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Abstract 

In this report, we introduce a meshfree approach for static analysis of isotropic/orthotropic cross-

ply laminated plates with symmetric/non-symmetric layers. Classical, first and third order shear 

deformation plate theories are employed to perform the analyses. In this method, the solution is 

first split into homogenous and particular parts and then the homogenous part is approximated by 

the summation of an appropriately selected set of exponential basis functions (EBFs) with 

unknown coefficients. In the homogenous solution the EBFs are restricted to satisfy the 

governing differential equation. The particular solution is derived using a similar approach and 

another series of EBFs. The imposition of the boundary conditions and determination of the 

unknown coefficients are performed by a collocation method through a discrete transformation 

technique. The solution method allows us to obtain semi-analytical solution of plate problems 

with various shapes and boundary conditions.  The solutions of several benchmark plate 

problems with various geometries are presented to validate the results.   

 

Keywords: Meshfree, Laminated plate, Classical plate theory, Shear deformation plate theories, 

Exponential basis function, Discrete transformation  
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1. INTRODUCTION 
 

The wide application of moderately thick and thin plates in structural components has turned the 

bending analysis of plates into one of the most important engineering concerns. For this purpose, 

several plate theories have been developed to address this problem. The classical plate theory 

(CLPT) based on the Kirchhoff’s assumptions (1850), in which the straight lines normal to the 

mid-plane remain straight and normal after the deformation, disregards the effect of transverse 

shear strains. This leads to underestimation of the deflections and overestimations of natural 

frequencies and critical loads especially in plates with high thickness-to-length ratios. These 

errors are even more pronounced in laminated plates made of fiber reinforced composites with 

high elastic modulus to shear modulus ratios. In order to account for the influence of the 

transverse shear deformations on the bending deformations, a category of plate theories known 

as the shear deformation theories have been introduced in the literature. 

 

Mindlin (1951) proposed the first order shear deformation theory (FSDT), in which the 

transverse shear strains and stresses are assumed to be constant across the thickness of the plate. 

This theory requires a shear correction factor to compensate its inability in satisfying the zero-

traction boundary conditions on the top and bottom surfaces of the plate. Several higher order 

shear deformation theories (HSDT) (Whitney and Sun, 1974; Lo et al., 1977; Levinson, 1980; 

Reddy, 1984), assuming a Taylor expansion of the in-plane displacements in terms of the plate 

thickness coordinate, have been proposed to overcome the FSDT deficiencies. Among the higher 

order theories the third order shear deformation theories (TSDT) developed by Levinson (1980) 

and Reddy (1984) are the most prevalent ones in the analysis of laminated plates. 

 

Exact analytical plate bending solutions stemming from these theories for plates with various 

boundary conditions are available in the literature. The Navier solution of rectangular simply 

supported laminated plates can be found in (Srinivas and Rao, 1970; Reddy, 1984; Swaminathan 

and Ragounadin, 2004). Khdeir and Reddy (1991) conducted the Levy-type solutions of the 

afore-mentioned theories for antisymmetric cross-ply rectangular laminates.  Several other 

analytical solutions for shear deformable laminated plates can be found in the studies by Khdeir 

et al. (1987), Oktem and Chaudhuri (2007) and the references therein. Yuemei and Rui (2010) 

presented an accurate bending analysis of rectangular thin plates with two adjacent edges free 

and the other clamped or simply supported based on a symplectic geometry approach. An exact 

solution is formulated in the work by the work by Kobayashi and Turvey (1994) for bending of 

the annular sector Mindlin plates with two radial edges simply supported and the two circular 

edges subjected to various boundary conditions.  

 

Exact solution of thick plates, especially based on shear deformations theories, are limited due to 

their complexities. As a result, researchers have adopted various numerical methods such as 

finite element method (FEM) (Pandya and Kant, 1988; Dong and Defreitas, 1994; Yildiz and 

Sarikanat, 2001; Kocak and Hassis, 2003) and the finite strip method (FSM) (Akhras and Li, 

2005) for bending analysis of thick plate based on shear deformation plate theories. The use of 

FEM not only requires appropriate plate elements in order to satisfy continuity and compatibility 

conditions, but also needs a remeshing procedure for achieving acceptable accuracy. A review of 
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the recent developments in the finite element analysis of laminated composite plates can be 

found in the studies by Zhang and Yang  (2009).  

Some other numerical methods such as differential quadrature method (DQM) and boundary 

element method (BEM) have also been used to solve thick plate problems. Liew and Han (1997) 

employed DQM for bending analysis of Reissner-Mindlin plates and further developed it into 

differential quadrature element method (DQEM) (Liu and Liew, 1998b) to tackle discontinuities 

in thick plate problems. The differential cubature method (DCM), which is an alternative to the 

differential equation, was used by Liu and Liew (1998a) for the static analysis of arbitrary 

shaped plates based on FSDT. The use of an indirect boundary element method (BEM) for 

Mindlin and Reissner models of thick plates was reported in the studies by De Barcellos and 

Westphal (1992), and Katsikadelis and Yotis (1993).  

 

Over the past decade, there has been an increasing trend of using meshless methods in which the 

approximate solution is entirely based on choosing a set of nodes for discretizing the problem 

domain rather than a mesh. Among these methods are the element free Galerkin method (EFG) 

(Belytschko et al., 1994) which is an improved form of the diffuse element method (DEM) 

(Nayroles et al., 1991). EFG has been employed in (Donning and Liu, 1998; Belinha and Dinis, 

2006) for analysis of shear deformable plates and laminates. Liu et al. (1995) developed the 

reproducing kernel particle method (RKPM) in order to enhance the interpolation consistency of 

the earlier form of the method known as the smoothed particle hydrodynamics (SPH) method. 

Wang et al. (2002) used RKPM for flexure, vibration and buckling analysis of laminated 

composite plates based on FSDT. Meshless local Petrov-Galerkin method (MLPG) was 

formulated by Atluri and Zhu (1998) using a symmetric local weak form that makes it possible to 

perform integration in a mesh-free sense. The h-p clouds (Duarte and Oden, 1996) is another 

meshless method that was employed by Garcia et al. (2000) for Mindlin-Reissner thick plates. 

Wang and Liu (2001) introduced a radial point interpolation method (RPIM) by using radial 

basis functions (RBFs) for constructing the shape functions. This method was used by Liu et al. 

(2007) for static, vibration and buckling analysis of shear deformable laminated plates. All these 

meshfree methods share many common characteristics, while the main differences among them 

are due to different approaches adopted for constructing the shape functions and obtaining the 

discrete equations of approximation, in addition to various forms of imposing the essential 

boundary conditions.  

 

The above mentioned meshless methods use a grid of nodes/points over the computational 

domain.  In the literature, one can find other meshless methods in which a series of points are 

used over the boundaries. A prerequisite for using such methods is availability of fundamental 

functions satisfying the governing equations.  The method of fundamental solutions (MFS) 

introduced by Kupradze and Aleksidze (1964) falls in this latter category.  In the same category 

one may find a class of boundary methods known as “Trefftz” methods in which the boundary 

conditions are satisfied through a variety of weighted residual methods. MFS and BEM are 

sometimes classified in Trefftz methods.  Despite a rich literature for Trefftz method in two/three 

dimensional heat and solid problems (see Li et al. 2007), and except for studies focusing on 

construction of Trefftz finite elements (pioneered by Jirousek and co-workers 1977, 1986), few 

studies can be found addressing the application of the method, in its mesh-less form, to 

laminated plate bending problems. The reader may refer to the paper by Dong et al. (2004) and 
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the references therein for further information. Power series are used as the basis functions in this 

reference. 

 

In this report, a meshless boundary point method introduced by the second author and the co-

workers (2009) for the solution of static and time harmonic elasticity problems is extended to 

solve laminated plate problems. The method uses a series of exponential basis functions (EBFs), 

satisfying the governing partial differential equations (PDEs), to approximate the solution on the 

whole domain. The boundary conditions are enforced through a collocation approach on a set of 

boundary points. In this sense, the method may be classified as Trefftz methods.  Comparing 

with fundamental functions needed in MFS, the EBFs can be easily found for PDEs with 

constant coefficients.  This is the case for variety of plate problems formulated by CLPT, FSDT 

or TSDT using Cartesian coordinates.  As will be discussed later, the in-plane and out-of-plane 

actions may appear in a coupled formulation depending on the configuration of the layer. 

Nevertheless this does not create any restrictions for the proposed method in this report since the 

system of equation is of constant coefficient type. Here we shall show how the appropriate EBFs 

in each of the aforementioned theories can be found and how one can use them to find semi-

analytical solutions for laminated plates with various layer configurations, shapes and boundary 

conditions.   

 

The layout of the report is as follows. In sections 1 and 2, we shall explore the governing 

equations and the boundary conditions for CLPT, FSDT and TSDT plate models. Thereafter, in 

section 3, we shall describe the procedure of evaluating the homogenous and particular solution 

parts for a generic thick laminated plate. Various numerical examples, for which exact analytical 

or other numerical solutions are available, shall be presented in section 4 in order to validate the 

results and demonstrate the accuracy, efficiency and simplicity of the present method. In section 

5, we shall summarize the main features of the method. 

 

2. GOVERNING EQUATIONS 
 

We consider a plate with uniform total thickness h  composed of  N  orthotropic layers, 

schematically shown in Figure 1 The midplane is bounded in the domain Ω  in 1 2x x -plane with 

the boundary denoted by ∂Ω . The mth layer with the principal material 

coordinates 1 2 3( , , )mx x x′ ′ ′ , is oriented at an angle mθ  to the plate coordinate, 1x .    

 

Herein, we deal with the solution of bending problems based on the classical laminated plate 

theory (CLPT), the first-order shear deformation theory (FSDT), and third-order shear 

deformation theory (TSDT). The differences among these theories arise from the assumptions 

and restrictions of displacements through the z thickness direction of the plate. 

 

In this report, indicial notations will be used, in which a repeated or dummy index will be 

summed over 1 to 2 for Latin lowercase letter, unless otherwise indicated. Consistently, the 

partial differentiations with respect to ix  coordinates will be represented by the comma-

subscript convention. 
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Figure 1. Plate and lamina coordinate systems and layer numbering in a generic laminated plate. 

 

In the third-order laminated plate theory proposed by Reddy (2004), assuming cubic expansion 

of in-plane displacements over the total thickness of the plate leads to the following displacement 

field 

 

( )3
1 2 3 1 2 3 1 2 1 3 1 2 3, 1 2

3 1 2 3 3 1 2

( , , ) ( , )  ( , )  ( , ) ( , )

( , , ) ( , )

i i i i iU x x x u x x x x x C x x x u x x

U x x x u x x

φ φ= + − +

=
 (1) 

                                                                            

where  ( 1,2)iU i =  and 3U  represent the in-plane and transverse displacement components 

respectively, ( 1, 2)iu i =  and 3u   
denote the midplane displacements, and  ( 1, 2)i iφ =

 
indicates 

the rotations of the cross sections normal to the in-plane coordinates 1x  and 2x . Here, 

1 2 3 1 2( ,  ,  u ,  ,  )u u φ φ  are the unknown generalized displacements to be found.  Note that one can 

derive the governing differential equations for the triple theories (i.e. CLPT, FSDT and TSDT) 

by introducing the following substitutions in (1) (Khdeir et al., 1987) 

 

for TSDT:    1 2

4

3
C

h
=  

for FSDT:    1 0C =  

for CLPT:    1 0C =  and  3,  i iuφ = −   

(2) 

 

The above suggestion holds for the rest of this report unless it is stated otherwise. The strain-

displacement relations according to the assumption of small deformations can be written as 
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(0) (1) 3 (3)
3 3ij ij ij ijx xε ε ε ε= + +  (3) 

(0) 2 (2)
3 33 3i i ixγ γ γ= +

 
(4) 

 

where 

 

(0) (1) (0)
, , , , 3,3

1 1
( ),     ( ),      

2 2
i j j i i j j i i iij ij iu u uε ε φ φ γ φ= + = + = +  (5) 

(3) (2)1
, , 3, 3, 2 3,3  ( )( ),        

2
i j j i ij ji i iij i

C
u u C uε φ φ γ φ

−
= + + + = − +

 
(6) 

      

in which the superscripts 0,  1,  2  and 3  in parentheses represent the constant, linear, square and 

cubic parts of the strain components’ distributions along the plate thickness, respectively. In 

addition,  

 

 2 13 C C=  (7) 

 

where 1C  has already been specified for CLPT, FSDT, and TSDT in (2). The stress resultants, 

per unit length, in terms of the strain components are as follows 

 
(0) (1) (3)

ij ijkl ijkl ijklkl kl klN A B Eε ε ε= + +   

(0) (1) (3)
ij ijkl ijkl ijklkl kl klM B D Fε ε ε= + +

 

 

(0) (1) (3)
ij ijkl ijkl ijklkl kl klP E F Hε ε ε= + +

 

(8) 

(0) (2)
3 3 3 33 3( )i s i j i jj jQ k A Dγ γ= +

 

 

(0) (2)
3 3 3 33 3( )i i j i jj jR D Fγ γ= +

 

 

 

where ijN  are the in-plane force resultants, ijM  the moment resultants, iQ  the transverse 

shearing force resultants, and ,ij iP R the higher-order stress resultants, respectively. The 

parameter sk
 
in the definition of iQ

 
denotes the shear correction factor coefficient; which 

should only be applied in FSDT to correct the discrepancy between the actual transverse shear 

stresses distributions over the plate thickness and that of evaluated by FSDT (Reddy, 2004). We 

have taken 5 / 6sk =  throughout this report.   

