
D3.2 Report on parallel in time methods
and release of the solvers

Document information table

Contract number: 800898
Project acronym: ExaQUte
Project Coordinator: CIMNE
Document Responsible Partner: UPC
Deliverable Type: Report, Other
Dissemination Level: Public
Related WP & Task: WP3, Task 3.2
Status: Draft Version

Ref. Ares(2020)2814665 - 30/05/2020

Deliverable 3.2

Authoring

Prepared by:
Authors Partner Modified Page/Sections Version Comments
Manuel Caicedo UPC
Javier Principe UPC
Contributors
Ramon Codina UPC

Change Log

Versions Modified Page/Sections Comments

Approval

Approved by:
Name Partner Date OK

Task leader Santiago Badia CIMNE 29/05/2020 Yes
WP leader Javier Principe UPC 29/05/2020 Yes
Coordinator Javier Principe UPC 29/05/2020 Yes

Page 2 of 21

Deliverable 3.2

Table of contents

1 Introduction 6

2 Parallel in time and space-time methods 6

3 The space-time BDDC preconditioner 7

4 Numerical experiments 10
4.1 Experimental setup . 10
4.2 Parabolic linear equation . 11

4.2.1 Weak scalability in time . 12
4.2.2 Weak scalability in space-time . 13

4.3 Nonlinear p-Laplacian problem . 15
4.3.1 Weak scalability in time . 15
4.3.2 Comparison against sequential approach 17

5 Conclusions 19

Page 3 of 21

Deliverable 3.2

List of Figures

1 Differences between subassembled space and BDDC 9
2 Linear solver iteration counter and total elapsed time with T ′ = T0/2 . . . 12
3 Linear solver iteration counter and total elapsed time with T ′ = T0/60 . . . 13
4 Linear solver iteration counter and elapsing time with Px = 2k, Py =

2k, Pt = 12k . 14
5 Linear solver iteration counter and total elapsed time with Px = 6k, Py =

8k, Pt = k . 14
6 Linear solver iteration counter and total elapsed time with ν = 1.0 16
7 Linear solver iteration counter and total elapsed time with ν = 10.0 16
8 Local solves as function of the number of temporal subdomains Pt with

ν = 1.0 . 17
9 Wall clock time with ν = 1.0 . 18
10 Local solves as function of the number of temporal subdomains Pt with

ν = 10.0 . 18
11 Wall clock time with ν = 10.0 . 19

Page 4 of 21

Deliverable 3.2

Nomenclature / Acronym list

Acronym Meaning

ExaQUte
EXAscale Quantification of Uncertainties for Technology
and Science Simulation

CFL Courant Friedrichs Lewy
BDDC Balancing Domain Decomposition by Constraints
STBDDC Space Time Balancing Domain Decomposition by Constraints
HPC High performance computing
PDE Partial differential equation
MN-IV Marenostrum-IV
FE finite elements
MPI Message Passing Interface

Page 5 of 21

Deliverable 3.2

1 Introduction

In this deliverable we provide the details related to the design, implementation, and scala-
bility analysis of Space Time Balancing Domain Decomposition by Constraints (STBDDC)
preconditioners that have been implemented in the FEMPAR project [8]. First, we describe
the state of the art of space-time methods in Sect. 2 and we then provide some details
of our particular implementation in Sect. 3. Next, in Sect. 4, we present a detailed de-
scription of the numerical experiments performed during the project showing the excellent
scalability results that these algorithms permit to achieve. At the same time, we show the
limitations of these algorithms when dealing with nonlinear problems. Finally we draw
some concluding remarks in Sect. 5.

2 Parallel in time and space-time methods

In this section we briefly summarize the state of the art in parallel-in-time and space-time
methods.

The traditional approach to perform the temporal discretization of time-dependent
problems is based on a finite difference approximation in time by time stepping. The
simulation starts from the given initial condition and proceeds computing the solution at
the current time step using information of the previous ones. High order methods require
many previous steps and implicit methods include the current step in the computation of
temporal derivatives whereas explicit ones do not. Implicit methods require the solution
of a linear system of equations whereas explicit ones only the update of the unknown at
the current step. By construction, this procedure is sequential in time and parallelism
can only be exploited in space.

There are therefore two problems with this class of methods. On the one hand, when
the spatial size of the problem is fixed, i.e. the finite element mesh is already sufficiently
refined, opportunities for exploiting parallelism are exhausted: at some point the number
of processors cannot be increased because the amount of work to distribute would be
smaller than the one required to do the distribution (communications would dominate).
At this point the wall-clock time of the simulation will increase with the length of the
time domain.

On the other hand, weak scalability if not possible for this type of methods. Indeed,
if the mesh size h is reduced, enlarging the size of the spatial discretization, as it is done
in a weak scaling experiment, the time step size δt has to be reduced accordingly. This
reduction depends on the method used and the differential equation considered. Explicit
methods have need to strictly satisfy a Courant Friedrichs Lewy (CFL) type condition
which implies that δt needs to be reduced as h (when advection dominates) or h2 (when
diffusion dominates). Although implicit methods do not need to satisfy this type of
conditions to be stable, equilibration of errors suggest a similar decay and, when applied
to nonlinear problems, experience indicates that a similar reduction is actually needed to
achieve convergence. Therefore, even if the spatial solver has perfect weak scalability, it
will be applied sequentially an increasing number of times and thus, weak scalability of
the full simulation will not be possible.

The research for the development of parallel-in-time and space-time methods has a
long history, starting with the first parallel computing architectures [13]. The problem was
identified as a critical performance issues in [1] and amount of literature about the subject

Page 6 of 21

Deliverable 3.2

has been increasing during the last years, particularly in view of the future transition to
exascale.

