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ABSTRACT

Moored systems exhibit low stiffness in the horizontal degrees of freedom. This results in the structure
having low natural frequencies and being sensitive to the low-frequency second order loads. Low-
frequency loads arise as a result of inter-modulation of the wave frequencies. Accurate modeling of
the low-frequency hydrodynamic loads is of crucial importance for developing cost-competitive floater
designs. This study implements a Kriging-NARX model for forecasting hydrodynamic loads and a
harmonic probing algorithm for extracting the transfer functions of the system. The implemented
harmonic probing method is of numerical nature and avoids the use of computationally expensive
symbolic coding tools. The method was tested on the INO WINDMOOR 12 MW floater for extracting
the structure’s linear transfer function. The obtained transfer function results showed an excellent
agreement with potential flow and symbolic harmonic probing.

Keywords: NARX; Harmonic Probing; Transfer Function; Autoregressive; Hydrodynamic Loading.
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NOMENCLATURE

fn Model output for time-step n [N]
Fn Frequency domain representation of the response [-]
F Nonlinear autoregressive model [-]

h(n) nth order impulse response function [N m−1]

H(n) nth order transfer function [N m−1]
Hs Significant wave height [m]
k Squared exponential correlation function [-]
r Residual signal in time domain [-]
R Residual signal in frequency domain [-]
S JONSWAP spectrum [m2 s]
t Time vector [s]
Tp Wave period [s]
xn Combined input vector, autoregressive and exogenous part [N, . . ., N, m, . . ., m]
Zn Frequency domain representation of the input [-]
ϵ Random number between 0 and 2π [-]
ζn Model input for time-step n [m]
θf Scale length of the autoregressive input [-]
θζ Scale length of the exogenous input [-]
σe Noise variance [-]
σf Optimization hyperparameter [-]
ϕ Phase angle [rad]
Ω, ω Angular frequency [rad/sec]
LTF Linear Transfer Function
QTF Quadratic Transfer Function
NARX Nonlinear Autoregressive Model with Exogenous Input

1. INTRODUCTION

1.1 Background and Motivation

Linear models, to a large extent, can successfully describe the wave-induced motions and loads on large-
volume structures in mild sea states where viscous effects are negligible (Faltinsen, 1990). However,
one limiting factor of linear models is that inter-modulation is not possible i.e. no energy can be
transferred between frequencies. This means that the computed steady-state output of a linear system
to a regular wave will only match the frequency of the wave. Yet, in situ measurements and model scale
experiments show that loads and responses do not occur only at the wave frequencies (Molin, 2023).
An incoming bi-chromatic wave with frequencies f1 and f2 excites the individual frequencies separately
but also any combination of sum |f1 + f2|, difference |f1 − f2|, or multiples (2f1, 3f1, . . . , 2f2, 3f2, . . .)
of the wave frequencies. Most structures are insensitive to these higher-order loads which means a
linear model is sufficient for their design. However, moored structures, for example, are characterized
by low natural frequencies in the horizontal degrees of freedom due to their soft mooring systems. As
a consequence, their natural frequencies fall in the range where the difference frequency loads operate.
For that reason, a significant contribution to the tension in the mooring lines at the extreme offsets
comes from the mean drift force and the low-frequency loads that are usually described by a difference
quadratic transfer function (QTF). The QTF, together with the second order loading, is more difficult
to compute accurately. Potential flow-based solvers have been the main tool for estimating these loads
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though they are limited to an incompressible and irrotational flow of an inviscid fluid. Nevertheless,
potential flow and perturbation theory have provided an excellent basis for offshore engineering in mild
sea-states. Moderate-to-extreme sea states with steep waves violate these assumptions which leads to
inaccuracies in the transfer function (TF) estimation. Sauder (2021) provides an excellent overview
of the limitations of potential flow theory and the challenges related to computing hydrodynamic
properties of floaters. The theoretical limitations of the engineering tools result in an added uncertainty
which is usually manifested as a larger safety factor and essentially a structurally more inefficient
design. For that reason, an accurate estimation of the hydrodynamic loads is crucial for providing
cost-competitive floater designs.

This study focuses on an alternative, data-driven approach for estimating hydrodynamic loading on
floating structures. More specifically, the focal point is an improvement of an already existing method
for extracting higher order transfer functions. Namely, the harmonic probing (HP) method which
is used in tandem with a nonlinear autoregressive models with exogenous input (NARX). A quick
overview of both is provided in the next section.