 

The overall stiffness of the plate can be expressed in terms of stiffness in each laminate as 

follows 

 
1

1

( ) 2 3 4 6( ,  ,  ,  ,  ,  )  ( 1,  ,  , ,  ,  ) 
m

m

zN

m z

m
ijkl ijkl ijkl ijkl ijkl ijkl ijklA B D E F H Q z z z z z dz

+

=
=∑ ∫  (9) 

1

1

( ) 2 4
3 3 3 3 3 3 3 3( ,  ,  )  ( 1,  ,  ) 

m

m

zN

m z

m
i j i j i j i jA D F Q z z dz

+

=
=∑ ∫

 
(10) 
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where 
( )m
ijklQ and 

( )
3 3

m
i jQ
 
denote the in-plane and transverse transformed plane stress stiffness 

components respectively, and
 
 1,  m mz z +  stand for the lower and upper coordinates of the mth 

lamina, respectively. Although 
( )m

Q
 

is a fourth-order tensor, its components can be 

distinguished by a double-indicial notation through the following replacements  

 

11 1,    22 2,    12 or 21 6,    13 or 31 5,    23 or 32 4→ → → → →

 

(11) 

 

for instance 

 
( ) ( ) ( ) ( )

1112 16 3231 45 2211 21 3131 55 1211 61,   ,   ,   ,   ,  ....
m m m m

Q Q Q Q B B D D E E≡ ≡ ≡ ≡ ≡

 

(12) 

 

The equilibrium equations can be established through the principle of virtual displacement 

leading to the following relations for TSDT and FSDT with 
2

1 4 / 3C h=
 

and 1 0C = , 

respectively. 

 

, 0ij jN =  (13) 

, 1 , 0
i i ij ijQ C P q
∗ + + =

 (14) 

, 0ij j iM Q∗ ∗− =
 

(15) 

 

and, the equilibrium equations for  CLPT are  

 

, 0ij jN =  (16) 

, 0ij ijM q+ =
 (17) 

 

where  

 

1

2     

ij ij ij

i i i

M M C P

Q Q C R

∗

∗

= −

= −

 

(18) 

     

Substitution of (8) into Equations (13)-(18) and together with Equations (3)-(6) results in the 

governing differential equations in terms of the unknown displacements that can be expressed in 

a concise matrix form as follows 

 

 =Lu q

 

(19) 

for  FSDT and TSDT     { } { } { } { }1 2 3 1 2 ,  ,  ,  ,  ,     0,  0,  ,  0,  0
T T

u u u qφ φ= =u q                    

for CLPT                        { } { } { } { }1 2 3 ,  ,  ,     0,  0,  
T T

u u u q= =u q                                            

The coefficients of the operator matrix L  for each theory are given in Appendix A.  
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Generally, the equations governing the bending of laminated plates are a set of coupled partial 

differential equations with constant coefficients. However, there are some plates with a special 

sequence of layers such as symmetric ones, in which the stretching-bending coupling stiffness 

coefficients like ijB  and ijE are zero. Therefore, Eqs. (13) and (16) governing the in-plane 

displacement field are uncoupled from (14), (15) and (17) governing the displacement field due 

to bending. In this case the in-plane deflections are identically zero in the absence of in-plane 

edge forces. Therefore, the differential equations reduce to 

 

 sub =L u q

 

(20) 

 

for  FSDT and TSDT     { } { } { } { }3 1 2,  ,   ,    ,  0,  0
T T

u qφ φ= =u q                    

for CLPT                        { } { } { } { }3  ,    
T T

u q= =u q                                            

 

where 
subL  is a sub-matrix consisting of the last three rows and columns of L  in Equation (19) 

for  FSDT and TSDT models, while the only element of 
subL in CLPT models is the last element 

of L , that is 33L .   

 

3. BOUNDARY CONDITIONS 
 

It should be noted that the general forms of differential equations governing CLPT, FSDT and 

TSDT models, considering coupling with in-plane actions, are of eighth, tenth and twelfth order, 

respectively. The order of each theory indicates the number of total boundary conditions on the 

boundaries of the plate. Half of these boundary conditions are the prescribed ones which must be 

imposed along the edges of the plate. The prescribed boundary conditions for simply supported 

(SS), clamped (C), free (F), and sliding (G) edges are described as in Table 1. 

The stress resultants in Cartesian coordinate system ( 1x , 2x ) can be related to those in terms of 

normal and tangential components with the following transformations 

 

1 1

2 1

  

 

,      ,      ,   

,       ,      ,     

,               

  ,       

,      

nn ns

n

nn i j ij nn i j ij nn i j ij

ns i j ij ns i j ij ns i j ij

ns
n i i n n

nn nn ns ns

n n n

N n n N M n n M P n n P

N n s N M n s M P n s P

M
Q n Q V Q

s

M M C P M M C P

Q Q C R V C P

∗ ∗

∗ ∗

= = =

= = =

∂
= = +

∂

= − = −

= − = , 1           

,       

ns
ij j i n

i i

i i

P
n Q C

s

n s
n x s x

∗ ∂
+ +

∂

∂ ∂ ∂ ∂
= =

∂ ∂ ∂ ∂

 

(21) 
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with 1 2n i n j= +n
� ��

 being the unit outward normal vector, perpendicular to the unit tangential 

vector 1 2s i s j= +s
� ��

 such that k× =n s
�� �

, with k
�

 being the unite vector along 3x , at a generic 

point on the boundary ∂Ω .  

 
Table 1. The quantities to be defined as boundary conditions in different laminated plate 

theories. (For the cases tagged by (s. 1) see Remark 1 for the alternatives). 

Theory Type Non-symmetric layers Symmetric layers 

SS 
3

,  ,  ,  ,  ,  
s nn nn s nn

u N u P Mφ
∗  

3
,  ,  ,  

nn s nn
u P Mφ

∗  

C 3 3
,  ,  ,  ,  ,  

s n s n
u u u u n φ φ∂ ∂  

3 3
, ,  ,  

s n
u u n φ φ∂ ∂  

F 
* * *

,  ,  ,  ,  ,  
ns nn n nn ns nn

N N V P M M   (s. 1) * * *
,  ,  ,  

n nn ns nn
V P M M

  
(s. 1)

 

TSDT 

G 
* *

3
,  ,  ,  ,  ,  

ns n n ns n
N u V u n M φ∂ ∂ (s. 1) * *

3
,  ,  ,  

n ns n
V u n M φ∂ ∂

 
(s. 1) 

SS 3
,  ,  ,  ,  

s nn s nn
u N u Mφ  

3
,  ,  

s nn
u Mφ  

C 3
,  ,  ,  ,  

s n s n
u u u φ φ  

3
,  ,  

s n
u φ φ  

F ,  ,  ,  ,  
ns nn n ns nn

N N Q M M
 
(s. 1)

 
,  ,  

n ns nn
Q M M

 
(s. 1) 

FSDT 

G ,  ,  ,  ,  
ns n n ns n

N u Q M φ (s. 1) ,  ,  
n ns n

Q M φ
  

(s. 1) 

SS 3
,  ,  ,  

s nn nn
u N u M  

3
,  

nn
u M  

C 3 3
,  ,  ,  

s n
u u u u n∂ ∂  

3 3
,  u u n∂ ∂  

F ,  ,  ,  
ns nn n nn

N N V M  ,  
n nn

V M  
CLPT 

G 3
,  ,  ,  

ns n n
N u V u n∂ ∂  

3
,  

n
V u n∂ ∂  

 

Remark 1.  In Section 4, it will be demonstrated that thin plate problems can be easily solved by 

the three theories CLPT, FSDT and TSDT.  However, our experience shows that for some 

special cases the boundary conditions considered for TSDT and FSDT impose extra restriction to 

the solution when compared with CLPT.  This is the case when free and sliding edges are of 

concern.  For instance in plates with symmetric layers, in CLPT just two stress resultants, i.e. nV  

and nnM , are prescribed while in TSDT and FSDT three conditions, i.e. nQ , nsM  and nnM , are 

defined at the edge.  This means that when the plate becomes thin, TSDT and FSDT apply 

stronger condition on nsM  while in CLPT its differentiation with respect to s  combined with nQ  

is restricted to a prescribed value. To unify the conditions for all theories one may define the 

following stress resultants in TSDT and FSDT for the bending boundary conditions 

 

ns
n n

M
V Q

s

∂
= +

∂
,  

p

ns ns

h
M M

L

 
=  
 

ɶ
ɶ

 (22) 
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In the above relation h  denotes the thickness of the plate, Lɶ  is a characteristic length and 

1p >>  is an appropriate exponent. The first condition is similar to its counterpart in CLPT while 

the second one will be active when the thickness is within the order of the characteristic length 

h L≈ ɶ .  In this report we shall use the mean of the length and width of the rectangular 

circumscribing the problem domain as Lɶ  (see Figure 2.a), and 2p = . We shall discuss on the 

effect in Section 4.■ 

 

 
  

(a) (b) (c) 

Figure 2. Plate geometry: (a) The rectangle circumscribing the plate domain and the location of 
coordinate system; (b) The boundary points; (c) The domain points. 
 

4. SOLUTION PROCEDURE 

 
This section is devoted to develop a solution for the preceding explained boundary value 

problem in a step-by-step manner. Herein, we use a meshless procedure, firstly proposed by 

Boroomand et al. (2009) for the solution of static and time harmonic elasticity problems. In this 

method, the total solutions for the unknown generalized displacements are composed of a 

homogenous and a particular part. The homogenous solution hu  and the particular solution 

pu should be determined such that 

 

   in  = ΩpLu q
 

(23) 

   in  = ΩhLu 0       
(24) 

( )    on  + = + = ∂ΩB h p B h B p BL u u L u L u u
 (25) 

 

here, Bu  contains the prescribed boundary conditions on ∂Ω . The difference between B  u and 

B p  L u yields a modified form of the boundary conditions, which should be satisfied by the 

homogenous part of the solution. Therefore, the problem can be redefined as follows 

 

   in  = ΩpLu q  (26) 

   in  = ΩhLu 0  (27) 

   on  = ∂ΩB h hL u u
   

 where     = −h B B pu u L u  (28) 

 

In the following subsections, firstly, we shall explain a method based on the summation of a 

series of exponential basis functions (EBFs) with unknown coefficients for handling the 
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prescribed boundary conditions. In this regard, we shall employ two forms of strategies for 

selecting the EBFs, one based on the projection of the boundary measures on the boundary 

values of the basis, and another based on the numerical experiments. Secondly, the loading 

conditions will be dealt with through a numeric procedure similar to that used in the homogenous 

solution.  

 

4.1 Homogenous solution 

 

Solution of the homogenous part of the response involves solving the problem defined in (27) 

and (28). For convenience, we temporarily set aside indicial notation and rename the axes and 

the displacement components as 

 

1x x= ,  2y x=  , 3z x= , 1u u= , 2v u= , 3w u=  (29) 

 

Now we assume hu  in terms of the EBFs as 

 

( , )( , , , ) x y
x y e

α β
α βα β +=hu h     2

( , )(x, y)    and   α β∀ ∈Ω ∈ℂ  (30) 

 

where ( , )α βh  is a vector containing the contribution of the basis function to the generalized 

displacement coefficients, that is  

 

for FSDT and TSDT      
{ }

{ }

( , )

( , )

,  ,  ,  ,  for non-symmetric laminae

,  ,  for symmetric laminae

yx

yx

T
u v w

T
w

h h h h h

h h h

φφ
α β

φφ
α β


=


 =


h

h

 (31) 

for CLPT                        
{ }

{ }
( , )

( , )

,  ,  for non-symmetric laminae

 for symmetric laminae

T
u v w

w

h h h

h

α β

α β

 =

 =


h

h

   (32) 

                       

Substitution of (30) in (27) results in the following matrix relation 

 

( , ) ( , )  α β α β =L h 0  (33) 

 

where the constant coefficients of the matrix ( , )α βL  can be obtained from the elements of L  in 

(19), listed in Appendix A, with the following replacements 

 

1 2,      m m m m
d dα β≡ ≡

 

(34) 

     

In the above relations, the superscript m in 1
m

d and 2
m

d  denotes the order of differentiation with 

respect to x and y coordinates respectively, while at the same time it indicates the mth power of 

α
 
and β  when the EBFs are used as the solution.  
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For having non-trivial solution for the unknowns, the determinant of the coefficient matrix 

( , )α βL
 
in (33) must be set to zero. The resulted characteristic equation can be written in a 

symbolic form as 

 

( , ) [ ] 0      Det α β = ⇒L
    

( ,  ) 0α βΨ =  (35) 

 

Herein, ( ,  ) 0α βΨ =  is an algebraic (polynomial) equation, from which one may find α  in terms 

of β  or vice versa. The characteristic vector ( , )α βh
 
is the nontrivial solution of the homogenous 

system of linear equations, defined in (33), which is equivalent to the null-space vector of matrix 

