design) geometry, as the basis
function, allowing analysis meshes to be created directly from the geometry model drawn in CAD. This
reduces the mesh creation process, and curves can be represented without shape errors.

For example of the application of IGA to civil engineering field, the coupled fluid-structure analysis
in a region with curved geometry, such as the effect of water sloshing in a spherical tank on a tank is
applied. In this report, as a fundamental study, IGA with NURBS function is applied to a free surface flow
problem and the results are compared with those obtained by the finite element method using tetrahedral
first-order elements.
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Figure 1: Definition of the VOF function

2 NUMERICAL ANALYSIS METHODS

2.1 Calculation of density and viscosity coefficient

The VOF method expresses the free surface position by a scalar function ϕ called the VOF function.
The VOF function ϕ takes the values 1.0 for liquid, 0.5 for on the free surface, and 0.0 for gas at each
node (see Figure -1). The density and viscosity coefficient of gas and liquid are expressed using the VOF
function ϕ as follows.

ρ = ρlϕ+ρg (1−ϕ) (1)

µ = µlϕ+µg (1−ϕ) (2)

ρ and µ are the density and viscosity coefficient in each element, and ρl , ρg, µl , and µg are the density of
liquid, density of gas, viscosity coefficient of liquid and viscosity coefficient of gas.

2.2 Calculation of flow velocity and pressure

In free surface flow analysis using the VOF method, the following the Navier-Stokes equations and the
Continuity equations are used to obtain the flow velocity and pressure at each node.
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Ω is the analysis domain bounded by the boundary Γ, ui is the flow velocity and p is the pressure.
For the governing equations (3) and (4), when the stabilized finite element method based on the

SUPG/PSPG method is used to discretize the spatial direction, the following weak form is obtained
by applying the weighted residual method.∫

Ω
wiρ
(

∂ui

∂t
+ ū j
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Where wi and q are the weight functions of the Galerkin terms for the Navier-Stokes equations and
the Continuity equation, Ωe represents the domain of each element when the entire analysis domain is
divided into M elements, and Γh represents the h denotes the boundary given the Neumann boundary
condition. In addition, τS and τP are the stabilization parameters for the SUPG and PUPG terms.
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∆t is the micro time increment, ūe
i is the element advection velocity, he is the element length, and ||ūe

i ||
is the norm of the element advection velocity, each expressed as follows.
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Nen is the number of nodes of the element, Ne
α is the shape function, and the NURBS function is used in

this study. Also, ND denotes the number of dimensions.
For the governing equations (3) and (4), stabilized finite element method based on the SUPG/PSPG

method is used to discretize in the spatial direction, and the Crank-Nicolson method with quadratic
accuracy is applied to discretize in the temporal direction for the flow velocity, while the flow velocity
and pressure in the continuous equation are treated implicitly. The advection velocity ūi is approximated
explicitly and linearized by the second-order accurate Adams-Bashforth method shown in Eq.（9）.
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The finite element equation shown in equation (10) is obtained from the above.
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The M, A, G, D, C, and S are the coefficient matrices for the time derivative, advection, pressure,
viscosity, continuous, and shock trapping terms. The subscripts S, P, and C are the matrices due to the
SUPG, PSPG, and shock trapping terms. The GPBi-CG method, which is an iterative solution method,
is used to solve the finite element equations.

2.3 Calculation of free surface location

The advection equation (11) is used as the governing equation for the VOF function that describes the
position of the free surface.
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Where u is the advection velocity and the value obtained by solving Eq. (10).
The following finite element equations are obtained by discretizing equation (11) by applying a stabi-

lized finite element method based on the SUPG method in the spatial direction and the Crank-Nicolson
method in the temporal direction.
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1
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2
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Where M, A, and S are the coefficient matrices of the time derivative, advection, and shock trapping
terms, and the subscripts S and C are the matrices due to the SUPG and shock trapping terms. The
GPBi-CG method, which is an iterative solution method, is used to solve the finite element equations.