Since the pioneer work of Nievergelt [20] parallel in time methods have been steadily
developed arriving to the celebrated “Pararreal” method in [18]. In this family of methods
the time interval is partitioned in strips and a traditional time marching scheme is used
on each slab. An external iterative procedure is in charge of the convergence to the actual
solution in the whole time window. For the solution of at each time slab a parallelization
in space can be used in a nested fashion.

A more general class of methods try to directly find the solution in space-time, looking
for parallelization opportunities on the whole problem. A generalisation of the parareal
method in this direction was proposed in [15]. Another method of this type is the PFASST
[11, 19], which combines a spectral deferred correction time integration with a nonlinear
multigrid spatial solver. This method was actually evaluated in the JUQUEEN supercom-
puter proving weak scalability up to 65k cores [21]. Further, weakly scalable space-time
AMG methods can be found in [12, 14, 24].

In this work we follow a different approach, based on the Balancing Domain De-
composition by Constraints (BDDC) method that has been developed at the Universitat
Politecnica de Catalunya (UPC) and the International Centre for Numerical Methods in
Engineering (CIMNE) over the years [2–6]. This method and its extension to handle
space-time problems are described in the next section.

3 The space-time BDDC preconditioner

The BDDC method was originally proposed in [9] and extended to cover a wide range
of applications, such as, e.g incompressible flows [17, 22] and electromagnetic problems
[10, 25]. Even though the mathematical framework is quite complex the underlying can
be explained in simple terms.

When large scale computations are performed based on some mesh-based discretiza-
tion of the domain, the number of unknowns in the interfaces between subdomains is huge,
particularly in 3D. This interface unknowns located at different processors are related to
each other and because they belong to different address spaces these relations are imple-
mented in terms of communications. To obtain the final solution of the global problem
we need to iteratively correct these interface values until convergence is achieved within
a Krylov procedure. Because the number of iterations is determined by the condition
number which scales as h−2 for, e.g. the finite element (FE) approximation of the Poisson
problem, a preconditioner is required to accelerate the convergence.

As a model problem we consider a (possibly) nonlinear parabolic equation,

∂tu−∇ ·
(
(ν + νt)∇u

)
= f in Ω× (0, T], (1)

u = 0 on ∂Ω× (0, T], (2)

u(0, x) = u0, on ∂Ω

where ν is a constant viscosity coefficient and the nonlinearity arises in the dependence
of the “turbulent” viscosity with the unknown, which we take of a p-Laplacian type

νt = c|∇u|p−2. (3)

Page 7 of 21

Deliverable 3.2

We consider both the linear problem, with c = 0 (and therefore νt = 0) and the nonlinear
one, with c = 1 and p = 3, in the examples of Sect. 4. The p-Laplacian model for the
scalar equation is a simple version of the popular Smagorinsky model of turbulent flows
[16].

Observe that in Eq. 1 we consider a cartesian product approximation of the space-
time domain, which permits to approximate in time using finite differences, as usual,
even if the problem is solved in the whole space-time domain. Therefore, we consider the
weak-in-space, strong-in-time form of the problem: find u(t) ∈ V such that

(v, ∂tu) +
(
∇v, (ν + νt)∇u

)
= (v, f)

for any v ∈ V .
We consider a standard FE approximation in space and backward Euler discretization

in time, with a uniform partition of the interval into K segments of size δt and a spatial
mesh of size h, which gives a space-time mesh discretization parameter δ = (δt, h). The
fully discrete version of the problem reads: find uδ = (u1

h,, u
K
h) ∈ Vδ such that

a(uδ, vδ) = l(vδ) (4)

for any vδ ∈ Vδ where

a(uδ, vδ) = β
(
v1
h, u

1
h

)
+ β

K∑
k=2

(
vkh, u

k
h − uk−1

h

)
+
(
∇vkh, (ν + νt)∇ukh

)
(5)

and

l(vδ) =
K∑
k=1

(
vkh, f

)
(6)

In Eq. 5 β = 1/δt = T/K whereas β = 0 for the steady problem.
The idea of the BDDC preconditioner is to solve this problem in a space of reduced

continuity. The FE space of functions Vδ where the solution is sought is build using a
standard mesh, shown in Fig. 1a where red points mark degrees of freedom on subdomain
boundaries that require communications. The preconditioner is built in the BDDC space
Ṽδ shown in Fig. 1b. This is an intermediate space between Vδ and the fully discontinuous
space V d

δ , that is Vδ ⊆ Ṽδ ⊆ V d
δ .

In the following we describe the main ingredients of this construction and which of
them has been reworked to accommodate space-time problems. In order to use the solution
of the problem in the space Ṽδ a transfer operator is required. The injection E : Ṽδ → Vδ
is defined as E = E1 × . . . × En with Ei = Rt

iWi on each subdomain (n is the number
of subdomains), where Ri is the restriction operator (a global to local map) and Wi a
weighting matrix. The operator E permits to recover a solution in the continuos space Vδ
and it is implemented as weighting, a communication and the final addition of the values
at the two (or more) sides of the interface between subdomains, see [3] for the details of
the implementation. When applying the BDDC method to spatial problems, e.g. Poisson,
the weighting matrix is defined as a diagonal matrix whose entries are the inverse of the
number of subdomains that share a given point (for interface points) or one (for interior
points). In the extension to space-time, it is better to take the value on the interface as
the value on the first subdomain when looking at time interfaces, because this respects

Page 8 of 21

Deliverable 3.2

(a) Vδ (b) Ṽh

Figure 1: Differences between subassembled space and BDDC

causality, while keeping the standard definition on spatial interfaces, see [2] for a detailed
discussion of this point.