( , )α βL . It should be noted that the total solution in (27) contains all the EBFs obtained from both 

cases, that is when α  is written in terms of β  and vice versa as 

 

( )      1,.....,   l lf l rα β= =  (36) 

 

or 

 

( )      1,.....,   l lg l rβ α= =  (37) 

 

This may be performed either explicitly by finding the functions or numerically by choosing one 

and calculating the roots of the algebraic equation (35). It must also be noted that α  and β  in 

(36) and (37) may take on complex values.  Therefore, the solution to (27) may be written as 

 

( )( )
( ( ), ) ( ( ), ) ( , ( )) ( , ( ))

1 1

l
l

l l l l

r r
x g yl l f x y l l

f f g g

l l

C e d C e d
β α

α αβ β
β β β β β α α α α α

++

Ω Ω
= =

 
= Ω + Ω 

 
∑ ∑∫ ∫hu h h  (38) 

 

where βΩ  and αΩ  are two appropriate areas or loci in the Gaussian plane and r  is the number 

of roots derived from the characteristic equation. In general laminates, we may have eight, ten 

and twelve distinct roots with four, five and six pairs of complex conjugates for CLPT, FSDT 

and TSDT plate theories, respectively. The unknown coefficients ( ( ), )l

l
fC β β  and ( , ( ))l

l
gC α α  in (38) 

are to be found so that the boundary conditions in (28) are satisfied.  This, if not possible, is a 

very difficult task for most problems.  However, one may think of a discrete form of (38), for 

instance when the integral is to be calculated numerically, and simply write 

 

( ) ( )

( ( ), ) ( , ( ))

1 1

   l j j j l j

l j j j l j

r r
f x y x g yl l l l

j f j g

j l l

c e c e
β β α α

β β α α
+ +

= =

 
= + 

 
∑ ∑ ∑hu h h  (39) 

  

with l
jc  and l

jc  being new coefficients when 
j

β  and 
j

α  are chosen.  For convenience, we 

summarize the above expression as follows 
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( , )  i i

i i

x y
i

i

c e
α β

α β
+=∑hu h  

(40) 

   

Note that, in (39) and (40), the subscript i  (or j ) is an index for counting the number of EBFs, 

which should not be confused with the one used in the indicial convention for describing the 

governing equations. 

 

It should be noted that it is neither feasible nor necessary to express the EBFs and their 

corresponding characteristic vectors in (40), explicitly, in terms of the known quantities. This is a 

result of the dependence of polynomial coefficients on the lamination schemes and stiffness 

coefficients that make it almost impossible to write its roots for a generic laminate, symbolically.   

 

The above-mentioned procedure is straightforward as long as the roots of the characteristic 

equation (35) are distinct, which is true in many laminated plates except for single layer isotropic 

ones. In this case, the characteristic equation might yield multiple roots. To illustrate how to 

handle this case of degeneracy, let us consider a homogenous isotropic plate of thickness h with 

Young’s modulus E and Poisson’s ratio ν . Since the in-plane and bending deformations in 

single layer plates are uncoupled, we may use the form of the differential equations introduced in 

(20).  The procedure of determining the EBFs for CLPT, FSDT and TSDT are described as 

follows. 

 

a) For CLPT 

 

Substitution of the ith EBF from (40) (i.e. i ix yw
ih e

α β+ ) into the homogenous form of (20) yields 

the following homogenous equation and characteristic equation for an isotropic single layer plate 

based on CLPT 

 

{ }( , ) ( , ) ( , )    with    
i i i i i i

T
sub w

ihα β α β α β= =L h 0 h
  

 (41) 

 

which gives 

 
3

2

4 2 2 4

12(1 )
( 2 ) 0w

i i i i i

Eh
h

ν
α α β β

−
+ + =

 
 (42) 

 

or 

 
2 2 2

( ,  ) ( ) 0i i i iα β α βΨ = + =
 

(43) 

 

If  iβ  is evaluated in terms of iα
 
we have 

 

i iβ α= −i      (double roots),                      
  

1w
ih =  (44) 

i iβ α= i         (double roots),                      
  

1w
ih =  

(45) 
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in the above relations 1= −i . 

 

Note that w
ih  can be any arbitrary value. Here, we have adopted 1w

ih =  for convenience. From 

Eqs. (44) and (45), we obtain only two independent EBFs, while the other two can be determined 

by assuming the EBFs in the following form 

 

h
u ( )      i ix yi w w w

i i if x g y d e
α β+= + +  (46) 

 

The above relation for the EBFs deduce the following characteristic equation  

 
2 2 2 2 2 2 2 2( )(( 4 ) ( 4 ) ( ) ) 0w w w
i i i i i i i i i i i i ix x f y y g dα β α β α α β β α β+ + + + + + + + =  (47) 

 

which is identically zero for i iβ α= −i  and i iβ α= i . For having non-trivial and distinct EBFs 

from those obtained in (44) and (45),  w
if  and w

ig should not be zero simultaneously. Any other 

arbitrary values can be adopted for w
if , w

ig  and w
id ; here, we take 1w w

i if g= =  and 0w
id = . 

Therefore, we obtain four distinct EBFs, when iβ  is written in terms of iα . The homogenous 

solution for this case can be written as 

 

( )( ) ( ) ( ) ( )1 2 3 4
hu ( ) ( )    i i i ix y x y x y x y

i i i i

i

c e c e c x y e c x y e
α α α α+ − + −= + + + + +∑ i i i i

 (48) 

 

The solution for the other case (i.e. when iβ  is written in terms of iα ) is determined 

analogously and added to the above solution. 

 

Remark 2. The reader may note that there is a possibility of obtaining more repeating roots for 

iβ   (or iα ) when iα  is chosen as zero which gives four roots as 0iβ = .  With the same logic 

used in writing (46), one can easily show that the basis functions are in fact the monomials of a 

third order complete polynomial.  Our numerical experience shows that adding such bases to the 

solution does not affect the final results. ■ 

 

b) For FSDT 

 

The homogenous system of equations and the characteristic equation for an isotropic single layer 

plate based on FSDT are 

 

( , ) ( , )  
i i i i

sub
α β α β =L h 0

  
with    { }( , ) ,  ,  yx

i i

T
w
i i ih h h

φφ
α β =h  (49) 

2 2 2 2 2 2
( ,  ) ( ) ( ( ) -12 ) 0i i i i i i sh kα β α β α βΨ = + + =

 
(50) 

where the constant coefficients of ( , )i i

sub
α βL  matrix may be obtained from those of subL  in (20) 

with similar replacements described in (34). By evaluating iβ  in terms of iα
 

from the 

characteristic equation, we have 



 

 

16 

 

 i iβ α= −i      (double roots),                      { }( , ) ,  ,  
i i

T

i iα β α α= −h i i ,  (51) 

i iβ α= i          (double roots),                     { }( , ) ,  ,  
i i

T

i iα β α α= −h i i ,  (52) 

2 2 12i s
i

h k

h

α
β

− +
= −    (single root),  

    

{ }2 2
( , ) 0,  12 ,  

i i

T

i s ih k hα β α α= − +h ,  
(53) 

2 2 12i s
i

h k

h

α
β

− +
=       (single root),

     

{ }2 2
( , ) 0,  12 ,  

i i

T

i s ih k hα β α α= − − +h ,

 

(54) 

 

It is obvious that from the above derivations only four EBFs can be obtained since there is only 

one independent null-space associated with each of the double roots in Equations (51) and (52). 

The missing EBFs can be found by considering a modified form of them as follows 

 

      x x x i i

y y y

w w w
i i i

x yi
i i i

i i i

f g d

f x g y d e

f g d

φ φ φ α β

φ φ φ

+

      
           

= + +      
      
            

h
u  (55) 

 
Substituting the above equation into the homogenous form of (20), and also by rearranging it, the 

following system of equations are obtained 

 

{ }( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) =    
i i i i i i i i i i i i i i i i i i

i ix y
x y eα β α β α β α β α β α β α β α β α β

α β+
+ + + +      A f g B f C g A d 0  (56) 

 

with the coefficient matrices ( , )i iα βA , ( , )i iα βB  and ( , )i iα βC  given by  

 

2 3

2

3 2

2

2 2

2 2

( , )

2 2

( )

2(1 ) 2(1 ) 2(1 )

( (2 (1 )) 12 (1 ))

2(1 ) 24(1 )24(1 )

( (2 (1 )) 12 (1 ))

2(1 ) 24(1 ) 24(1 )

s s s

s s s

i i

s s s

i i i i

i i i i i

i i i i i

Ehk Ehk Ehk

Ehk Eh h k Eh k

Ehk Eh k Eh h k

α β

α β α β

ν ν ν

α α β ν ν α β

ν νν

β α β β α ν ν

ν ν ν

+
− − −

+ + +

+ − − −
−

+ −−

+ − − −
−

+ − −

=











A  ,










 

 

3 3 3

2

33

3

( , ) ( , )

3

0 0
(1 ) 2(1 ) (1 ) 2(1 )

0
2(1 ) 24(1 ) 12(1 ) 24(1 )6(1 )

0
2(1 ) 24(1 )24(1 ) 12(1 )

 ,  

s s s s

s

i i i i

s

i i

i i i i

ii i

Ehk Ehk Ehk Ehk

Ehk Eh Eh Eh Eh

Ehk Eh EhEh Eh

α β α β

α β

ν ν ν ν

α β β α

ν ν ν νν

αβ α

ν νν ν

− − − −
+ + + +

−
+ − + −−

−
+ −− +

= =

 
 
 
 
 
 
 
 
  

B C

3

2
6(1 )

iβ

ν−

 
 
 
 
 
 
 
 
     

             

(57) 
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Considering the fact that the matrix ( , )i iα βA  in (57) is the same as ( , )i i

sub
α βL  in (49), and its 

determinant is zero for the double roots, we may write 

 

{ } { }
T T

( , ) ( , ) ,        ,  ,  ,  ,    
i i i ii i i i i ia bα β α ββ α α α α α= − ⇒ = − = −i f i i g i i

 
{ } { }

T T

( , ) ( , ),        ,  ,  ,  ,    
i i i ii i i i i ia bα β α ββ α α α α α= ⇒ = − = −i f i i g i i, ,  

(58) 

Setting to zero the last term on the left hand side of (56) yields 

 

{ }
T

( , ) ( , ) ( , ) ( , )   =-( ) ,  ,  
i i i i i i i ii i i ia bα β α β α β α ββ α α α= − ⇒ + −i A d B C i i

 
{ }

T

( , ) ( , ) ( , )      =-( ) ,  ,  
i i i i i ii i i ia bα β α β α ββ α α α= ⇒ + −i Ad B C i i ,  

 

(59) 

      

Upon considering a  and b  as a set of new unknown coefficients, any of the above relations will 

be a set of just two independent equations with three unknowns ( ,  ,  )yxw
i i id d d

φφ
, which can be 

solved by choosing one (
w
id for instance) and finding the other two. Therefore, 

 

2 2 22 2 2

2 2 2 2 22

( , )

0.5  0.5

= 0.5( 2 ) 0.5

0.5 ( 2)0.5

      

i i

i i i i i ii i

i ii i

a h b h

hh

α β

α α

β α α λ α α λ α

α λ αα λ α

   
   

= − − − − + − −   
   

+ +− +   

⇒i d i i

i ii
 

2 2 2 2 2 2
( , )

2 2 2 2 2 2

0.5 0.5

   = 0.5( 2 ) 0.5

0.5 0.5 ( 2)

i i

i i

i i i i i i

i i i i

a h b h

h h

α β

α α

β α α λ α α λ α

α λ α α λ α

   
   

= ⇒ − + + − −   
   

− − − − +   

i d i i

i i i

 

(60) 

 

in which 1/(3 ( 1))skλ ν= − . 

 

Our experience shows that excellent solution may be obtained by reducing the number of basis 

and assuming 1a b= = .  This leads to the following forms  

 

22 2
( , )

2 2 2

   = (1 ) ( )

( 1) ( 1)

i i

i

i i i i

i i

h

h

α β

α

β α α λ α

α λ α

 
 

= − ⇒ − + − − 
 

− + + 

i d i i

i i
 

22 2
( , )

2 2 2

   = ( 1) ( )

( 1) ( 1)

i i

i

i i i i

i i

h

h

α β

α

β α α λ α

α α

 
 

= ⇒ − − + 
 

− + − + 

i d i i

i i

 

 

(61) 

 

Hence, the missing EBFs can be written as 
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22 2
( , )

2 2 2

   (1 ) ( )

( 1) ( 1)

i ii i

i i

i

i i i i

i i

x y h

h

α β α α

α α

α

β α α λ α

α λ α

− −     
    

= − ⇒ = + + − + − −     
     

− + +     

i i

i ii h i i

i i

 

 

 

(62) 

 

 

22 2
( , )

2 2 2

   ( 1) ( )

( 1) ( 1)

i ii i

i i

i

i i i i

i i

x y h

h

α β α α

α α

α

β α α λ α

α λ α

− −

    
    

= ⇒ = + + − − +     
     

− + − +     

i i

i ii h i i

i i
 

(63) 

 

So far, we have six independent EBFs, defined in (51)-(54) and (62)-(63) for the case that iβ  is 

written in terms of iα . The procedure for the other case, that is when iα  is calculated in terms 

of iβ  is the same.  