1.2 Scope

The origin of NARX models dates back to the work of Billings in the 1980s when the ARMAX
(auto-regressive moving average model with exogenous inputs) was extended to its nonlinear form
i.e. the NARMAX model (Leontaritis and Billings, 1985a,b). This framework is the most generic
and versatile formulation of a nonlinear discrete-time process that incorporates a noise model and is
usually given a polynomial form. A simplification to the NARMAX model is the NARX model which
assumes that the noise process is white Gaussian (Worden et al., 2012). When coupled with harmonic
probing (HP), the NARX framework allows for an estimation of any order transfer function. The
algorithm for harmonic probing was first introduced by Bedrosian and Rice (1971) for continuous-
time systems where the underlying equations of motion are known. They presented two approaches
for extracting higher-order frequency response functions, namely, the harmonic input method and the
direct expansion method. Peyton-Jones and Billings (1989) modified the harmonic input method into
a recursive algorithm for computing an arbitrary order transfer function. This method, also known as
harmonic probing, was later extended to discrete-time systems by Tsang and Billings (1992). Worden
and Tomlison (2001) and Billings (2013) provide a more extensive overview and worked out examples
of this procedure. The harmonic probing method is based on constructing harmonic balances and
equating coefficients that require symbolic evaluation. Consequently, for complex systems with many
lags resulting in a large number of polynomial terms, the length of the balancing expression grows
fast which renders the whole procedure intractable. To circumvent this issue, Bayma and Lang (2012)
developed a numerical procedure based on the Diophantine equations that reduces the computation
demand though its implementation requires more effort (Billings, 2013).

The present paper describes a variant of the harmonic probing algorithm that is based on the original
implementation but evades the use of the costly symbolic evaluation. The algorithm is applied to a
Kirging-NARX model for extracting the linear transfer function (LTF) of the INO WINDMOOR 12
MW floater. The algorithm is generic and can be used for estimating an arbitrary order of a system’s
transfer function.

The remaining of the paper is structured as follows. First, Section 2 provides the underlying theory of
the NARX model used in this study which is based on the works of Worden and colleagues (Worden
et al., 2012; Worden and Tomlison, 2001; Worden et al., 2018). Section 3 follows with a description
of the basics of harmonic probing together with the symbolic and numerical probing algorithms. The
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study finishes with a case study of a floater in Section 4 and concluding remarks in Section 5.

2. KRIGING-NARX

The main idea behind NARX (nonlinear auto-regressive model with exogenous input) is to construct
and train a model (F) such that it can provide a prediction of the current output based on past input
and output data.

fn = F

fn−1, fn−2, . . . , fn−nf︸ ︷︷ ︸
auto-regressive part xf,n

; ζn, ζn−1, ζn−2, . . . , ζn−nζ︸ ︷︷ ︸
exogenous part xζ,n

 (1)

fn = F (xn) (2)

where fn ∈ R is the output of the model for the current time-step tn. The lagged values xf,n =[
fn−1, fn−2, . . . , fn−nf

]
of the load and the lagged values xζ,n =

[
ζn, ζn−1, ζn−2, . . . , ζn−nζ

]
of the wave

elevation profile are concatenated to form the input vector xn = [xf,n,xζ,n] ∈ Rnf+nζ+1. The optimal
selection of the time-step ∆t = tn − tn−1 depends on the dynamics of the modeled system.

Kriging-NARX is a special type of NARX that employs the concept of Kriging. Kriging dates back to
the 1950s when it was first introduced in geostatistics (Krige, 1951). Since then, the machine learning
community has re-purposed Kriging for a variety of learning tasks. The book by Rasmussen and
Williams (2006) provides a good overview of this methodology, a consolidated summary is presented
hereafter.

The underlying assumption of Kirging-NARX is that the model output is a realization of a Gaussian
process (GP) (Santner et al., 2019). From the definition of a GP it follows that the distribution for a
finite number of outputs follows a multivariate joint normal distribution.


fn
fn−1

fn−2
...


 ∼ N



0
0
0
...

 ,


k(xn,xn) + σ2

e k(xn,xn−1) k(xn,xn−2) . . .
k(xn−1,xn) k(xn−1,xn−1) + σ2

e k(xn−1,xn−2) . . .
k(xn−2,xn) k(xn−2,xn−1) k(xn−2,xn−2) + σ2

e . . .
...