Given a residual rδ (inside a Krylov iterative procedure), the preconditioner gives
xδ = B−1

BDDCrδ from the solution x̃δ of

ã(x̃δ, ṽδ) = 〈rδ, Eṽδ〉, ∀ṽδ ∈ Ṽδ. (7)

Observe that the solution x̃δ is discontinuous between subdomains (except at corners, the
red points in Fig. 1b) and therefore it is postprocessed applying the operator E. Finally,
interior values on each subdomain are corrected using a discrete harmonic operator E to
obtain xδ = EEx̃δ.

In order to solve problem 7 in parallel, the BDDC space is decomposed as Ṽh = ṼF⊕ṼC
so that functions ṽ = [ṽ ṽ] (see Fig. 1b) are decomposed as ṽ = ṽF + ṽC in a unique way.
By definition, the fine space ṼF is made up of functions of the form [ṽ 0]. Because these
points are the only ones connecting subdomains, the fine space is built from independent
contributions from each subdomain.

A key aspect of the BDDC method is the definition of the coarse space that couples
subdomains. Let us consider the spatial BDDC for symmetric problems, that is, β = 0 in
Eq. 5. In this case, ṼC is defined as the a-orthogonal complement of ṼF , that is ṼC ⊥a ṼF .
This orthogonality implies

ã(x̃F , ỹC) = 0 (8)

∀x̃F ∈ ṼF and ∀ỹC ∈ ṼC . In an implementation, an explicit construction of ṼC is required,
through the computations of a basis, which can performed solving local problems, see [3].
For symmetric problems Eq. 8 also implies ã(ỹC , x̃F) = 0, ∀x̃F ∈ ṼF and ∀ỹC ∈ ṼC .
Then Eq. 7 is decoupled into fine and coarse problems which can be solved separately and
concurrently, that is, solving the problem: find x̃F ∈ ṼF and x̃C ∈ ṼC such that

ã(x̃F , ṽF) = 〈r, EṽF 〉 ∀ṽF ∈ ṼF
ã(x̃C , ṽC) = 〈r, EṽC〉 ∀ṽC ∈ ṼC

and recover x̃ = x̃F + x̃C . This concurrency was exploited in [4] to develop a highly
scalable implementation overlapping fine and coarse calculations.

Page 9 of 21

Deliverable 3.2

When moving to space-time problems, the bilinear form in Eq. 5 is not symmetric
anymore. The extension to non-symmetric problems [2, 23] requires two different coarse
spaces, ṼC and Ṽ ∗C , to satisfy the orthogonality properties

ã(x̃F , ỹ
∗
C) = 0 (9)

ã(ỹC , z̃F) = 0 (10)

∀x̃F , z̃F ∈ ṼF , ∀ỹC ∈ ṼC and ∀ỹ∗C ∈ Ṽ ∗C . After the basis of both ṼC and Ṽ ∗C are built, the
coarse grid correction is computed as: find x̃C ∈ ṼC

ã(x̃C , ṽ
∗
C) = 〈r, Eṽ∗C〉 ∀ṽ∗C ∈ Ṽ ∗C

4 Numerical experiments

In this section we present the numerical experiments carried out during the project.
We first describe the setup of these experiments, including their design, details of the
algorithmic parameters and some information of the High Performance Computing (HPC)
platform in Sect. 4.1. Then we proceed to present the results obtained for the linear
problem in Sect 4.2 and finally those obtained for the nonlinear problem in Sect. 4.3.

4.1 Experimental setup

The goal of the experiments is to analyze the weak scalability of the algorithms presented
in Sect. 3. This type of study is typically made for the discretization of the (spatial)
Poisson problem. However, when dealing with problems obtained from the discretization
of partial differential operators with several terms, the weak scalability only makes sense
when the relation between all terms of the discrete formulation remain constant along
the analysis. Otherwise, the effect of changing the discretization would be blurred by the
change in the nature of the problem. Therefore, a key requirement in the weak scalability
analysis is to keep constant the relative weight of the discrete differential operators, leading
to the concept of CFL-constant weak scalability [12?]. To fulfil this requirement, for the
weak scalability analysis in space, we proceed as follows: for a fixed physical problem (i. e.
for a fixed value of physical properties, initial and boundary conditions), and keeping fixed
the FE and subdomain characteristic sizes (h and H respectively), the physical domain
will be scaled by a factor that depends on the number of processors per dimension1. A
similar approach is used in the weak scalability analysis in time, keeping constant the FE
and subdomain characteristic sizes (δt and ∆t respectively). In space-time scaling, both,
the spatial domain and time integration interval are properly scaled in order to keep these
characteristic sizes constant. As a consequence, the number of FE and subdomains will
increase, but the values of h,H,∆t and δt will remain constant along the test. This allows
us keep a constant diffusive CFL number, defined as CFL = ν δt

h2
. We proceed as follows:

• In space, the FE and subdomain characteristic sizes (h and H) are considered fixed.
The physical domain will be scaled in order to increase the number of tasks involved
in the test, i.e. considering Ω′ = αΩ = [0, α]d, α ∈ N+, the global conforming
partition will involve αnh FE cells and αnH subdomains per spatial dimension.

1There are no restrictions on the space-time domain scaling, both, isotropic and anisotropic scalings
are supported.

Page 10 of 21

Deliverable 3.2

• With respect to time, a similar procedure is carried out. The time integration is
distributed into Pt subdomains. In order to keep the characteristic sizes (∆t and
δt) constant through all tests, the initial time interval is properly scaled with the
number of subdomains Pt. As consequence, the time interval of the problem to be
solved will be Pt times larger (in terms of time) than the initial one.