 

Remark 3. It may be noted that if iα  is chosen so that 2 212 0s ik h α− = in (53) and (54), then a 

pair of roots as 0iβ =  is obtained and thus some EBFs will be missed again. The procedure of 

finding the new EFBs is similar to that described above. Moreover, similar to CLPT, one may 

obtain more repeating roots for iβ   (or iα ) when iα  is chosen as zero in (51) and (52) which 

gives four roots as 0iβ = .  With the same logic used in writing (55), we may use a third order 

complete polynomial with unknown vector coefficients to find the bases. As mentioned earlier, 

our numerical experience in this case also shows that adding such bases to the solution does not 

affect the final results. ■ 

 

c) For TSDT 

 

The characteristic equation for an isotropic single layer plate based on TSDT with 
2

1 4 / 3C h= and 2 13C C=  is 

 
2 2 2 2 2 2 2 2 2

( ,  ) ( ) (17 ( ) 168)( ( ) 420( 1)) 0i i i i i i i ih hα β α β α β α β νΨ = + + − + + − =  (64) 

 

when  iβ  is evaluated in terms of iα
 
from the characteristic equation, we have 

 

i iβ α= −i       (double roots),                            { }( , ) ,  ,  
i i

T

i iα β α α= −h i i ,  (65) 

i iβ α= i          (double roots),                            { }( , ) , ,  
i i

T

i iα β α α= −h i i ,  (66) 

2 2168 17

17

i
i

h

h

α
β

−
= −          (single root),

      

{ }2 2
( , ) 0,  168 17 ,  17

i i

T

i ih hα β α α= −h ,  
(67) 

2 2168 17

17

i
i

h

h

α
β

−
=              (single root),

    

{ }2 2
( , ) 0, 168 17 ,  17

i i

T

i ih hα β α α= − −h ,

 
(68) 
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2 2420(1 ) i
i

h

h

ν α
β

− −
= −    (single root),

     

{ }2 2
( , ) 4 ,  ,  420(1 )

i i

T

i ih h hα β α ν α= − − − −h ,  
(69) 

2 2420(1 ) i
i

h

h

ν α
β

− −
=        (single root),

    

{ }2 2
( , ) 4 ,  ,  420(1 )

i i

T

i ih h hα β α ν α= − −h ,

 

(70) 

 

The above equations yield six distinct EBFs, while the missed EBFs corresponding to the double 

roots can be found by considering a modified form of them similar to (55). Conducting similar 

procedure to that described for FSDT, we first obtain two sets of relations as (60) with λ  

replaced by η  and then we choose 1a b= =  to get  

22 2
( , )

2 2 2

   (1 ) ( )

( 1) ( 1)

i ii i

i i

i

i i i i

i i

x y h

h

α β α α

α α

α

β α α η α

α η α

− −     
    

= − ⇒ = + + − + − −     
     

− + +     

i i

i ii h i i

i i

 

(71) 

 

 

 

22 2
( , )

2 2 2

 

   ( 1) ( )

( 1) ( 1)

i ii i

i i

i

i i i i

i i

x y h

h

α β α α

α α

α

β α α η α

α η α

− −

    
    

= ⇒ = + + − − +     
     

− + − +     

i i

i ii h i i

i i
 

(72) 

where 1/(2( 1))η ν= − . 

 

Now, we have eight independent EBFs, defined in (65)-(72) for the case that iβ  is written in 

terms of iα . The procedure for the other case, that is when iα  is calculated in terms of iβ  is the 

same.  

 

Remark 4. As mentioned in Remark 3 for FSDT, there are some cases for which one may obtain 

more repeating roots. In view of (67) and (68), if iα  is chosen so that 2 2168 17 0ih α− =  then a 

pair of roots as 0iβ =  is obtained.  Also, referring to (69) and (70), in case that iα  is chosen so 

that 2 2420(1 ) 0ihν α− − = , another pair of roots as 0iβ =  is obtained and thus some EBFs will 

be missed again. For 0iα =  we find four roots as 0iβ = . The procedure of finding the new 

EFBs for the former two cases is similar to that described above but for the latter case we should 

consider a third order complete polynomial with unknown vector coefficients to find the bases 

(see also Remark 3). ■ 

 

4.2 Imposition of the boundary conditions 

 

In the present work, the boundary conditions will be satisfied through a collocation approach 

over a set of discrete points on the boundary∂Ω . The number of boundary points M is not 

necessarily equal to or more than the number of EBFs (i.e. N) used for approximating the 

solution over the domain. Thus, with the use of  (40) we may write 
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1

N

i i

i

C
=

=∑U V  (73) 

    

where iC is a constant coefficient proportional to ic in (40), and U and iV  are vectors that, 

respectively, contain the modified prescribed boundary conditions at each boundary point and 

the contribution of ith EBF to the same boundary points, that is 

 

{ }h 1 h 2 h h ( )    ( )   ....  ( )  ....  ( )
T

j M=U u u u u  (74) 

{ }1 2

1
 ( )    ( )   ....  ( )  ....  ( )

T

i i i i j i M

is
=V v v v v

 (75) 

 

where h( ) ju is the difference between the prescribed boundary condition and that of the 

particular solution at the jth boundary point, and ( )i jv is the contribution of the ith basis function 

to the prescribed value at the same point. Considering the ith basis function (i.e. ( , )
i i

i i

x y
e

α β
α β

+
h ) 

and the prescribed boundary condition at the jth boundary point, one may write 

 

h B P, ,
( ) ( ) ( ) ,     ( , ) ,   1,  ...,  

j j j j
j j jx x y y x x y y

x y j M
= = = =

= + ∀ ∈ ∂Ω =u u Bu  (76) 

( , )
,

( ) ( ( )) ,            ( , ) ,   1,  ...,  i i

i i
j j

x y
i j j j

x x y y
e x y j M

α β
α β

+

= =
= ∀ ∈∂Ω =v B h

 (77) 

where M is the total number of boundary points (see Figure 2.b.), and B  is the boundary 

operator matrix, whose components for different boundary types for TSDT, FSDT and CLPT are 

given in Appendix B.  In Equation (75), the parameter is plays the role of a scaling factor for 

normalizing iV .  Here, the scaling factor is chosen as the maximum element of iV in terms of its 

absolute value, that is 

 

( ) ( ) ( )( )
1

   where     max
j M

i i i i j
s V V V

ζ ζ ≤ ≤
= =    (78) 

 

in which ( )iV
ζ
 is an element of iV  whose absolute value is maximum. Other norms such as the 

Hermitian length of iV  may also be used. Thus, the coefficient ic in (40) can be related to iC  

introduced in (73) as follows 

 

1
i i

i

c C
s

=  (79) 

 

The only unknown to be found in the above procedure is the constant coefficients iC . This can 

be done by the transformation used in (Boroomand and Mossaiby, 2005a, b, 2006) and  

explained in  (Boroomand et al., 2009), in which iC is written as 
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T T
h h

1

,        =
N

i i i i

i

C

+

=

 
=   

 
∑V R U R V V  (80) 

 

where (.)+
 indicates the pseudo inverse of the matrix, which is based on the singular value 

decomposition method. With iC in hand, the homogenous solution hu  in (40) can be rewritten as  

 
N

T
h

i=1

1
Re   i ix y

i i

i

e
s

α β+
   

=   
   
∑hu h V R U  (81) 

 

where Re{.}  stands for the real part of the complex value.  

 

It should be noted that some elements of iV  may contain the Young’s modulus E , while the 

others may not. Thus, some elements may become extremely large, in comparison with others, 

and this may lead to some numerical errors in the evaluation of hR and also the rest of 

computations. To resolve this problem, we assume 

 

,     i i= =V EV U EUɶ ɶ  (82) 

 

where E  is a diagonal matrix whose diagonal elements are equal to 3
Eh  if their corresponding 

elements in iV  contain E , and are equal to one if else. For orthotropic materials the elasticity 

modulus in the direction normal to fiber directions is adopted as  E . 

 

Upon replacing U  and  iV  in (73) with Uɶ and iVɶ  defined in Equation (82), respectively, and 

conducting a procedure analogous to that which led to (80), one may find 

 

T T 1
h h

1

,      
N

T
i i i i

i

C

+

− −

=

 
= =  

 
∑V R U R E V V Eɶ ɶ  (83) 

 

noting that is defined in (78) will now be the norm of iVɶ  instead of  iV .   

 
4.2.1 Selection of α  and β  for the homogenous part  

 

Having discussed the procedure of constructing EBFs, we come to the point that one parameter 

in each pair of ( ,  )α β  must be selected arbitrarily, while the other one is deduced from the 

characteristic equation. The selection of α  and β  affects the accuracy of the present method. In 

this regard, there are two strategies proposed by Boroomand et al. (2009), that we will overview 

both of them here and will employ the second one in Section 4. In some examples, a comparison 

between the results obtained by both strategies will also be given.  
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In both methods, α  or β  are complex values picked from a feasible domain on the Gaussian-

plane; that is 

 
4 ,       ,         ( ,  ,  ,  )a b c d a b c dα β= + = + ∈i i ℝ  , (84) 

 

In the case of choosingα , the value of b  controls the periodic part and the value of a
 

determines the amplitude of the complex exponential in x-direction; and in the case of selecting 

β , similar definitions hold for c
 
and d in y-direction. The pattern of choosing either ( ,  )a b  for 

α  or ( ,  )c d  for β  will be described in two strategies, one based on mathematical reasoning and 

another based on numerical experiences.   

 

Strategy H1 

 

In this strategy α  or β  are considered as pure imaginary values (i.e. 0a c= = ). Assuming that 

β  is to be evaluated in terms of α , the value of b is to be selected manually. In this regard, one 

can put a limit on the value of b by determining a reasonable number of oscillations between the 

boundary points, for example having at least a single oscillation within any sequence of four 

boundary point spaces. To this end, we define the average distant avgd between adjacent points 

for representing the boundary point spacing as follows   

 

2 2 1/ 2 1 1
1 1[( ) ( ) ] ,      

1

M M

n nn n
n n n n n avg

d d
d x x y y d

M M

= =
+ += − + + =

−

∑ ∑
≃ , (85) 

 

Now, by the assumption of occurring one oscillation on an interval of 4 nd , one may obtain the 

upper and lower bounds of b along the imaginary axis of  the Gaussian plane as 

 

2 2avg avg

b
d d

π π
− ≤ ≤         when β  is evaluated in terms of α  (86) 

and  

2 2avg avg

d
d d

π π
− ≤ ≤         when α

 
is evaluated in terms of β  (87) 

 

Having defined the feasible interval for α
 
or β , a grid of points must be selected along this 

interval such that their corresponding basis functions have the most contributions to the solution. 

To this end, the maximum absolute value of the direct projection of these basis functions on the 

nodal boundary values may be calculated as follows 

 
1 2, , ,

max(| ( ) |,| ( ) |,... ,| ( ) |)rT T T
k k k k

P
α α α α

α β α β α βα = V U V U V U
 

1,  ...,    ( No. of grid points for )kα α=   
(88) 

 

and 
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1 2, , ,
max(| ( ) |,| ( ) |,... ,| ( ) |)rT T T

k k k k
P

β β β β

α β α β α ββ = V U V U V U
 

1,  ...,     ( No. of grid points for )kβ β=   
(89) 

 

with | |⋅
 
denoting the Hermitian length of the quantity. 

, j

kα

α β
V , 

,j

k β

α β
V , 1,  ...,  j r=  represent the 

normalized vectors when the grids of α
 
and β

 
are used, respectively; and r denotes the number 

of basis functions found for each grid point through the characteristic equation. The maximum of 

the two series of numbers kP
α

α
 and k

P
β

β
are found as 

 

max maxmax( ),      max( )k k
k k

P P P P
α β

α β

α α β β= =  (90) 

 

We choose all grid points whose projection values are greater than a specified value as ξ
 
times 

the maximum projections defined above, that is we choose  kP
 
so that 

 

max max,      ,       0< <1k k
P P P P

α β

α α β βξ ξ ξ≥ × ≥ ×  (91) 

 

Strategy  H2 

 

In this strategy the grids of points for α ,
 

β
 
are defined in the form used in the work by 

Boroomand et al. (2009) for elasto-static problems. Based on our experience in the solution of 

plate bending problems for variety of simply connected domains with rather general shapes and 

various boundary conditions, again it has been found that the following form, for defining a 

suitable grid of points, works very well  

 

(  ) ,         1,  ...,  ,   1,  ...,  
m k

a b m M k N
L N

γ
α

 
= + = ± + = = 

 
i i  (92) 

 

in which 2,M N ∈ℕ , γ ∈ℝ  and  L  is a characteristic length. The following bounds are found 

to be appropriate in many cases 

 

( ) min min max5.6 7.2 (say 2 ),     1.6max , ,     4,   2,   8x yL L L M N Nγ γ π≤ ≤ = = = = =  (93) 

 

where xL , yL  are the dimensions of the rectangle circumscribing the whole domain as shown in 

Figure 2.a.  A similar formula may be used for β . Although this formula is completely heuristic, 

it enables us to use a preliminary grid selection without putting too much effort on this part. 
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4.3 Particular solution 

 

In this part we intend to find a particular solution pu  that satisfies 

 

   in  = ΩpLu q  (94) 

 

where the differential operator L  has been introduced in (19) or (20). Note that the particular 

solution may not satisfy the boundary conditions. In (Boroomand et al., 2009) two methods are 

proposed for finding the particular solution, we have adopted the one in which pu  is 

approximated by selecting another set of EBFs. 