...
...

. . .


 (3)

Notice that the mean of the joint distribution is assumed to be zero for simplicity. The method allows
for a non-zero mean joint distribution though this adds additional model complexity and training
parameters. In the above expression, the hyperparameter σ2

e is the noise variance which in itself
incorporates a nugget for numerical stability, whereas k(·, ·) is a correlation function selected by the
user. A number of correlation functions and their applications are listed in (Lataniotis et al., 2022). A
common choice is the squared exponential correlation function which is infinitely differentiable leading
to smooth paths. This function was the natural choice for this study since the signals investigated
here are of smooth nature. The squared exponential function was modified to include a scaling length
on both input signals leading to the following expression:

k([xf,p,xζ,p], [xf,q,xζ,q]) = σ2
f exp

(
− 1

2θ2f
∥xf,p − xf,q∥2 −

1

2θ2ζ
∥xζ,p − xζ,q∥2

)
(4)

where ∥ ∥ is the Euclidean norm of the given vector difference while xf and xζ refer to the auto-
regressive and exogenous part of the input vector, respectively. The expression above introduces three
new hyperparameters: σf and the scale lengths, θf and θζ . Assume now that the training data is
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gathered as follows:

F =

 fn−1
...

fn−N

 , X =

 fn−2 . . . fn−nf
ζn−1 . . . ζn−nζ

...
. . .

...
...

. . .
...

fn−N−1 . . . fn−N−nf
ζn−N . . . ζn−N−nζ

 (5)

with N representing the total number of data points. Then, the expression from (3) can be represented
in a matrix form: (

fn
F

)
∼ N

(
0,

[
K(xn,xn) + σ2

e K(X,xn)
K(xn,X) K(X,X) + σ2

eI

] )
(6)

The advantage of the joint Gaussian distribution is that the distribution of the unknown output fn
for an unobserved input xn pre-conditioned on a set of observation {X,F} is also Gaussian. From (6),
the corresponding mean and variance for the output fn have analytical expressions, which read,

E[fn|F,X] = F(xn) = K(xn,X)[K(X,X) + σ2
eI]

−1F (7)

V[fn|X] = K(xn,xn)−K(xn,X)[K(X,X) + σ2
eI]

−1K(X,xn) + σ2
e (8)

Notice above that the expectation is preconditioned on the past outputs F and also the training data
X. That is, the training data become a part of the model equations and permanently ”lives” in the
algorithm. This feature provides an advantage of Kriging-NARX because it reduces the number of
hyperparameters needed to capture the relationship of the modeled signals. In addition, this means
that the model can be successfully trained with a relatively small amount of data.

The only remaining part is to close Eq. (7), i.e. train the unknown hyperparameters, θ∗ = [σ2
f , σ

2
e , θf , θζ ].

Training is performed by using a maximum likelihood estimation over a marginal evidence function.
Put simply, since the outputs (or observations) F = {F(x1),F(x2), . . . ,F(xN )} are assumed to have
a joint normal distributed, maximizing their likelihood means finding the zero-mean joint normal dis-
tribution that best fits the data. For a given set of training data, (F,X), the likelihood function takes
the following form:

L(θ∗,F,X) =
(det

(
K(X,X) + σ2

eI
)
)−1/2

(2π)N/2
exp

(
−1

2
(FT [K(X,X) + σ2

eI]
−1F

)
(9)

In practice, the hyperparameter values are obtained by minimizing the negative log likelihood function,
which reads,

θ∗ = arg min
θ∗

[log(L)] = arg min
θ∗

1

2
FT
[
K(X,X) + σ2

nI
]−1

F+
1

2
log
(
det
(
K(X,X) + σ2

eI
))

(10)

Note that the dependence on the optimization parameters θ∗ is not explicitly shown above, but it
is rather obvious from (4). Furthermore, the N

2 log(2π) term is left out since it does not affect
the optimization. Due to the low number of hyperparameters to be optimized, the training can
be completed with a simple gradient descent optimization algorithm. Note also from (10) that the
optimization requires a matrix inversion. The matrix K(X,X) is of N × N size, where N is the
number of observations in the training set. Since the numerical optimization algorithms rely on
repeated evaluations of the objective function, the optimization may become costly for large data sets.
Once the training is complete, the model Eq. (7) can be readily evaluated for a set of two new signals
originating from the same underlying process for which the model was trained for. An application of
this framework is presented in Section 4.
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3. HARMONIC PROBING