Regarding the iterative solvers used in the experiments, we consider the following set
up:

• We use the standard Newton-Rahpson method as nonlinear iterative solver. Defining
a maximum of 10 nonlinear iterations, the scheme is automatically stopped whenever
the ratio between the Euclidean norms of the solution and its increment, for a given
nonlinear iterate, is lower than a predefined tolerance, i. e. ‖∆u‖2

‖u∗‖2 ≤ nls rtol. We

considered u0 = 0 as initial guess for the solution, and nls rtol = 10−6.

• The STBDDC iterative solver used to solve the system of equations at each non-
linear solver iteration is automatically stopped once the residual, for a given linear
iterate rk, satisfies the following condition: ‖rk‖2 ≤ ils rtol ∗ ‖r0‖2 + ils atol,
with r0 being the initial residual, and ils rtol and ils atol the relative and ab-
solute predefined tolerances, respectively. As initial guess we choose x0 = 0, and
ils rtol = 10−5 and ils atol = 10−14.

All the numerical experiments presented herein have been performed at Marenostrum-
IV (MN-IV), a supercomputer hosted by the Barcelona Supercomputing Center. This
petascale machine is equipped with 3,456 compute nodes interconnected together with
the Intel OPA HPC network. Each node has 2x Intel Xeon Platinum 8160 multi-core
CPUs, with 24 cores each (i.e. 48 cores per node) and 96 GBytes of RAM.

The approach presented in this report has been implemented and tested in FEMPAR [7],
an open-source project with an object oriented design pattern coded in Fortran 2008, com-
piled with Intel v18.0.5 compilers using system recommended optimization flags. FEMPAR
was linked against the Intel Message Passing Interface (MPI) Library (v2018.4.274) for
message-passing and the BLAS/LAPACK and PARDISO available on the Intel MKL
library for optimized dense linear algebra kernels and sparse direct solvers, resp. All
floating-point operations were performed in IEEE double precision.

4.2 Parabolic linear equation

In these experiments, we consider a 2D parabolic linear equation, that is, we take a
constant viscosity ν = 1.0 and νt = 0. The source term and the corresponding boundary
conditions are chosen such that the solution u = sin(πx) sin(πy) sin(πt) is satisfied. In
order to obtain its discrete counterpart, we consider a global conforming uniform partition
to discretize both, space and time dimensions. In space, the physical domain Ω := [1, 0]2,
is uniformly partitioned into hexahedra FE (Q1(K)) with the same characteristic size
h := 1

nh
in both spatial dimensions, with nh, being the total number of cells per spatial

dimension. Similarly, on time, the problem is uniformly partitioned into a discrete mesh
with characteristic size δt := 1

nt
, with nt as the total number of time steps.

In order to provide a local load to each subdomain, this global mesh is also partitioned
uniformly into a coarse grid, with Px×Py ×Pt subdomains. Each subdomain is provided
with a local load of H

h
× H

h
× ∆t

δt
FE cells, with H and ∆t being the spatial and temporal

Page 11 of 21

Deliverable 3.2

subdomain characteristic sizes, respectively. In consequence, the size of the global mesh
can be computed as Px

H
h
× Py Hh × Pt

∆t
δt

hexahedra FEs.

4.2.1 Weak scalability in time

To perform the the weak scalability analysis in time, we consider a constant domain size

ratio
(
H
h

)2
= 302, taking different values of Kn =

(
∆t
δt

)
= {10, 30, 60}. In order to study

the sensitivity of the linear iterative solver with respect to the CFL number, the domain
was scaled in the temporal dimension, Fig. (2) reports the weak scalability analysis with
T = T0/2, and Fig. (3) reports the same study but taking T ′ = T0/60, with T0 being the
reference time interval T0 = (0, 1].

 0

 5

 10

 15

 20

96
1
19

21
38

41
57

61
86

41

11
52

1

17
28

1

23
04

1

29
76

1

T
im

e
 [

s
]

 # cores

H/h=30 Kn=10, CFL= 45.0 H/h=30 Kn=30, CFL= 15.0 H/h=30 Kn=60, CFL= 7.5

 2

 3

 4

 5

 6

 7

 8

 9

 10

96
1
19

21
38

41
57

61
86

41

11
52

1

17
28

1

23
04

1

29
76

1

R
P

 G
M

R
E

S
 I

te
ra

ti
o

n
s

 # cores

H/h=30 Kn=10, CFL= 45.0 H/h=30 Kn=30, CFL= 15.0 H/h=30 Kn=60, CFL= 7.5

Figure 2: Linear solver iteration counter and total elapsed time with T ′ = T0/2

Page 12 of 21

Deliverable 3.2

 0

 5

 10

 15

 20

 25

 30

96
1
19

21
38

41
57

61
86

41

11
52

1

17
28

1

23
04

1

29
76

1

T
im

e
 [

s
]

 # cores

H/h=30 Kn=10 CFL=1.50 H/h=30 Kn=30, CFL=0.50 H/h=30 Kn=60, CFL=0.25

 8

 9

 10

 11

 12

 13

 14

 15

96
1
19

21
38

41
57

61
86

41

11
52

1

17
28

1

23
04

1

29
76

1

R
P

 G
M

R
E

S
 I

te
ra

ti
o

n
s

 # cores

H/h=30 Kn=10 CFL=1.50 H/h=30 Kn=30, CFL=0.50 H/h=30 Kn=60, CFL=0.25

Figure 3: Linear solver iteration counter and total elapsed time with T ′ = T0/60

As consequence of this study, some conclusions can be obtained. The first one is that,
as it is well known, the number of iterations and therefore the wall clock time depend
on the local load Kn. Second, the influence of the CFL number on the total number of
linear solver iterations, for a fixed number of degrees of freedom, a reduction in the time
step size δt will increase the total number of linear solver iterations, however this change
is not proportional, if the time step has been reduced by a factor of 60, the total number
of linear iterations is increased twice.