 

In this approach the plate loading ( ,  )q x y is approximated by a series of EBFs evaluated by a 

transformation technique similar to that introduced in Section 3.2. Therefore 

 
2

,

( , )( , )   ,        (x, y)    and   k l
k l

x y
kl

k l

q x y g e
α β

α β
+= ∀ ∈Ω ∈∑ ℂ  (95) 

with  

 
4,    ,          ( , , , )k k k l l l k k l la b c d a b c dα β= + = + ∈i i ℝ  (96) 

 

where , k lα β
 
are two independent complex values which are to be chosen in such a way that the 

determinant of the coefficient matrix in (35) does not vanish, that is 

 

( , ) [ ] 0
k l

Det α β ≠L  (97) 

  

By considering a set of uniformly distributed points on the domain, defined by xL and yL  in 

Figure 2.c, the constant coefficient ,k lg  can be found through the discrete transformation used 

earlier. Thus 

p( )T
kl p klg = V R P  (98) 

p

,

( ) ( )T
p kl p kl

k l

+
 

=  
  
∑R V V

 
(99) 

1 1 1 1{ ( , )  ( , ) .... ( , ) }T
p pq x y q x y q x y=P

 

(100) 

1 1 2 2( ) {    ....  }k p l pk l k l
x yx y x y T

p kl e e e
α βα β α β ++ +=V

 
(101) 

 

where p is the total number of grid points in the x yL L× domain. Note that the number of EBFs 

(i.e.  k ln n+  ) is not necessarily equal to the number of domain points p ; the number of 

,k ln n may be increased until the loading ( ,  )q x y is approximated satisfactorily, which means 

that a discrete 2L  norm becomes less than a specified value.  Note that one may consider a larger 
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area for evaluation of pu , e.g. 1.1 1.1x yL L× , in order to have smooth variation of the function at 

the boundaries (see Boroomand et al. 2009).  

 

The particular solution pu  is similarly represented in terms of exponential basis functions. 

 
p

p

,

  k lx y
kl

k l

e
α β+=∑u h  (102) 

for FSDT and TSDT           { }p ,  ,  ,  ,  yx
T

u v w
kl kl klkl kl klh h h h h

φφ=h
                                                 

for CLPT                             { }p ,  ,  
T

u v w
kl kl klkl h h h=h

                                                                    

Substitution of (95) and (102) into the governing equation (94) results in the following relation 

 
p p

kl kl kl=L h c  (103) 

 

for FSDT and TSDT           { }p 0,  0,  ,  0,  0
T

klkl g=c
                                                 

for CLPT                              { }p 0,  0,  
T

klkl g=c
                                                                    

where, again, the constant coefficients of matrix klL  can be obtained from those listed in 

Appendix A, with the following replacements 

 

1 2,    m m m m
k ld dα β= =

 
(104) 

 

Note that in p
klc  defined above we have assumed that the laminated plate is just under transverse 

load ( , )q x y as in (95).  In the case that in-plane loads act on the surface of the plate, the 

corresponding elements of p
klc  may take on non-zero values, however the procedure of finding 

them is similar to that of klg  explained above.   

 

Upon solving the system of equations in (103), the unknown coefficients of vector 
p
klh  can be 

found in terms of  klg  (or other similar factors) for each pair of ( ,  )k lα β . In the above formula, 

,  k lα β  are independent of each other and this means that they should be selected from two 

separate grids in Gaussian plane. Here, we suggest two strategies. 

 

Strategy P1 

 

In this case, we choose ,  k lα β  as pure imaginary values, that is ,  0k ka c = . Thus 

 

{ } { }

2

2

( , ) ( , ) ,                                                                ( , ) ( )

( , ) , , 1,0,1, , , , 1, 0,1, , ,      ( , ) ( )     

k l

k k l l k l

k b l d b d

k l N N N N N N

α β += ∆ ∆ ∆ ∆ ∈

∈ − − − − ∈

i ℝ

… … ∪ … … ℕ
 (105) 



 

 

26 

 

 

where the integers ,k lN N  as well as the spacing between the points ,b d∆ ∆ are chosen in a 

way that convergence to the transverse load is satisfactorily achieved.  

 

Strategy P2 

 

In this case, we suggest a heuristic form for the grid points in the Gaussian plane for ,  k lα β  as 

follows  

 

{ }
{ }
{ }
{ }

( , ) (  ), (  ), 1, 2, , , 1, 2, ,

(  ), (  ), 1, 2, , , 1, 2, ,

(  ), (  ), 1, 2, , , 1, 2, ,

(  ), (  ), 1, 2, , , 1, 2, ,  

k l p p p p

p p p p

p p p p

p p p p

i j i j i n j n

i j i j i n j n

i j j i i n j n

i j j i i n j n

α β α γ α γ

α γ α γ

α γ α γ

α γ α γ

∈ = ± + = ± + = =

= ± + = + = =

= ± + = ± + = =

= ± + = + = =

i i

i i

i i

i i

… …

∪ ∓ … …

∪ … …

∪ ∓ … …

{ }
{ }
{ }
{ }

(  ), (  ), 1, 2, , , 1, 2, ,

(  ), (  ), 1, 2, , , 1, 2, ,

(  ), (  ), 1, 2, , , 1, 2, ,

(  ), (  ), 1, 2, , , 1, 2, ,       

p p p p

p p p p

p p p p

p p p p

i j i j i n j n

i j i j i n j n

i j j i i n j n

i j j i i n j n

α γ α γ

α γ α γ

α γ α γ

α γ α γ

= ± + = ± − = =

= ± + = − = =

= ± + = ± − = =

= ± + = − = =

i i

i i

i i

i i

∪ … …

∪ ∓ … …

∪ … …

∪ ∓ … …

 (106) 

 

where pγ  is defined as 

 

max( , )

p

p

p x yn L L

κ
γ =

×  (107) 

 

Based on our experience, we suggest the following values for pκ and pn
 

 

12,       3p pnκ = =
 (108) 

 

The above formulation has been employed in variety of plate problems as well as other problems 

in elasticity and acoustics, in all of which convincing numerical results have been obtained. 

Remark 5. In many plate problems q  in (94) is expressed as a simple functions such as 

polynomials and trigonometric functions.  In such cases the particular solution may be found 

explicitly which of course is not unique.  For instance in CLPT when the plate is under uniform 

load, the particular solution may be considered as the particular solution in a Bernoulli beam (as 

function of x  or y ).  In this report we have treated the loadings as the general ones and used the 

afore-mentioned procedure to find the particular solutions. 
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5. NUMERICAL RESULTS 

 
Here, we apply the presented procedure for solving a number of bending problems of both single 

layer and multilayered plates with different domain geometries, loadings and boundary 

conditions. In this regard, the following material properties have been considered  

 
Orthotropic material: 

 

2 3 1 12 13 23 12 23 1310GPa,    25 ,   0.5 ,    0.2 ,   0.25,E E E E G G E G E ν ν ν= = = = = = = = =  (109) 

 
Isotropic material:         

 
3 230GPa,   / 2(1 ),   /12(1 ),    0.3E G E D Ehν ν ν= = + = − =  (110) 

 

5.1. Square plates 

 

Consider a square plate with side length a  and thickness of h as shown in Figure 3. The upper 

surface of the plate is subjected to a sinusoidally distributed transverse load as follows 

 

1 2
1 2 0( , ) cos( ) cos( )

x x
q x x q

a a

π π
=

 (111) 

 

where 0 100 kPaq =  is the maximum load intensity. 

 

Here, the values of bending deflection and stresses of laminated plates with two forms of layups 

and various boundary conditions will be investigated. The results will be given in terms of the 

following non-dimensional forms  

 

0

0 0 0

0 0

3
2

3 34

2 2 2
( ) ( ) ( )
11 11 3 22 22 3 12 12 32 2 2

( ) ( )
23 23 3 13 13 3

100
(0,0),    

(0, 0, ),   (0,0, ),   ( , , ),

(0, / 2, ),           ( / 2,0, ),

m m m

m m

h E
u u

q a

h h h
x x a a x

q a q a q a

h h
a x a x

q a q a

σ σ σ σ σ σ

σ σ σ σ

=

= = =

= − = −

 (112) 

 

where the superscript m  indicates the layer number, as shown in Figure 1.  
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(a) (b) (c) 

Figure 3. The plate domain: (a) Plate geometry and sequence of boundary edges numbering; (b)  

Boundary points; (c) Distribution of domain points for construction of 
p

u . 

 

Table 2 shows the center deflection, in-plane stresses and transverse shear stresses of a simply 

supported symmetric cross-ply (0
o
,90

o
,90

o
,0

o
) square plate ( 20m)a = , with various side-to-

thickness ratios using FSDT, TSDT and CLPT. The numerical results are compared to the exact 

ones obtained by the Navier solution in (Reddy, 2004). As shown in Figure 3, the boundary of 

the plate is discretized by 80M =  evenly spaced points (i.e. 20 points along each side), for 

imposing the boundary conditions; while a regular grid of 16 16×  is considered on the domain 

(i.e. 256P = ), at which the particular solution is found. Worthwhile to mention that, at the 

corners of the plate, we have used two separate closely spaced points at the two intersecting 

boundaries.  

 
Table 2. The non-dimensional deflection and stresses of a simply supported four-layer symmetric cross-ply (0

 

o
, 90

 o
, 90

 o
,0

 o
) laminated plate under sinusoidally distributed transverse load.  

a/h Method 3u  (4)
11 ( / 2)hσ  

(2)
22 ( / 4)hσ  

(1)
12 ( / 2)hσ −  

(2)
23 (0)σ  

(2)
13 (0)σ  

0.66271 0.49888 0.36142 0.02411 0.12918 0.16660 
FSDT 

(0.66271) (0.49888) (0.36142) (0.02413) (0.12918) (0.16660) 

0.71474 0.54558 0.38880 0.02666 0.15310 0.26402 
10 

TSDT 
(0.71474) (0.54558) (0.38880) (0.02676) (0.15305) (0.26400) 

0.49117 0.52733 0.29565 0.02206 0.10865 0.17481 
FSDT 

(0.49117) (0.52732) (0.29565) (0.02210) (0.10869)
 
 (0.17490)

 
 

0.50604 0.53928 0.30429 0.02286 0.12304 0.28244 
20 

TSDT 
(0.50604) (0.53928) (0.30429) (0.02280) (0.12341) (0.28249) 

0.43368 0.53822 0.27045 0.02130 0.10086 0.17794 
FSDT 

(0.43367) (0.53822) (0.27045) (0.02132) (0.10083) (0.17794) 

0.43430 0.53870 0.27082 0.02142 0.12453 0.29980 
100 

TSDT 
(0.43430) (0.53870) (0.27083) (0.02134) (0.11168) (0.28972) 

0.43125 0.53870 0.26935 0.02128 0.13819
b
 0.33927

b
 

 CLPT 
(0.43125) (0.53870) (0.26935) (0.02128) (0.13820)

 b
 (0.33927)

 b
 

a
 The values in parentheses are from the exact Navier solutions due to (Reddy, 2004).  

b
 These values are evaluated from equilibrium equations at 3 0x = . 
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For the homogenous solution, we have used strategy H2 with 2γ π=  and 3M N= =  that gives 

total numbers of 144, 216, 288 EBFs, respectively, for CLPT, FSDT and TSDT. The particular 

response has been found by strategy P1 with 288 basis functions from (106) by setting 12pκ =  

and 3pn = . As is seen in Table 1, excellent accuracy is obtained in all cases.  For CLPT we have 

calculated shear stresses at mid-plane through equilibrium equations.  Again excellent agreement 

is seen between the numerical and the exact solutions.  

 

Table 3 compares the results for a moderately thick square plate ( / 20)a h =
 

obtained through 

strategy H1 and H2 for the homogenous solution. In strategy H1, a series of numbers have been 

chosen along the imaginary axis in Gaussian plane, for which the variations of parameters kP
α

α
 

and k
P

β

β
, defined in (88) and (89), are shown in Figure 4 (for FSDT as an example). By selecting 

0.2ζ = , the following values are obtained for α and β  

 

{ } ,      [ 0.5, ] [ ,0.5] ,   0.05,   0.01b b bα ε ε ε= ∈ − − ∪ ∆ = =i
 (113) 

 

and 

 

{ } ,      [ 0.5, ] [ ,0.5] ,   0.05,   0.01d d dβ ε ε ε= ∈ − − ∪ ∆ = =i
 (114) 

 

As a result, the total number of EBFs in this strategy amounts to 240. Conducting a similar 

procedure for TSDT yields 256 EBFs. As is seen in Table 2, the estimated errors in both 

strategies are nearly the same.  
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P
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P
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(a) (b) 

Figure 4. Variations of parameters kP
α
α

 and 
k

P
β

β
, for a simply supported cross-ply (0

o
,90

 o
,90

 o
,0

 o
) 

laminated plate under sinusoidally distributed transverse load with ( / 20)a h = : (a) Variations of 

kP
α
α

; (b) Variations of 
k

P
β

β
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Table 3. The absolute errors of the quantities in Table 2 obtained by strategies H1 and H2 in solution of a 

simply supported cross-ply (0
o
,90

o
, 90

 o
,0

 o
) laminated plate under sinusoidal load ( / 20)a h = . The errors are in 

percent. 