The Kriging-NARX described in the previous section is one of many possible NARX models. Although
useful for time series modeling, in general, engineers are interested in obtaining both LTF and QTF
associated with a hydrodynamic loading model. The harmonic probing (HP) algorithm provides
the connection between the mathematics-based NARX model and its Volterra series representation.
Consequently, this allows for the extraction of the Generalized Frequency Response Functions (GFRF).
A good overview of HP is available in Chapter 8 of (Worden and Tomlison, 2001). A condensed
description is presented hereafter starting with the fundamental equations of a Volterra expansion
and moving on to the symbolic and then the novel numerical probing.

3.1 Volterra Series Expansion

The Volterra series expansion is a convenient way to represent dynamic systems with weak nonlinear-
ities and computing GFRFs (Billings, 2013). Weiner (1942) applied the Volterra series expansion to
nonlinear systems and noted the existence of a functional relationship between the input and output
of the system:

f(t) = f (0) + f (1)(t) + f (2)(t) + · · ·+ f (m)(t) (11)

where f0 is a constant and:

f (1)(t) =

∫ +∞

−∞
h(1)(τ1)ζ(t− τ1)dτ1 (12)

f (2)(t) =

∫ +∞

−∞

∫ +∞

−∞
h(2)(τ1, τ2)ζ(t− τ1)ζ(t− τ2)dτ1dτ2 (13)

...

f (m)(t) =

∫ +∞

−∞
· · ·
∫ +∞

−∞
h(m)(τ1, τ2, . . . τm)ζ(t− τ1)ζ(t− τ2) . . . ζ(t− τm)dτ1dτ2 · · · dτm (14)

here f(t) is the response of the system, ζ is an input excitation, and h(m) is the m-th order impulse
response function or also known as a Volterra kernel. The corresponding frequency-domain represen-
tation can obtained by simply taking the Fourier transform of Eqs. (11-14) (Chance et al., 1998).

F (ω) = F (0) + F (1)(ω) + F (2)(ω) + · · ·+ F (m)(ω) (15)

where,

F (1)(ω) =
1

2π

∫ +∞

−∞
δ(ω − ω1)H

(1)(ω − ω1)Z(ω1)dω1 (16)

F (2)(ω) =
1

2π

∫ +∞

−∞

∫ +∞

−∞
δ(ω − ω1 − ω2)H

(2)(ω1, ω2)Z(ω1)Z(ω2)dω1dω2 (17)

...

F (m)(ω) =
1

2π

∫ +∞

−∞
. . .

∫ +∞

−∞
δ(ω − ω1 − ω2 − . . .− ωm)H(m)(ω1, . . . , ωm)Z(ω1) . . . Z(ωn)dω1 . . . dωm

(18)
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where, F and Z are the frequency domain counterparts of the response and excitation whileH(m) is the
m-th order GFRF, which corresponds to the m-dimenstional Fourier transform of the corresponding
Volterra kernel,

H(m)(ω1, . . . , ωm) =
1

2π

∫ +∞

−∞
. . .

∫ +∞

−∞
h(m)(τ1, . . . , τm)e(−1i

∑m
j ωjτj)dτ1dτ2 · · · dτm (19)

In theory, the Volterra expansion could capture the interactions of an infinite number of simple har-
monics. In this study, we are interested in the estimation of GFRF up to order two, i.e., LFT (H(1)(ω1))
and QTF (H(2)(ω1, ω2)).

3.2 Harmonic Probing

The idea behind HP is to probe the system with simple harmonic excitations for which the analytical
expression for the response is known. To that purpose, Eq. (22) is equated to the Taylor-expanded
version of the mean predictor from Eq. (7). To capture the second order effects the Taylor expansion
of (7) is truncated after the quadratic term.

fn = F(xn) ≈���*0
F(0) +

∂F
∂x

∣∣∣∣
0

xn
T +

1

2
xn

∂2F
∂x2

∣∣∣∣
0

xn
T + . . . (20)

where F(0) is the bias term set equal to zero, ∂F
∂x

∣∣
0
and ∂2F

∂x2

∣∣∣
0
are the Jacobian and the Hessian

of the mean predictor of (7) evaluated at xn = 0. Both Jacobian and Hessian can be conveniently
evaluated using numerical differentiation like finite-difference schemes or automatic differentiation. In
the authors’ experience, symbolic differentiation is also a viable approach. However, its effectiveness is
conditioned to the functional form of the NARX. Noteworthy, the Taylor expansion of (20) is necessary
for converting the Kriging-NARX model into a multivariate polynomial suitable for harmonic probing.
Specifically, the nonlinear terms are responsible for the generation of the inter-modulation frequencies
(Billings, 2013).