However, despite the sensitivity with respect to the CFL number, the algorithm is
weak scalable, i.e. for a fixed CFL number, and keeping the same local problem size, the
number of linear solver iterations and the elapsed time remain slightly constant as the
number of processors is increased.

4.2.2 Weak scalability in space-time

To perform the weak scalability analysis in space-time, we consider three different values

of the spatial subdomain size
(
H
h

)2
= 102, 302, 402. With respect to the time interval

discretisation, we consider three different values of Kn = ∆t
δt

= {10, 30, 40}. To study the
sensitivity of the linear iterative solver with respect to space-time scaling, two different
anisotropic domain scalings have been studied, Fig. (4) and (5) report the results using
subdomain grid distributions with Px = 2k, Py = 2k, Pt = 12k and Px = 6k, Py = 8k, Pt =
k, respectively, both leading to a P = Px × Py × Pt subdomain partition of the scaled
domain PdΩd × Pt(0, T ′], with d = {x, y}, P being the total number of subdomains, and
T ′ the scaled time interval. Finally, in order to obtain the full test, k takes the following
values: k = {2, 3, 4, 5, 6, 7, 8}, equivalent to 961, 1927, 3841, 5761, 8641, 11521, 17281, and

23041 processors. In all cases, the local load per processor can be computed as
(
H
h

)d× ∆t
δt

.

Page 13 of 21

Deliverable 3.2

 0

 5

 10

 15

 20

 25

 30

38
5
12

91
30

73
60

01

10
36

9

16
46

5

24
57

7

T
im

e
 [

s
]

 # cores

H/h=10 Kn=30, CFL=0.055
H/h=30 Kn=10, CFL= 1.500

H/h=30 Kn=30, CFL=0.500
H/h=30 Kn=40, CFL=0.375

H/h=40, Kn=30, CFL=0.888

 10

 12

 14

 16

 18

 20

38
5
12

91
30

73
60

01

10
36

9

16
46

5

24
57

7

R
P

 G
M

R
E

S
 I

te
ra

ti
o

n
s

 # cores

H/h=10 Kn=30, CFL=0.055
H/h=30 Kn=10, CFL= 1.500

H/h=30 Kn=30, CFL=0.500
H/h=30 Kn=40, CFL=0.375

H/h=40, Kn=30, CFL=0.888

Figure 4: Linear solver iteration counter and elapsing time with Px = 2k, Py = 2k, Pt =
12k

 0

 5

 10

 15

 20

 25

 30

38
5
12

91
30

73
60

01

10
36

9

16
46

5

24
57

7

T
im

e
 [

s
]

 #cores

H/h=10 Kn=30, CFL=0.055
H/h=30 Kn=10, CFL=1.500

H/h=30 Kn=30, CFL=0.500
H/h=30 Kn=40, CFL=0.375

H/h=40 Kn=30, CFL=0.888

 4

 6

 8

 10

 12

 14

38
5
12

91
30

73
60

01

10
36

9

16
46

5

24
57

7

R
P

 G
M

R
E

S
 I

te
ra

ti
o

n
s

 #cores

H/h=10 Kn=30, CFL=0.055
H/h=30 Kn=10, CFL=1.500

H/h=30 Kn=30, CFL=0.500
H/h=30 Kn=40, CFL=0.375

H/h=40 Kn=30, CFL=0.888

Figure 5: Linear solver iteration counter and total elapsed time with Px = 6k, Py =
8k, Pt = k

Page 14 of 21

Deliverable 3.2

Similar trends can be observed in this case for both spatial partitions. Algorithmic
weak scalability (i.e. the number of iterations) is always observed but actual weak scalaib-
lity (i.e. wall-clock times) depends on the local load. When fine scale processors have
enough load, the coarse problem is masked and scalability is maintained. For lower loads
some degradation is observed when more than 10k cores are used. It is worth mentioning
that some points are missing in these figures due to exhausted computing hours available.

4.3 Nonlinear p-Laplacian problem

In section we consider the 2D nonlinear p-Laplacian equation with two different viscosities,
namely ν = 1 and ν = 10, to which we add the turbulent viscosity given by Eq. 3 with
c = 1 and p = 3. Observe that the bigger the value of ν the closer the problem is to the
linear one. As in the previous linear case, the source term and the corresponding boundary
conditions are chosen such that the solution is u = sin(πx) sin(πy) sin(πt). The domain
is Ω = [0, 1]d × (0, T] and we consider homogeneous boundary and initial conditions. To
discretize the problem, let us consider a global conforming uniform partition. In space,
the physical domain Ω, is uniformly partitioned into hexahedra FEs (Q1(K)), with the
same characteristic size h := L

nh
in both spatial dimensions, being nh the total number of

cells per spatial dimension. The time interval is also uniformly partitioned into a discrete
mesh with characteristic size δt := T ′

nt
, with nt being the total number of time steps and

T ′ the scaled time interval. In this case, we will consider the same criteria to scale the
domain, and the iterative solvers setup presented in Sec. 4.1.

4.3.1 Weak scalability in time

To perform the the weak scalability analysis in time, we consider two different values for

the subdomain size
(
H
h

)2
= {102, 302}, and two different values of Kn =

(
∆t
δt

)
= {10, 30}.

In this case, the time interval T ′ is properly scaled in order to keep a constant value
of Kn while the number of processors Pt is increased. The spatial scaling parameter
α = 1.0, is considered, i. e. no scaling in the spatial dimensions is used. The sub-
domain grid distribution considered in this case is Px = 1, Py = 1, Pt = 48k, with k =
{8, 27, 80, 120, 240, 360, 480}, corresponding to 961, 1297, 3841, 5761, 8641, 11521, 17281, and
23041 processors.