Method 3
%uη  

11
%ση  

22
%ση  

12
%ση  

23
%ση  

13
%ση  

FSDT-H1 0.000670 0.000443 0.000152 0.315217 0.000808 0.009644 

FSDT-H2 0.000038 0.000440 0.000602 0.173877 0.0312426 0.005550 

TSDT-H1 0.000165 0.000316 0.000097 1.29610 0.585785 0.036924 

TSDT-H2 0.000019 0.000010 0.000139 0.284110 0.297711 0.01489  
 

Table 4 shows the non-dimensional deflections and stresses of a simply supported symmetric 

cross-ply (0
o
,90

o
,0

o
) square plate subjected to a uniformly distributed transverse load. We have 

used strategy H2 and the number boundary points, domain grid points and basis functions are the 

same as those in the previous problem. Here again excellent agreement is seen between the 

obtained results and those of the exact solution given in (Reddy, 2004), especially for the center 

deflection and the normal bending stresses.  For shear stress resultants at the mid points of the 

edges, some discrepancies are seen between the two sets of results; however, the errors are very 

small considering the order of the original non-normalized values (see Equation (112)).  

 

It should be noted that in a symmetric cross-ply the in-plane forces are identically zero since 

there is no coupling between the in-plane displacements and the bending displacements. In this 

regard, we can use the simplified form of the differential equations given in (20) for analysis of 

symmetric laminated plates. 

 
Table 4. The non-dimensional deflection and stresses of a simply supported three-layer symmetric cross-ply 

(0
 o
, 90

 o
 , 0

 o
) laminated plate under uniformly distributed transverse load. 

a/h Method 3u  (3)
11 ( / 2)hσ  

(2)
22 ( / 6)hσ  

(1)
12 ( / 2)hσ −  

(2)
23 (0)σ  

(3)
13 ( / 6)hσ  

1.02188 0.77189 0.30744 0.05042 0.33110 0.77033 
FSDT 

(1.02188) (0.77187) (0.30722) (0.05138) (0.31075) (0.75486)  

1.08977 0.83902 0.33453 0.05657 0.34841 0.98002 
10 

TSDT 
(1.08992) (0.83853) (0.33464) (0.05905) (0.34059) (0.978266) 

0.75722 0.79834 0.222961 0.04505 0.31019 0.78537 
FSDT 

(0.75723) (0.79832) (0.22274) (0.04528) (0.29019) (0.76970) 

0.77597 0.81603 0.23077 0.04867 0.33101 1.03235 
20 

TSDT 
(0.77595) (0.81566) (0.23065) (0.04744) (0.31651) (1.02730) 

0.66969 0.80721 0.19273 0.04281 0.30444 0.79034 
FSDT 

(0.66969) (0.80717) (0.19251) (0.04265) (0.28421) (0.77446) 

0.67046 0.80794 0.19305 0.04280 0.30814 1.06622 
100 

TSDT 
(0.67047) (0.80787) (0.19284) (0.04275) (0.30958) (1.04704) 

0.66601 0.80758 0.19143 0.04241 0.40770
b
 0.73395

b
 

 CLPT 
(0.66601) (0.80753) (0.19122) (0.04252) (0.37906)

 b
 (0.71912)

 b
 

a
 The values in parentheses are from the exact Navier solutions due to (Reddy, 2004).  

b
 These values are evaluated from equilibrium equations at 3 0x =  
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Table 5-8 contain the non-dimensional deflection and stresses of an anti-symmetric cross-ply 

(0
o
,90

o
) square plate under a sinusoidal load with various boundary conditions and side-to-

thickness ratios. In order to specify the boundary conditions of the plate, we have used the 

numbering sequence shown in Figure 3.a. For instance, SCSF denotes a plate with simply 

supported edges on the boundaries 1 and 3, clamped on the boundary 2 and free on the edge 4.  

 

In this problem, the boundary and domain grid points have been adopted similar to the previous 

problems. Although we have selected 2γ π=  and 3M N= = , the number of EBFs for this 

problem will increase to 288, 360 and 432. This is a result of the larger number of roots that one 

can find from the characteristic equation of an antisymmetric laminate in comparison with that of 

a symmetric laminate. All the results have been compared to the exact Levy solutions available 

in (Khdeir and Reddy, 1991).  We have reported the exact values with the decimal part given in 

the reference; however, for the numerical results we have reported values with more precision. 

Again, excellent agreement is seen between the two sets of results. Note that in anti-symmetric 

angle-ply or cross-ply laminates, we have to deal with the complete form of the differential 

equations given in (19) since the bending and extension displacements are coupled. 

 
Table 5. Non-dimensional center deflection 3u  of an anti-symmetric cross-ply (0

o
,90

o
) laminated plate under 

sinusoidally distributed transverse load.  

a/h Theory Method SSSS SSSC
 

SCSC
 

SFSF
 

SFSS
 

SFSC 

Reference
a
 1.758 1.477 1.257 2.777 2.335 1.897 

FSDT 
Present 1.75835 1.47704 1.25654 2.77699 2.33456 1.89712 

Reference
a
 1.667 1.333 1.088 2.624 2.211 1.733 

5 

TSDT 
Present 1.66695 1.33282 1.08756 2.62409 2.21087 1.73279 

Reference
a
 1.237 0.883 0.656 2.028 1.687 1.223 

FSDT 
Present 1.23727 0.882869 1.25654 2.02813 1.68722 1.22256 

Reference
a
 1.216 0.848 0.617 1.992 1.658 1.184 

10 

TSDT 
Present 1.21612 0.848421 0.616791 1.99216 1.65825 1.18421 

Reference
a
 1.06358 0.664 0.429 1.777 1.471 0.980 

 CLPT 
Present 1.06358 0.66367 0.428979 1.77652 1.47083 0.980202 

a
 (Khdeir and Reddy, 1991) 

Table 6. Non-dimensional in-plane stress 
(1)
11 ( / 2)hσ− −  of an anti-symmetric cross-ply (0

o
,90

o
) laminated  

plate under sinusoidally distributed transverse load.  

a/h Theory Method SSSS SSSC
 

SCSC
 

SFSF
 

SFSS
 

SFSC 

Reference
a
 0.7157 0.5338 0.3911 0.2469 0.4430 0.2434 

FSDT 
Present 0.715746 0.533814 0.391052 0.246901 0.442978 0.24339 

Reference
a
 0.8385 0.6816 0.5679 0.3171 0.5349 0.3727 

5 

TSDT 
Present 0.838548 0.681644 0.567871 0.317091 0.534857 0.372681 

Reference
a
 0.7157 0.5494 0.4450 0.2442 0.4435 0.2790 

FSDT 
Present 0.715745 0.549383 0.445049 0.244192 0.443501 0.279037 

Reference
a
 0.7468 0.5910 0.4952 0.2624 0.4669 0.3158 

10 

TSDT 
Present 0.74679 0.590994 0.495244 0.262496 0.466969 0.315784 

Reference
a
 0.715745 0.5660 0.4800 0.2403 0.4442 0.3042 

 CLPT 
Present 0.715746 0.565662 0.477584 0.240269 0.444158 0.303855 

a
 (Khdeir and Reddy, 1991) 
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Table 7. Non-dimensional in-plane stress 
(2)
22 ( / 2)hσ  of an anti-symmetric cross-ply (0

o
,90

o
) laminated plate 

under sinusoidally distributed transverse load.  

a/h Theory Method SSSS SSSC
 

SCSC
 

SFSF
 

SFSS
 

SFSC 

Reference
a
 0.7157 0.6034 0.5153 1.1907 0.9848 0.8047 

FSDT 
Present 0.715744 0.603354 0.515255 1.19071 0.984794 0.804679 

Reference
a
 0.8385 0.6725 0.5505 1.3551 1.1324 0.8919 

5 

TSDT 
Present 0.838546 0.672454 0.550484 1.3552 1.13238 0.891852 

Reference
a
 0.7157 0.5109 0.3799 1.1884 0.9847 0.7150 

FSDT 
Present 0.715747 0.510852 0.379918 1.18839 0.984706 0.715028 

Reference
a
 0.7468 0.5219 0.3803 1.2295 1.0218 0.7314 

10 

TSDT 
Present 0.746792 0.521916 0.380322 1.22948 1.02183 0.731365 

Reference
a
 0.715745 0.4483 0.2914 1.1849 0.9837 0.6560 

 CLPT 
Present 0.715743 0.448264 0.291284 1.18487 0.983728 0.656008 

a
 (Khdeir and Reddy, 1991) 

 

Table 8. Non-dimensional transverse shear stress 
(2)
23 (0)σ  of an anti-symmetric cross-ply (0

o
,90

o
) laminated 

plate under sinusoidally distributed transverse load.  

a/h Theory Method SSSS SSSC
 

SCSC
 

SFSF
 

SFSS
 

SFSC 

Reference
a
 0.2729 0.2297 0.1958 0.3901 0.3390 0.2748 

FSDT 
Present 0.272846 0.229659 0.195799 0.390105 0.339034 0.274787 

Reference
a
 0.3155 0.2543 0.2095 0.4457 0.3893 0.3048 

5 

TSDT 
Present 0.31544 0.254293 0.20947 0.445688 0.389311 0.304752 

Reference
a
 0.2729 0.1993 0.1523 0.3882 0.3383 0.2449 

FSDT 
Present 0.272844 0.199272 0.152292 0.388215 0.338265 0.244953 

Reference
a
 0.3190 0.2290 0.1725 0.4489 0.3927 0.2805 

10 

TSDT 
Present 0.319027 0.22906 0.17247 0.448907 0.392784 0.280471 

a
 (Khdeir and Reddy, 1991) 

 

 

5.2. Annular plates 

 

Consider an isotropic 60
o
 annular sector plate with outer radius 20moutr a= = , inner radius 

10minr b= =
 

and a constant thickness h , as shown in Figure 5, subjected to a uniformly 

distributed transverse load with 0 Pa50kq =  intensity. 

 

In this problem the non-dimensional deflection, bending moment resultants and transverse 

shearing force resultants have been calculated at six points of the plate with respect to the polar-

coordinate system shown in Figure 5, similar to those in (Kobayashi and Turvey, 1994): point a 

( , 0)r a θ= = , point b ( ( ) / 2,r a b= +  0)θ = , point c ( , 0)r b θ= = , point d ( , / 2)r a θ α= =  , 

point e ( ( ) / 2, / 2)r a b θ α= + = and point f ( , / 2)r b θ α= = . The non-dimensional values are as 

follows 
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where -c b a= . 

 

Table 9-11 contain the above-mentioned values for a SSSS, SCSC and SFSF plates, respectively, 

considering various plate thicknesses /h c . The analytical solutions based on FSDT and CLPT 

obtained by Kobayashi and Turvey (1994) are also tabulated for comparison.  

 

As is seen in Figs. 5.b and 5.c, a total number of 50 evenly spaced points are taken along the 

edges of the plate and a grid of 18×31 are chosen in the rectangle circumscribing the plate 

domain.  The number of exponential basis functions for solving the homogenous and particular 

parts is the same as that of the previous problems.  

 

 

 
  

(a) (b) (c) 
Figure 5. The plate domain: (a) plate geometry; (b) Boundary points and sequence of boundary 
edges numbering; (c) Distribution of domain points. 
 

For SSSS plates, it can be seen in Table 9 that the presented results are in excellent agreement 

with those given in the reference, especially for the deflections and extensional bending moment 

resultants. Very small discrepancies can be seen between the two sets of results for shear stress 

resultants and the twisting moments.  As expected, the results of FSPT approach those of CLTP 

as /h c  decreases.  Similar conclusions may be made from Table 10 for plates with SCSC 

condition. 

 

The results of plates with SFSF condition are given in Table 11. Due to the presence of free 

boundaries, we present two sets of results, one obtained from the application of the boundary 
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conditions listed in Table 1 for free boundaries (denoted by superscript “b”) and another obtained 

from the application of the conditions suggested in Remark 1(denoted by superscript “c”). 

 

For plates with /h c  between 0.1 to 0.2 the two sets of results are in good agreement with those 

given in Kobayashi and Turvey (1994). As /h c becomes less than 0.05, the discrepancy between 

the results obtained by the boundary conditions in Table 1 and the other two grows dramatically.  

The reason lies in the fact that when the boundary condition of Table 1 are applied, strong 

singularity effect is seen in twisting moment and shear stress resultants at corners (see Kobayashi 

and Turvey 1994).  The effect becomes prominent when a very small plate thickness is chosen.  

In order to take into account such singularity effect in the presented method, one should add a set 

of appropriate EBFs to the former set.  The discussion is beyond the scope of this report (see 

Boroomand and Mossaiby 2006 for the use of EBFs obtained from FEM for construction of 

singular discrete Green’s functions).   