Based on Eqs.(11 - 18), the discretized system response caused by a bi-chromatic excitation

ζn = eiΩ1tn + eiΩ2tn (21)

reads,

fn = H(1)(Ω1)e
iΩ1tn +H(1)(Ω2)e

iΩ2tn + 2H(2)(Ω1,Ω2)e
i(Ω1+Ω2)tn . . . (22)

where tn = n∆t. The equation above provides an analytical way to relate the response of the system
to its transfer functions. Using (21) and (22), the input vector to the mean predictor from (7) can be
given an analytical form.
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xn =



fn−1

fn−2
...

fn−nf

ζn
ζn−1
...

ζn−nζ



T

=



[H(1)(Ω1)e
iΩ1 +H(1)(Ω2)e

iΩ2 + 2H(2)(Ω1,Ω2)e
i(Ω1+Ω2) + . . .]etn−∆t

[H(1)(Ω1)e
iΩ1 +H(1)(Ω2)e

iΩ2 + 2H(2)(Ω1,Ω2)e
i(Ω1+Ω2) + . . .]etn−2∆t

...

[H(1)(Ω1)e
iΩ1 +H(1)(Ω2)e

iΩ2 + 2H(2)(Ω1,Ω2)e
i(Ω1+Ω2) + . . .]etn−nf∆t

eiΩ1tn + eiΩ2tn

eiΩ1(tn−∆t) + eiΩ2(tn−∆t)

...

eiΩ1(tn−nζ∆t) + eiΩ2(tn−nζ∆t)



T

(23)

Note that the substituted values in the vector above are time-shifted to account for the lags in the
input data.

Accordingly, the only remaining unknowns are the transfer functions which can be isolated and solved
for. The classical procedure for solving for the transfer functions is completed in cascade starting from
the lowest order and moving forward. When a bias term is not present, the computation begins with
the linear transfer function. A harmonic balance is constructed for the terms oscillating at frequency
Ω1. This involves identifying all terms followed by eiΩ1tn and equating their coefficients which leads
to the expression of the LTF, H(1)(Ω1). In the same manner, a harmonic balance is solved for the
frequency Ω1 + Ω2 leading to the expression of the QTF, H(2)(Ω1,Ω2). However, constructing the
harmonic balances is not a trivial problem from a computational point of view. Depending on the
number of lags (i.e. nf and nζ), expanding Eq. (20) could result in a very lengthy expression.
Employing a symbolic tool for scanning and identifying the balancing terms becomes intractable for
complex models with a long memory and many lagged inputs. For that reason, a numerical harmonic
probing approach is sought after.

To circumvent the need for symbolic computation, the harmonic balances are instead solved in the
frequency domain numerically. The procedure is completed in cascade starting from the linear case,

ζn = eiΩ1tn , f (1)
n = Ĥ(1)(Ω1)e

iΩ1tn (24)

where ζn and f
(1)
n are the monochromatic excitation and response based on a trial—inexact—value

of Ĥ(1)(Ω1) as initial guess. It follows that, if one substitute (24) into the Taylor expansion of (20)
truncated up at the linear term, the harmonic balance is not verified, giving rise to a residual,

rn(Ĥ
(1)(Ω1)) = f (1)

n − ∂F
∂x

∣∣∣∣
0

xn
T (25)

where the functional dependency of f
(1)
n and x

(1)
n on Ĥ(1)(Ω1) is omitted for the sake of space. For

the linear case, no inter-modulation of frequencies is possible, meaning that the residual will oscillate
only at Ω1.