2.4 Calculation of fluid force

Applying the weighted residual method based on the Galerkin method to the governing equations (3)
and (4) in the flow field, and applying partial integration to the pressure and viscosity terms, the following
weak form is obtained.
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Where Ω0,Γin denotes the area around the structure and the structure boundary. The integral term on the
right side of equation (13) is the fluid force (drag force) acting on the structure. Substituting the velocity
and pressure obtained by solving equations (10) into equation (13), the fluid force acting on the structure
is obtained.

2.5 NURBS

In this study, the NURBS function is used as the Spline function for the shape function because it
can represent various shapes with a small number of elements, depending on the weights assigned to the
control points. The NURBS function in a two-dimensional domain is represented by a two-way B-spline
basis function, weights assigned to control points, and position vectors of control points. B-Spline basis
function is defined by the Cox de Boor asymptotic formula in Eq. (14).
For p = 0:

Ni,0 (ξ) = 1 if ξi ≤ ξ ≤ ξi+1

Ni,0 (ξ) = 0 otherwise

For p = 1,2,3・・・：

Ni,p (ξ) =
ξ−ξi

ξi+p −ξi
Ni,p−1 (ξ)+

ξi+p+1 −ξ
ξi+p+1 −ξi+1

Ni+1,p−1 (ξ)

(14)
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Where N is the B-Spline basis function in the ξ direction, i is the control point number, p is the order
of the B-Spline basis function, and ξi is the knot, which is the coordinate in parameter space, given by a
uniformly increasing number sequence called the knot vector as shown below.

Ξ = (ξ1,ξ2, ...ξn+p+1) (15)

The knot vector is a sequence of numbers obtained from the CAD drawn shape model and is a parameter
that defines the B-Spline basis functions and the elements in IGA.

Using the B-Spline basis functions expressed in equation (14), the basis functions Rp,q
i, j (ξ,η) and the

NURBS surface S (ξ,η) are expressed as in Eq. (17) are expressed as in the following equation.
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Where M is the B-spline basis function in theη direction, j is the control point number of the B-spline
basis function in theη direction, q is the order of the B-spline basis function in theη direction, wi, j is
the weight assigned to the control point, which is the coordinate in physical space, and Bi, j is the location
vector of the control point.
Since the Spline function is used for the shape function in IGA, the flow velocity, pressure and and the

weight function at each element are expressed as in Eq.(18), (19) and (20) using the NURBS function
shown in Eq.(16).
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Where nen is the number of control points constituting the element. The Spline function is not a function
of the physical space, but a function of the parameter space of knots, and the numerical computation is
performed in the parameter space. Therefore, it is necessary to perform variable transformation in the
physical space Ωe(x,y) and the parameter space Ωe(ξ,η). In addition, since the variable transformation
makes analytical integration difficult, a variable transformation is performed from the parameter space
Ωe(ξ,η) to the parent element Ω̂e(ξ̂, η̂), and then numerical integration is performed using the Legendre-
Gauss integral formula shown in Eq.(16).∫ 1
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Figure 2: Variable transformation

Where ngp is the number of integration points, ξ̄i, η̄ j are the coordinates of integration points in the
parent element, and wi,w j are the weights of integration points. Thus, in IGA, it is necessary to perform
the variable transformation twice (see Figure -2). Here, the variable transformation from the parameter
space to the parent element is performed by the following equation.

ξ̂ =−ξi+1 +ξi

ξi+1 −ξi
+

2
ξi+1 −ξi

ξ (22)

η̂ =−ηi+1 +ηi

ηi+1 −ηi
+

2
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η (23)

3 NUMERICAL ANALYSIS EXAMPLE

In this study, a sloshing problem in an area with curved shape is taken up and analyzed by IGA. The
validity of the program will be verified by comparing it with the results of conventional finite element
analysis, and the results will be compared with the experimental results. 　

4 CONCLUSIONS

In this report, an analytical method for free surface flow problems using IGA with NURBS functions
is described. The conclusions obtained from the comparison with the conventional finite element method
through application examples will be presented in the presentation.
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