 

Such strong singularity is not seen in the boundary conditions used in CLPT since in Kirchhoff’s 

shear resultant the twisting moment and the shear resultant are combined (see Remark 1).   From 

the results denoted by superscript “c” in Table 11, it can be seen that one may overcome the 

effect by defining boundary conditions given in (22) without changing the bases.  As is seen in 

the table, the deflections and stress resultants smoothly approach to their counterparts in CLPT 

when the thickness of the plate decreases. For instance comparison of the results for h/c=0.01 

obtained by FSDT with those obtained by CLPT shows excellent agreement.    

 
Table 9. Non-dimensional deflection, moment resultants and transverse shear stress resultants for a 

uniformly loaded SSSS isotropic annular sector plate    ( / 0.5,  60 )a b α= = 	
....     

Theory h/c Method 3
e

u  
e
rrM  

e
M θθ  

a
rM θ  

c
rM θ  

d
rQ  

f
rQ  

b
Qθ  

Reference
a
 9.1917 8.3669 4.8948 -6.4498 3.2907 0.5279 -0.3848 0.3622 

0.20 
Present 9.1918 8.3669 4.8948 -6.4500 3.2931 0.5281 -0.3847 0.3633 

Reference
a
 8.6716 8.3696 4.8851 -6.4179 3.3021 0.5304 -0.3845 0.3621 

0.15 
Present 8.6716 8.3696 4.8851 -6.4253 3.2907 0.5305 -0.3846 0.3631 

Reference
a
 8.2998 8.3715 4.8779 -6.3703 3.3170 0.5328 -0.3843 0.3620 

0.10 
Present 8.2999 8.3715 4.8780 -6.3874 3.3252 0.53280 -0.3842 0.3629 

Reference
a
 8.0765 8.3725 4.8735 -6.3044 3.3361 0.5352 -0.3840 0.3620 

0.05 
Present 8.0775 8.3733 4.8741 -6.3829 3.4218 0.5344 -0.3836 0.3628 

Reference
a
 8.0140 8.3728 4.8722 -6.2551 3.3497 0.5366 -0.3839 0.3620 

0.02 
Present 8.0144 8.3731 4.8725 -6.3226 3.0736 0.5371 -0.3857 0.3632 

Reference
a
 8.0051 8.3729 4.8720 -6.2369 3.3547 0.5370 -0.3838 0.3620 

FSDT 

0.01 
Present 8.0051 8.3729 4.8721 -6.2846 3.5021 0.5375 -0.3819 0.3630 

Reference
a
 8.0021 8.3729 4.8719 -6.2177 3.3599 0.5375 -0.3838 0.3620 

CLPT 0.00 
Present 8.0021 8.3729 4.8719 -6.1707 3.3198 0.5374 -0.3835 0.3627 

a
 (Kobayashi and Turvey, 1994) 
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Table 10. Non-dimensional deflection, moment resultants and transverse shear stress resultants for a 

uniformly loaded SCSC isotropic annular sector plate ( / 0.5,  60 )a b α= = 	 .  

Theory h/c  Method 3
e

u  
e
rrM  

e
M θθ  

a
rM θ  

c
rM θ  

d
rQ  

f
rQ  

b
Qθ  

Reference
a
 3.9744 4.1445 2.0465 -2.1088 1.1836 0.6381 -0.4598 0.2469 

0.20 
Present 3.9744 4.1444 2.04651 -2.1067 1.1667 0.6382 -0.4598 0.2478 

Reference
a
 3.3508 4.1276 1.9210 -1.7173 0.94741 0.6508 -0.4585 0.2437 

0.15 
Present 3.3508 4.1275 1.9210 -1.7081 0.93949 0.6508  -0.4585 0.2447 

Reference
a
 2.8955 4.1089 1.8266 -1.2524 0.68063 0.6603 -0.4569 0.2411 

0.10 
Present 2.8955 4.1089 1.8266 -1.2515 0.67910 0.6601 -0.4569 0.2421 

Reference
a
 2.6167 4.0935 1.7688 -0.6900 0.37161 0.6659 -0.4557 0.2391 

0.05 
Present 2.6163 4.0930 1.7690 -0.7084 0.36836 0.6682 -0.4566 0.2404 

Reference
a
 2.5375 4.0881 1.7526 -0.2928 0.15810 0.6686 -0.4556 0.2384 

0.02 
Present 2.5373 4.0881 1.7523 -0.3006 0.15796 0.6702 -0.4565 0.2388 

Reference
a
 2.5261 4.0873 1.7503 -0.1491 0.08085 0.6697 -0.4556 0.2383 

FSDT 

0.01 
Present 2.5261 4.0873 1.7501 -0.1490 0.08092 0.6717 -0.4562 0.2382 

Reference
a
 2.5223 4.0870 1.7495 0 0 0.6708 -0.4555 0.2383 

CLPT 0.00 
Present 2.5223 4.0870 1.74947 0.00054 0.00013 0.6710 -0.4561 0.2398 

Table 11. Non-dimensional deflection, moment resultants and transverse shear stress resultants for a 

uniformly loaded SFSF isotropic annular sector plate ( / 0.5,  60 )a b α= = 	 .  

Theory h/c Method 3
d

u  3
e

u  3
f

u  
e
rrM  

d
M θθ  

a
Qθ  

b
Qθ  

c
Qθ  

Reference
a
 61.915 132.12 230.01 0.85269 42.003 -0.5520 0.7340 2.622 

Present
b 61.930 132.14 230.05 0.85220 41.966 -0.5425 0.7349 2.625 0.20 

Present
c
 62.107 132.08 229.91 0.8280 41.515 -0.7680 0.7352 2.655 

Reference
a
 61.145 129.97 226.27 0.97760 41.484 -0.9716 0.7350 3.217 

Present
b 61.123 129.90 226.13 0.98064 41.390 -0.9504 0.7360 3.196 0.15 

Present
c
 61.692 129.84 225.84 0.8907 40.774 -0.8459 0.7341 3.193 

Reference
a
 60.704 128.28 223.10 1.1043 40.996 -1.818 0.7363 4.406 

Present
b 60.647 128.13 222.80 1.1130 40.762 -1.701 0.7380 4.383 0.10 

Present
c
 61.807 127.92 221.95 0.9348 40.102 1.1133 0.7362 2.426 

Reference
a
 60.596 127.06 220.51 1.2312 40.537 -4.368 0.7377 7.972 

Present
b 45.470 85.020 137.10 3.9654 31.273 -0.607 0.6314 16.598 0.05 

Present
c
 61.01 126.22 216.91 1.6082 40.115 1.0939 0.7394 0.6252 

Reference
a
 60.691 126.55 219.23 1.3069 40.274 -12.03 0.7385 18.67 

Present
b 36.224 60.627 87.225 6.1287 25.692 -0.155 0.5700 4.422 0.02 

Present
c
 60.850 126.32 218.50 1.3572 40.099 0.9932 0.7405 0.5541 

Reference
a
 60.750 126.42 218.85 1.3320 40.189 -24.81 0.7388 36.49 

Present
b 29.978 46.850 57.366 7.5590 21.398 1.216 0.5342 10.999 

FSDT 

0.01 

Present
c
 60.821 126.29 218.45 1.3587 40.097 1.053 0.7403 0.5938 

Reference
a
 60.822 126.30 218.49 1.3570 40.104 1.049 0.7391 0.5405 

CLPT 0.00 
Present 60.822 126.30 218.49 1.3570 40.103 1.050 0.7401 0.5403 

a
 (Kobayashi and Turvey, 1994)

 

b
 Based on the regular boundary condition for free edge 

c
 Based on the modified boundary condition for free edge (see Remark 1) 
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5.3 Other plate shapes 

 

To show the applicability and efficiency of the presented method, we have carried out the 

bending analysis of moderately thick plates with three other shapes: equilateral triangle, 

trapezoidal and skew plates of isotropic materials under uniformly distributed load with various 

boundary conditions. The presented results are compared to the numerical values obtained by the 

use of the differential cubature method based on FSDT (Liu and Liew, 1998a). The adopted non-

dimensional values are the same as those in the studies by Liu and Liew (1998a). In all of the 

following problems, we have again used strategy H2 with the number of EBFs similar to the 

previous examples.  

 

An isotropic plate having the shape of equilateral triangle with side length 20ma =  and 

thickness h  is shown in Figure 6. Total number of 60 boundary points and a grid of 21×18 

points are selected as shown in Figs. 6.a and 6.b. The numerical results for the non-dimensional 

deflection 3u , moment resultants xxM and yyM  at the centroid point, obtained with the use of 

FSDT and CLPT, are reported in Table 12. These results include SSS, CCC and SCC boundary 

conditions with various thickness to span ratios. It is seen that the presented results obtained with 

FSDT are in good agreement with those given by Liu and Liew (1998a). The solution for a thin 

simply supported plate with the CLPT is also carried out and compared to the exact solution 

obtained by Timoshenko and Woinowsky-Krieger (1959). Again excellent agreement is seen 

between the results. 

 

   

(a) (b) (c) 

Figure 6. The plate domain: (a) plate geometry; (b) Boundary points and sequence of boundary 
edges numbering; (c) Distribution of domain points. 
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Table 12. Non-dimensional deflection and moment resultants at the centroid point of a uniformly loaded 

equilateral triangle plate of isotropic material with different boundary conditions  
Boundary 

conditions 
h/a Method (1)

3u  
(2)

xxM  (2)

yyM  

Presnet-CLPT 0.631944 0.180555 0.180556 

Presnet-FSDT 0.632806 0.180554 0.180555 

Reference
a
  0.6328 0.1806 0.1805 

0.01 

Exact
b
  0.6319 0.1806 0.1806 

Presnet-FSDT 0.718612 0.180555 0.180556 
0.10 

Reference
a
 0.7186 0.1806 0.1806 

Presnet-FSDT 0.978611 0.180553 0.180556 

SSS 

0.20 
Reference

a
 0.9800 0.1807 0.1808 

Presnet-FSDT 0.278663 0.840536 0.840536 
0.10 

Reference
a
 0.2790 0.8403 0.8410 

Presnet-FSDT 0.747058 0.87526 0.87527 
CCC 

0.25 
Reference

a
 0.7469 0.8754 0.8750 

Presnet-FSDT 0.362373 0.106184 0.0988363 
0.10 

Reference
a
 0.3624 0.1062 0.0987 

Presnet-FSDT 0.868145 0.105755 0.121771 
SCC 

0.25 
Reference

a
 0.8677 0.1057 0.1217 

(1) 2 4 3
10 /( )qa Eh

− ;  (2) 1 2
10 qa

− ;  

a
 (Liu and Liew, 1998a);  

b
 (Timoshenko and Woinowsky-Krieger, 1959); 

 

   
  

(a) (b) (c) 

Figure 7. The plate domain: (a) plate geometry; (b) Boundary points and sequence of boundary 
edges numbering; (c) Distribution of domain points. 
 

Table 13 includes the non-dimensional central deflection, moments and shear forces of an 

isotropic fully clamped trapezoidal plate with / 1b a =  and / 0.7c a = , (see Figure 7.a). The 

boundary points and the grid points of the domain are shown in Figure 7.b and 7.c, respectively. 

It can be observed that, again, the three sets are in excellent agreement, especially for the central 

deflections and moments. 
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Table 13. Non-dimensional central deflections, moments and shear forces for a uniformly loaded trapezoidal 

isotropic plate with CCCC boundary condition ( / 1.0, / 0.7)a b c a= = . 

h/a Method (1)

3u  
(2)

xxM  (2)

yyM  (2)

xyM  (3)

xQ  (3)

yQ  

Present-CLPT 0.0856 0.2087 0.1634 0.0000 0.0000 0.7746 

Present-FSDT 0.0858 0.2087 0.1634 0.0000 0.0000 0.7747 0.01 

Reference
a
 0.0860 0.2090 0.1634 0.0000 0.0000 0.7758 

Presnet-FSDT 0.1054 0.2100 0.1677 0.0000 0.0000 0.7925 
0.10 

Reference
a
 0.1054 0.2100 0.1678 0.0000 0.0000 0.7923 

Presnet-FSDT 0.1287 0.2103 0.1714 0.0000 0.0000 0.8164 
0.15 

Reference
a
 0.1288 0.2104 0.1714 0.0000 0.0000 0.8115 

Presnet-FSDT 0.1606 0.2101 0.1750 0.0000 0.0000 0.8400 
0.20 

Reference
a
 0.1606 0.2102 0.1750 0.0000 0.0000 0.8367 

(1) 
2 410 /qa D−

;  (2) 
1 210 qa−

; (3) 
210 qa−

; 

a
 (Liu and Liew, 1998a);   

      

For the final example a skew rhombic plate with the side length a  and skew angle ψ  as shown 

in Figure 8 is considered. The non-dimensional deflection, maximum and minimum moments at 

the centroid point of the plate with / 0.01h a =  for fully clamped and simply supported skew 

plates are presented in Table 14 and 15 respectively. The numerical results due to (Sengupta, 

1995), in which a finite element method based on Mindlin’s plate theory is used, are also 

reported in these tables for comparison.  