In order to study the influence of the constant viscosity ν in the behavior of both
iterative solvers, two different values has been considered ν = {1.0, 10.0}. In the follow-
ing, Fig. (6) and (7) report the weak scalability analysis with ν = 1.0 and ν = 10.0,
respectively.

Page 15 of 21

Deliverable 3.2

 0

 10

 20

 30

 40

 50

 60

96
1
19

21
38

41
57

61
86

41

11
52

1

17
28

1

23
04

1

T
im

e
 [

s
]

 # cores

H/h=10 Kn=10, CFL=0.166
H/h=10 Kn=30, CFL=0.055

H/h=30 Kn=10, CFL=1.500
H/h=30 Kn=30, CFL=0.500

 56

 58

 60

 62

 64

 66

 68

 70

96
1
19

21
38

41
57

61
86

41

11
52

1

17
28

1

23
04

1

R
P

 G
M

R
E

S
 I

te
ra

ti
o

n
s

 # cores

H/h=10 Kn=10, CFL=0.166
H/h=10 Kn=30, CFL=0.055

H/h=30 Kn=10, CFL=1.500
H/h=30 Kn=30, CFL=0.500

Figure 6: Linear solver iteration counter and total elapsed time with ν = 1.0

 0

 5

 10

 15

 20

 25

 30

 35

49 96
1

19
21

38
41

57
61

86
41

T
im

e
 [

s
]

 # cores

H/h=10 Kn=10, CFL=0.166
H/h=10 Kn=30, CFL=0.055

H/h=30 Kn=10, CFL=1.500
H/h=30 Kn=30, CFL=0.500

 20

 25

 30

 35

 40

49 96
1

19
21

38
41

57
61

86
41

R
P

 G
M

R
E

S
 I

te
ra

ti
o

n
s

 # cores

H/h=10 Kn=10, CFL=0.166
H/h=10 Kn=30, CFL=0.055

H/h=30 Kn=10, CFL=1.500
H/h=30 Kn=30, CFL=0.500

Figure 7: Linear solver iteration counter and total elapsed time with ν = 10.0

Out of these plots, we can state some conclusions. Regarding the influence of the
viscosity ν on the total number of linear solver iterations: a reduction in the viscosity ν

Page 16 of 21

Deliverable 3.2

results in more linear solver iterations. In most of cases, once the viscosity is reduced by
a factor of 10, the total number of linear iterations is increased around twice.

However, despite the sensitivity with respect to the viscosity ν, the algorithm is weak
scalable, i.e. for a fixed CFL, the number of linear solver iterations and its total elapsed
time remain constant as the number of processors is increased.

4.3.2 Comparison against sequential approach

The goal of this section is to compare of the STBDDC with a classical sequential approach.

We consider a fixed CFL=1.50. This number is obtained by considering
(
H
h

)2
= 302 and

Kn = ∆t
δt

= 10. The subdomain grid distribution is taken as Px = 3, Py = 4, Pt = 4k
leading to P = Px×Py×Pt = 48k subdomains. The full test is obtained by taking values
of k = {1, 2, 3, 4, 8, 16}, equivalent to Pt = {4, 8, 12, 16, 32, 64} time subdomains.

With respect to the sequential approach, only spatial parallelism is exploded, a subdo-
main grid with Ps = Px × Py = 3× 4 = 12 processors is considered. In Fig. (8) and (10),
we plot the evolution of the number of local solves computed as the accumulated number
of linear iterations through all nonlinear iterations for two different values of viscosity
ν = {1, 10}, while Fig. (9) and (11) plot the results of the elapsed time for the same set of
viscosities ν = 1, 10.0. As it can be observed in these figures, at some point the STBDDC
outerperforms the sequential approach both in terms of computational time and number
linear solves. Of course, it has to be kept in mind that in the sequential approach (black
curves in Figs- 8-11 the number of processors do not grow with the total time, in contrast
to the space-time method in which more and more computational resources are used.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 10 20 30 40 50

 0 100 200 300 400 500

L
o

c
a

l
s
o

lv
e

s

Pt

Time steps

Sequential approach
H/h=30, Kn=10, CFL=1.50

Figure 8: Local solves as function of the number of temporal subdomains Pt with ν = 1.0

Page 17 of 21

Deliverable 3.2

 0

 5

 10

 15

 20

 25

 30

 0 10 20 30 40 50

 0 100 200 300 400 500

W
a

ll
c
lo

c
k
 t

im
e

 [
s
]

Pt

Time steps

Sequential approach
H/h=30, Kn=10, CFL=1.50

Figure 9: Wall clock time with ν = 1.0

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 10 20 30 40 50

 0 100 200 300 400 500

L
o

c
a

l
s
o

lv
e

s

Pt

Time steps

Sequential approach
H/h=30, Kn=10, CFL=1.50

Figure 10: Local solves as function of the number of temporal subdomains Pt with ν = 10.0

Page 18 of 21

Deliverable 3.2

 0

 5

 10

 15

 20

 25

 30

 0 10 20 30 40 50

 0 100 200 300 400 500

W
a

ll
c
lo

c
k
 t

im
e

 [
s
]

Pt

Time steps

Sequential approach
H/h=30, Kn=10, CFL=1.50

Figure 11: Wall clock time with ν = 10.0

5 Conclusions

In this report we have detailed the implementation of space-time methods in FEMPAR

and we have presented detailed numerical experiments carried out during the project.
These results show that the STBDDC actually permits to extract parallelism when spatial
parallelism is exhausted at the price of using more computational resources, both for linear
and nonlinear problems. Very good weak scalability upto 30k processors has been observed
in MN-IV.