C(1) = {Ω1}

where Ω1 ∈ Ω = [0, . . . ,Ωb]. Consequently, the frequency spectrum of the residual is a Dirac delta
centered at Ω1,

R(Ĥ(1)(Ω1)) =
∑
n

rn(Ĥ
(1)(Ω1))e

−iΩ1n∆t (26)
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where R(1)(H(1)(Ω1)) is the frequency spectrum obtained by the Discrete Fourier Transform (DFT).
Finally, the linear transfer function is obtained by minimizing the amplitude of the frequency spectrum
at Ω1,

H(1)(Ω1) = arg min
Ĥ(1)(Ω1)

|R(1)(H(1)(Ω1))| ∀Ω1 ∈ Ω (27)

The optimization above is repeated for the entire set of frequencies Ω such that the whole frequency
band of the transfer function is covered. From a practical point of view, the computation of the LTF
is also possible by simpler analytical methods though they are almost always limited to first order
effects. The numerical probing of the LTF presented here is for pedagogical reasons and to serve as a
stepping stone towards understanding the numerical probing of the higher order terms.

The computation for the quadratic transfer function requires probing with a bichromatic excitation
and a second order Volterra response,

ζn = eiΩ1tn + eiΩ2tn (28)

f (2)
n = H(1)(Ω1)e

iΩ1tn +H(1)(Ω2)e
iΩ2tn + 2H(2)(Ω1,Ω2)e

i(Ω1+Ω2)tn (29)

Furthermore, the Taylor series expansion is extended to include the quadratic term.

f (2)
n =

∂F
∂x

∣∣∣∣
0

x(2)
n

T
+

1

2
x(2)
n

∂2F
∂x2

∣∣∣∣
0

x(2)
n

T
(30)

Including the second order term is necessary for frequency inter-modulation i.e. it is the mechanism
that produces the additional oscillating frequencies listed below,

C(2) = {Ω1, 2Ω1, 3Ω1, 4Ω1,Ω2, 2Ω2, 3Ω2, 4Ω2, . . .

Ω1 +Ω2, 2Ω1 + 2Ω2, 2Ω1 +Ω2, 3Ω1 +Ω2,Ω1 + 2Ω2,Ω1 + 3Ω2, . . .

3Ω1 + 2Ω2, 2Ω1 + 3Ω2}

with {Ω1,Ω2} ∈ Ω × Ω. As for the linear case, the system response from (29) and Taylor series
expansion from (30) are recast into a residual from,

r(2)n (Ĥ(2)(Ω1,Ω2); Ĥ
(1)(Ω1), Ĥ

(1)(Ω2)) = f (2)
n − ∂F

∂x

∣∣∣∣
0

x(2)
n

T − 1

2
x(2)
n

∂2F
∂x2

∣∣∣∣
0

x(2)
n

T
(31)

with the corresponding DFT,

R(2)(Ĥ(2)(Ω1,Ω2); Ĥ
(1)(Ω1), Ĥ

(1)(Ω2) =
∑
n

r(2)n (Ĥ(2)(Ω1,Ω2); Ĥ
(1)(Ω1), Ĥ

(1)(Ω2))e
−iΩ1n∆t (32)

The optimization problem is formulated once again, now minimizing the amplitude of the sum fre-
quency Ω1 +Ω2,

H(2)(Ω1,Ω2) = arg min
Ĥ(2)(Ω1,Ω2)

|R(2)(Ĥ(2)(Ω1,Ω2); Ĥ
(1)(Ω1), Ĥ

(1)(Ω2)| ∀Ω1,Ω2 ∈ Ω (33)

The idea behind the optimization is that the amplitudes of the residual can be minimized with respect
to the transfer functions. Reducing the amplitude to zero implies that the coefficients for a given
harmonic, eiΩtn , are in perfect balance (i.e. cancel out) which is only possible if the correct transfer
function has been identified. A typical representation of the second order residual in time and frequency
domain is shown below in Figure 1.
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Figure 1: A typical second order residual in time and frequency domain

4. NUMERICAL CASE STUDY

The NARX and numerical harmonic probing framework were applied to a floater, limited for the time
being to estimating the surge linear transfer function, relating the wave elevation profile ζ to the
hydrodynamic surge force f on the floater. A description of the floater under study is available in
Section 4.1. The validation study used synthetic time-series data whose generation is described in
Section 4.2. Lastly, the obtained results are presented in Section 4.3 and 4.4.

4.1 Floater Description

The floater used for this study was the INO WINDMOOR 12MW floater (Souza et al., 2021), a semi-
submersible structure with three columns connected by pontoons. The structure has been modelled
in Hydrostar (Bureau Veritas., 2016) for the purposes of obtaining the transfer functions. The vessel
mesh consisted of 11212 panels. Figure 2 shows a render and scale model of the floater.

Figure 2: Panel model (Hydrostar) of the INO WINDMOOR floater (left), and a 1:40 scaled model tested at
SINTEF Ocean (Thys et al., 2021) (right)
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4.2 Data Generation

The synthetic data was obtained by first producing a random wave elevation profile from a JONSWAP
spectrum with a significant wave height ofHs = 0.5 m and a period of Tp = 13 s. A plot of the spectrum
is shown below on Figure 3.
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Figure 3: A JONSWAP spectrum used to generate the data (left). A wave elevation profile sample with the
corresponding 1st order force exerted on the floater (right)

The transfer function of the floater computed in Hydrostar together with a wave elevation profile were
used to generate a synthetic loading time-series data using the approach outlined in (Cheng et al.,
2018). The Python toolbox Snoopy (Bureau Veritas, Research Department., 2022) was used for this
purpose. The first-order force was calculated as follows:

f (1)(t) = R
M∑

m=1

|H(1)(ωm)|
√
2S(ωm)∆ωei(ωmt+ϵm+ϕm) (34)

where |H(1)(ωm)| and ϕm are the amplitude and phase angle of the transfer function of the system,
respectively. S(ωm) is the JONSWAP spectrum, ∆ω is the frequency step and ϵm is a random number
between 0 and 2π.

4.3 NARX Setting and Results

The synthetic time-series data for the wave elevation profile, ζ(t) and force, f(t) was divided into
20 segments where each segment consisted of 300 data points with a time-step, dt = 1.2 s. Each
segment was used for training a separate Kriging-NARX model. A crucial goal of the training process
is to capture the underlying physics of the actual floater. In dynamics, modeling the behaviour of
a structure, depending on its complexity, could require several past states. The INO WINDMOOR
floater has a relatively complex wave-body interaction that requires a longer memory. The memory
effects in the Kriging-NARX model are captured in the lagged input data. This study used nf = 20
and nζ = 20 which corresponds to 24 s of lag on both the force and wave signals. The predictive
capacity of each NARX was tested with a leave-one-out cross-validation technique. This process went
on as follows, the 20 segments mentioned earlier were used as training data for the model producing
20 different NARX. Each one of the 20 NARX models was then validated against the remaining 19
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segments. This ensured that each NARX was tested only on data that it has not seen before. The
results for the 20 segments are displayed on the figure below.
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Figure 4: Comparison of the NARX predictions against the reference value (left). Magnified region from the
left graphic (right)

Figure 4 shows the output of 19 NARX models (blue) validated against a different (20th) reference
data-set (red). All models performed exceptionally well in estimating the force time-series. An im-
portant thing to note here is that the predictive power of the model is limited to time-series sets
corresponding to a particular sea state. For a new sea state, the model needs to be retrained again.

4.4 Transfer Function Results

The numerical harmonic probing algorithm was lastly applied to the Kriging-NARX models and
compared against the potential flow reference value and symbolic probing. The results for all NARX
models are displayed on Figure 5.
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Figure 5: Amplitude (left) and phase (right) of the transfer functions obtained by numerical harmonic probing
compared to the symbolic probing and the Hydrostar reference

The results from the symbolic harmonic probing, for clarity, only show the mean value. The numerical
probing produced nearly identical results which serves as a proof of concept for this novel way of
computing harmonic balances. Both algorithms exhibited lower uncertainty in the region between
0.3− 1.3 rad/s, where most of the energy from the JONSWAP (see Figure 3) was located. Inversely,
the regions where less wave energy was allocated showed higher uncertainty. In terms of computational
cost, the numerical probing has a relatively constant cost regardless of the order of the transfer
function considered. In contrast, the cost of the symbolic probing scales nonlinearly with the order
of the transfer function. For complex systems with long memory, extracting the transfer function via
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symbolic calculations exceeds the computational capabilities of most computers which renders that
method impractical.

5. CONCLUSION

This study investigated a new numerical approach of harmonic probing and transfer function estima-
tion. The method was applied to a Kriging-NARX model trained on synthetic data obtained from the
INO WINDMOOR 12 MW floater. The method was validated for the linear transfer function, but
the generality of the approach also applies to higher order transfer functions.

The numerical probing provided nearly identical results for the linear transfer function as the classical
symbolic probing. In terms of computational speed, the two methods provide comparable efficiency for
extracting first order transfer functions. However, for higher order transfer functions and structures
with long memory, the numerical probing is expected to exhibit a superior performance.
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