The only limitation that deserves to be mentioned is that the number of processors
at which the space-time method starts to make sense depends on the strength of the
nonlinearity. As it can be observed in the results of Sect.4.3.2, the STBDDC starts
outperforming the sequential approach with 10 for ν = 10 processors compared to 16 pro-
cessors for ν = 1. In any case, this is not a big difference but the nonlinearity considered
herein is very soft. Further research is required to actually quantify the severity of this
problem.

References

[1] Report on the Workshop on Extreme-Scale Solvers: Transition to Fu-
ture Architectures. Technical report, U.S. Department of Energy, 2012.
URL https://science.osti.gov/-/media/ascr/pdf/program-documents/docs/

reportExtremeScaleSolvers2012.pdf.

[2] S. Badia and M. Olm. Space-Time Balancing Domain Decomposition. SIAM
Journal on Scientific Computing, 39(2):C194—-C213, jan 2017. ISSN 1064-8275.
doi:10.1137/16M1074266.

[3] S. Badia, A. F. Mart́ın, and J. Principe. Implementation and scalability analysis of
balancing domain decomposition methods. Archives of Computational Methods in
Engineering, 20(3):239–262, 2013. doi:10.1007/s11831-013-9086-4.

Page 19 of 21

https://science.osti.gov/-/media/ascr/pdf/program-documents/docs/reportExtremeScaleSolvers2012.pdf
https://science.osti.gov/-/media/ascr/pdf/program-documents/docs/reportExtremeScaleSolvers2012.pdf
http://dx.doi.org/10.1137/16M1074266
http://dx.doi.org/10.1007/s11831-013-9086-4

Deliverable 3.2

[4] S. Badia, A. F. Mart́ın, and J. Principe. A highly scalable parallel implementa-
tion of balancing domain decomposition by constraints. SIAM Journal on Scientific
Computing, 36(2):C190–C218, 2014. doi:10.1137/130931989.

[5] S. Badia, A. F. Mart́ın, and J. Principe. On the scalability of inexact balancing do-
main decomposition by constraints with overlapped coarse/fine corrections. Parallel
Computing, 50:1–24, dec 2015. doi:10.1016/j.parco.2015.09.004.

[6] S. Badia, A. F. Mart́ın, and J. Principe. Multilevel Balancing Domain Decomposition
at Extreme Scales. SIAM Journal on Scientific Computing, 38(1):C22—-C52, 2016.
ISSN 1064-8275. doi:10.1137/15M1013511.

[7] S. Badia, A. F. Mart́ın, and J. Principe. FEMPAR: An Object-Oriented Parallel Fi-
nite Element Framework. Archives of Computational Methods in Engineering, pages
1–77, 2017.

[8] S. Badia, A. Martı́ın, and J. Principe. FEMPAR, 2018. URL http://www.fempar.

org.

[9] C. R. Dohrmann. A preconditioner for substructuring based on constrained energy
minimization. SIAM Journal on Scientific Computing, 25(1):246–258, 2003. ISSN
10648275. doi:10.1137/S1064827502412887. URL http://www.siam.org/journals/

ojsa.php.

[10] C. R. Dohrmann and O. B. Widlund. Some Recent Tools and a BDDC Algorithm
for 3D Problems in H(curl). In Domain Decomposition Methods in Science and Engi-
neering XX, volume 91 of Lecture Notes in Computational Science and Engineering,
pages 15–25. Springer Berlin Heidelberg, may 2013. ISBN 978-3-642-35274-4.

[11] M. Emmett and M. Minion. Toward an efficient parallel in time method
for partial differential equations. Communications in Applied Mathematics and
Computational Science, 7(1):105–132, mar 2012. ISSN 2157-5452, 1559-3940.
doi:10.2140/camcos.2012.7.105. URL http://msp.org/camcos/2012/7-1/p04.

xhtml.

[12] R. Falgout, S. Friedhoff, T. Kolev, S. MacLachlan, and J. Schroder. Parallel Time
Integration with Multigrid. SIAM Journal on Scientific Computing, 36(6):C635—-
C661, jan 2014. ISSN 1064-8275. doi:10.1137/130944230.

[13] M. J. Gander. 50 Years of Time Parallel Time Integration. pages 69–113. Springer,
Cham, 2015. doi:10.1007/978-3-319-23321-5 3.

[14] M. J. Gander and M. Neumüller. Analysis of a New Space-Time Parallel Multigrid
Algorithm for Parabolic Problems. arXiv:1411.0519 [math], nov 2014. URL http:

//arxiv.org/abs/1411.0519.

[15] M. J. Gander, R.-J. Li, Y.-L. Jiang, and R.-J. Li. Parareal Schwarz
Waveform Relaxation Methods. In Domain Decomposition Methods in Sci-
ence and Engineering XX, volume Part II of Lecture Notes in Computa-
tional Science and Engineering, pages 451–458. Springer Berlin Heidelberg,
2013. ISBN 978-3-642-35275-1. URL https://pdfs.semanticscholar.org/d4dd/

c502337890a534ae31db5443920a202bfa0e.pdf.

Page 20 of 21

http://dx.doi.org/10.1137/130931989
http://dx.doi.org/10.1016/j.parco.2015.09.004
http://dx.doi.org/10.1137/15M1013511
http://www.fempar.org
http://www.fempar.org
http://dx.doi.org/10.1137/S1064827502412887
http://www.siam.org/journals/ojsa.php
http://www.siam.org/journals/ojsa.php
http://dx.doi.org/10.2140/camcos.2012.7.105
http://msp.org/camcos/2012/7-1/p04.xhtml
http://msp.org/camcos/2012/7-1/p04.xhtml
http://dx.doi.org/10.1137/130944230
http://dx.doi.org/10.1007/978-3-319-23321-5_3
http://arxiv.org/abs/1411.0519
http://arxiv.org/abs/1411.0519
https://pdfs.semanticscholar.org/d4dd/c502337890a534ae31db5443920a202bfa0e.pdf
https://pdfs.semanticscholar.org/d4dd/c502337890a534ae31db5443920a202bfa0e.pdf

Deliverable 3.2

[16] J. L. Guermond, J. T. Oden, and S. Prudhomme. Mathematical Perspectives on
Large Eddy Simulation Models for Turbulent Flows. Journal of Mathematical Fluid
Mechanics, 6(2):194–248, 2004. URL http://www.springerlink.com/index/10.

1007/s00021-003-0091-5.

[17] J. Li and O. Widlund. BDDC Algorithms for Incompressible Stokes Equations.
SIAM Journal on Numerical Analysis, 44(6):2432–2455, jan 2006. ISSN 0036-
1429, 1095-7170. doi:10.1137/050628556. URL http://epubs.siam.org/action/

showAbstract?page=2432&volume=44&issue=6&journalCode=sjnaam.

[18] J.-L. Lions, Y. Maday, and G. Turinici. Résolution d’EDP par un schéma en temps
”pararéel”. Comptes Rendus de l’Académie des Sciences - Series I - Mathematics,
332(7):661–668, apr 2001. ISSN 0764-4442. doi:10.1016/S0764-4442(00)01793-6.

[19] M. L. Minion, R. Speck, M. Bolten, M. Emmett, and D. Ruprecht. Interweaving
PFASST and Parallel Multigrid. SIAM Journal on Scientific Computing, 37(5):
S244—-S263, jan 2015. ISSN 1064-8275, 1095-7197. doi:10.1137/14097536X. URL
http://epubs.siam.org/doi/10.1137/14097536X.

[20] J. Nievergelt. Parallel methods for integrating ordinary differential equa-
tions. Communications of the ACM, 7(12):731–733, dec 1964. ISSN 00010782.
doi:10.1145/355588.365137. URL http://portal.acm.org/citation.cfm?doid=

355588.365137.

[21] R. Speck, D. Ruprecht, M. Emmett, M. Bolten, and R. Krause. A space-time parallel
solver for the three-dimensional heat equation, volume 25. jul 2013. doi:10.3233/978-
1-61499-381-0-263.

[22] X. Tu. A three-level BDDC algorithm for a saddle point problem. Nu-
merische Mathematik, 119(1):189–217, sep 2011. ISSN 0029-599X, 0945-3245.
doi:10.1007/s00211-011-0375-2. URL http://link.springer.com/article/10.

1007/s00211-011-0375-2.

[23] X. Tu and J. Li. A balancing domain decomposition method by con-
straints for advection-diffusion problems. Communications in Applied Mathemat-
ics and Computational Science, 3(1):25–60, jul 2008. ISSN 2157-5452, 1559-
3940. doi:10.2140/camcos.2008.3.25. URL http://escholarship.org/uc/item/

0r28q60w.pdfhttp://msp.org/camcos/2008/3-1/p02.xhtml.

[24] T. Weinzierl. A geometric space-time multigrid algorithm for the heat equation.
Numerical Mathematics: Theory, Methods and Applications, 5(01):110–130, 2012.
URL http://journals.cambridge.org/abstract_S1004897900000258.

[25] S. Zampini, O. B. Widlund, and D. E. Keyes. Scalable and Robust BDDC Precon-
ditioners for Reservoir and Electromagnetics Modeling. sep 2015. doi:10.3997/2214-
4609.201414030.

Page 21 of 21

http://www.springerlink.com/index/10.1007/s00021-003-0091-5
http://www.springerlink.com/index/10.1007/s00021-003-0091-5
http://dx.doi.org/10.1137/050628556
http://epubs.siam.org/action/showAbstract?page=2432&volume=44&issue=6&journalCode=sjnaam
http://epubs.siam.org/action/showAbstract?page=2432&volume=44&issue=6&journalCode=sjnaam
http://dx.doi.org/10.1016/S0764-4442(00)01793-6
http://dx.doi.org/10.1137/14097536X
http://epubs.siam.org/doi/10.1137/14097536X
http://dx.doi.org/10.1145/355588.365137
http://portal.acm.org/citation.cfm?doid=355588.365137
http://portal.acm.org/citation.cfm?doid=355588.365137
http://dx.doi.org/10.3233/978-1-61499-381-0-263
http://dx.doi.org/10.3233/978-1-61499-381-0-263
http://dx.doi.org/10.1007/s00211-011-0375-2
http://link.springer.com/article/10.1007/s00211-011-0375-2
http://link.springer.com/article/10.1007/s00211-011-0375-2
http://dx.doi.org/10.2140/camcos.2008.3.25
http://escholarship.org/uc/item/0r28q60w.pdf http://msp.org/camcos/2008/3-1/p02.xhtml
http://escholarship.org/uc/item/0r28q60w.pdf http://msp.org/camcos/2008/3-1/p02.xhtml
http://journals.cambridge.org/abstract_S1004897900000258
http://dx.doi.org/10.3997/2214-4609.201414030
http://dx.doi.org/10.3997/2214-4609.201414030

	Introduction
	Parallel in time and space-time methods
	The space-time BDDC preconditioner
	Numerical experiments
	Experimental setup
	Parabolic linear equation
	Weak scalability in time
	Weak scalability in space-time

	Nonlinear p-Laplacian problem
	Weak scalability in time
	Comparison against sequential approach

	Conclusions