 

 

(a) (b) (c) 

Figure 8. The plate domain: (a) plate geometry; (b) Boundary points and sequence of boundary 
edges numbering; (c) Distribution of domain points. 
 

It is seen from Table 14 that the number of EBFs adopted is adequate enough to achieve close 

agreement with the reference values for a fully clamped plate. On the other hand, for a simply 

supported plate (Table 15), we have increased the number of EBFs by taking 4M N= =  in 

order to accurately satisfy the boundary conditions. As pointed out by Liu and Liew (1998a), this 

might be the result of the singularity of stresses at the obtuse corners of the plate with skew angle 

smaller than 45
o
. 
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Table 14. Non-dimensional deflections, maximum and minimum bending moments at the centroid of a 

uniformly loaded skew rhombic plate of isotropic material with CCCC boundary condition ( / 0.01)h a = . 

Skew 

angle (ψ) 
Method (1)

3( )cu  
(2)

max( )cM  (2)

min( )cM  

Present-CLPT 1.7967 9.1192 8.0860 

Present-FSDT 1.8004 9.1209 8.0875 

Reference
a
 1.8017 9.1250 8.0930 

75
o
 

Reference
b
 1.8004 9.1257 8.0855 

Present-CLPT 1.2 04 7.9139 6.1765 

Present-FSDT 1.2335 7.9156 6.1776 

Reference
a
 1.2332 7.9201 6.1729 

60
o
 

Reference
b
 1.2335 7.9161 6.1754 

Present-CLPT 0.6037 5.7736 3.9095 

Present-FSDT 0.6058 5.7748 3.9103 

Reference
a
 0.6018 5.7800 3.8680 

45
o
 

Reference
b
 0.6051 5.7756 3.9003 

Present-CLPT 0.1746 3.2166 1.8412 

Present-FSDT 0.1761 3.2177 1.8475 

Reference
a
 0.1715 3.2142 1.7208 

30
o
 

Reference
b
 0.1743 3.2089 1.8205 

(1)
4 /(1600 )qa D ;  (2) 

2 / 400qa ;  

a
 (Liu and Liew, 1998a);  

b
 (Sengupta, 1995); 

 

 
Table 15. Non-dimensional deflections, maximum and minimum bending moments at the centroid of a 

uniformly loaded skew rhombic plate of isotropic material with SSSS boundary condition ( / 0.01)h a = . 

Skew 

angle (ψ) 
Method (1)

3( )cu  
(2)

max( )cM  (2)

min( )cM  

Present-CLPT 5.7838 19.1132 16.9438 

Present-FSDT 5.8032 1.9152 1.6983 

Reference
a
 5.7341 1.9061 1.6741 

75
o
 

Reference
b
 5.8468 1.9241 1.7097 

Present-CLPT 3 7545 1.60416 1.2310 

Present-FSDT 3.8953 1.6470 1.2680 

Reference
a
 3.7591 1.6492 1.2418 

60
o
 

Reference
b
 4.1123 1.7075 1.3391 

Present-CLPT 1.6154 1.0753 0.6856 

Present-FSDT 1.7296 1.1323 0.7180 

Reference
a
 1.8528 1.1988 0.7431 

45
o
 

Reference
b
 2.1330 1.2995 0.8866 

Present-CLPT 0.5270 0.6520 0.3536 

Present-FSDT 0.5298 0.6593 0.3438 

Reference
a
 0.5449 0.6799 0.3321 

30
o
 

Reference
b
 0.6690 0.7734 0.4481 

(1) 4 /(1600 )qa D  ;  (2) 2 / 40qa ;  
a
 (Liu and Liew, 1998a);  

b
 (Sengupta, 1995);   
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6. CONCLUSIONS 
 

In this report, we have employed a mesh-free approach for the bending analysis of laminated 

plates based on CLPT, FSDT and TSDT. In this method, the approximation function is a series 

of EBFs with unknown constant coefficients that can satisfy the governing partial differential 

equations. Imposition of the boundary conditions is performed through a collocation method on a 

set of scattered boundary points. Upon imposing the boundary conditions, the unknown 

coefficients of the approximation series are obtained with the aid of a transformation technique, 

which makes it possible to satisfy both the essential and natural boundary conditions 

simultaneously. The particular part is also solved using another set of EBFs. The associated 

boundary values of the particular solution are used to construct a modified form of the boundary 

conditions that should be imposed along the plate edges instead of the real values of the 

boundary conditions.    

 

Numerical results for static analysis of square cross-ply laminated plates with two types of 

loading and various boundary conditions have been presented and compared to those available in 

the literature to verify the accuracy and efficiency of the present method. It should be noted that 

the application of the proposed method is not limited by the stacking sequence of the laminates. 

 

In comparison with square or rectangular plates, the numerical results for laminated plates with 

other shapes are rare in the literature. Therefore, we have examined the bending problem of 

isotropic plates with annular sector, triangular, trapezoidal and rhombic configurations to 

validate the performance of the present method. It has been observed that the method can 

perform excellently in a wide range of problems defined for the bending analysis of laminated 

plates based on various plate theories.  

 

 

Appendix A 
 

Coefficients Lij for CLPT 

 
2 2

11 11 1 16 1 2 66 22 , L A d A d d A d= + +  

2 2
12 16 1 66 12 1 2 26 2( ) , L A d A A d d A d= + + +  

1 2

3 2 2 3
13 11 1 16 2 66 12 1 26 23 (2 ) ,L B d B d d B B d d B d= − − − + −  

2 2
22 66 1 26 1 2 22 22 ,L A d A d d A d= + +  

2 1

3 2 2 3
23 22 2 26 1 66 12 2 16 13 (2 ) ,L B d B d d B B d d B d= − − − + −                                                                           

(A.1) 

1

4 3 2 2 3 4
33 11 1 16 2 12 66 1 2 26 1 2 22 24 (2 4 ) 4  .L D d D d d D D d d D d d D d= + + + + +

        

 

 

 

Coefficients Lij for FSDT 

 
2 2

11 11 1 16 1 2 66 22 ,L A d A d d A d= + +  

2 2
12 16 1 66 12 1 2 26 2( ) ,L A d A A d d A d= + + +  
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13 0,L =  

2 2
14 11 1 16 1 2 66 22 ,L B d B d d B d= + +  

2 2
15 16 1 66 12 1 2 26 2( ) ,L B d B B d d B d= + + +  

2 2
22 66 1 26 1 2 22 22 ,L A d A d d A d= + +  

23 0,L =  

24 15 ,L L=  

2 2
25 66 1 26 1 2 22 22 ,L B d B d d B d= + +  

2 2
33 55 1 45 1 2 44 2-  ( 2 ),sL k A d A d d A d= + +  

34 55 1 45 2-  ( ),sL k A d A d= +  

35 44 2 45 1-  ( ),sL k A d A d= +  

2 2
44 11 1 16 1 2 66 2 552 - ,sL D d D d d D d k A= + +  

2 2
45 16 1 66 12 1 2 26 2 45( ) - ,sL D d D D d d D d k A= + + +  

2 2
55 66 1 26 1 2 22 2 442  - .sL D d D d d D d k A= + +

 (A.2)

 

Coefficients Lij for TSDT 

 
2 2

11 11 1 16 1 2 66 22 , L A d A d d A d= + +  

2 2
12 16 1 66 12 1 2 26 2( ) ,L A d A A d d A d= + + +  

3 2 2 3
13 1 11 1 16 1 2 12 66 1 2 26 2 - ( 3 ( 2 ) ),L C E d E d d E E d d E d= + + + +  

2 2
14 11 1 11 1 16 1 16 1 2 66 1 66 2   ( - ) 2( - ) ( - ) ,L B C E d B C E d d B C E d= + +  

2 2
15 16 1 16 1 66 12 1 66 12 1 2 26 1 26 2  (  ( - ) ( - )) ( - ) ,L B C E d B B C E E d d B C E d= + + + +  

2 2
22 66 1 26 1 2 22 22 ,L A d A d d A d= + +  

3 2 2 3
23 1 16 1 26 1 2 12 66 1 2 22 2- ( 3 ( 2 ) ),L C E d E d d E E d d E d= + + + +  

24 15 ,L L=  

2 2
25 66 1 66 1 26 1 26 1 2 22 1 22 2   ( - ) 2( - ) ( - ) ,L B C E d B C E d d B C E d= + +  

2 2 2
33 55 2 55 2 55 1 45 2 45 2 45 1 2

2 2 2 4 2 2 3
44 2 44 2 44 2 1 11 1 12 66 1 2 16 1 2

3 4
26 1 2 22 2

    

  

-( - 2 ) - 2( - 2 ) 

        - ( - 2 ) ( (2 4 ) 4

        4 ),

L A C D C F d A C D C F d d

A C D C F d C H d H H d d H d d

H d d H d

= + +

+ + + + +

+ +

 

2 2 3
34 55 2 55 2 55 1 45 2 45 2 45 2 1 11 1 11 1

2 2 3
16 1 16 1 2 12 66 1 12 66 1 2 26 1 26 2

      

  (   

-( - 2 ) - ( - 2 ) - (( - ) 

         3( - ) ( 2 - 2 )) ( - ) ),

L A C D C F d A C D C F d C F C H d

F C H d d F F C H H d d F C H d

= + + +

+ + + +
 

2 2 3
35 44 2 44 2 44 2 45 2 45 2 45 1 1 16 1 16 1

2 2 3
12 66 1 12 66 1 2 26 1 26 1 2 22 1 22 2

      

 (   

-( - 2 ) - ( - 2 ) - (( ) 

         ( 2 2 )) 3( ) ( ) ),

L A C D C F d A C D C F d C F C H d

F F C H H d d F C H d d F C H d

= + + − +

+ − + + − + −
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2 2 2
44 11 1 11 1 11 1 16 1 16 1 16 1 2

2 2 2
66 1 66 1 66 2 55 2 55 2 55

    

    

( - 2 ) 2( - 2 ) 

          ( - 2 ) - ( - 2 ),

L D C F C H d D C F C H d d

D C F C H d A C D C F

= + + + +

+ +
 

2 2 2
45 16 1 16 1 16 1 66 12 1 66 12 1 66 12 1 2

2 2 2
26 1 26 1 26 2 45 2 45 2 45

   (  (

    

( - 2 ) ( - 2 ) )) 

         ( - 2 ) - ( - 2 ),

L D C F C H d D D C F F C H H d d

D C F C H d A C D C F

= + + + + + + +

+ +
 

2 2 2
55 66 1 66 1 66 1 26 1 26 1 26 1 2

2 2 2
22 1 22 1 22 2 44 2 44 2 44

    

    

( - 2 ) 2( - 2 ) 

         ( - 2 ) - ( - 2 ),

L D C F C H d D C F C H d d

D C F C H d A C D C F

= + + + +

+ +
                                          

(A.3) 

 

where 

 

1 2 1 2

1 2

(.) (.)
,  ,  ,  

m m
m m

m m
d d x x x y

x x

∂ ∂
= = = =

∂ ∂     (A.4) 

 

 

Appendix B 
 

Coefficients Bij  for SS boundary in TSDT 

 
SS SS SS
1 13 1( 3),   =0i i iB s B B += =  

SS
2

SS
23 1

SS
2( 3) 1

          

( )

i k l klij j

k l klij i j

i k l klij klij j

B n n A d

B C n n E d d

B n n B C E d+

=

= −

= −

 

SS SS SS
3 33 3(3 )0,    =1,   0i iB B B += =  

SS
4

SS
43 1

SS
4( 3) 1( )

i k l klij j

k l klij i j

i k l klij klij j

B n n E d

B C n n H d d

B n n F C H d+

=

= −

= −

 

SS SS SS
5 53 5( 3)0,   0,   i i iB B B s+= = =  

SS SS
6 1 4

SS SS
63 1 1 43

SS SS
6( 3) 1 1 4( 3)( )

i k l klij j i

k l klij i j

i k l klij klij j i

B n n B d C B

B C n n F d d C B

B n n D C F d C B+ +

= −

= − −

= − −
 (B.1)

 

Coefficients  Bij  for C boundary in TSDT 

 
C C C

1 13 1( 3),   =0i i iB s B B += =  

C C C
2 23 2( 3),   =0i i iB n B B += =  
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C C C
3 33 3(3 )0,    =1,   0i iB B B += =  

C C C
4 43 4( 3),   =0i i i iB n d B B += =  

C C C
5 53 5( 3)0,   0,   i i iB B B s+= = =  

C C C
6 63 6( 3)0,   0,   i i iB B B n+= = =

 (B.2)
 

Coefficients  Bij  for F boundary in TSDT 

 
F

1

F
13 1

F
1( 3) 1

,

( )

i k l klij j

k l klij i j

i k l klij klij j

B n s A d

B C n s E d d

B n s B C E d+

=

= −

= −

 

F SS
2 2 ,     =1,5B Bγ γ γ=

 
F
3 1

F 2 2
33 1 3 3 2 3 3 2 3 3

F 2
3( 3) 1 1 3 3 2 3 3 2 3 3

( 2 )

( ) ( 2 )

i k klij j l

k klij i j l k k i k i k i i

i k klij klij j l k k i k i k i

B C n E d d

B C n H d d d n A C D C F d

B C n F C H d d n A C D C F+

=

= − + − +

= − + − +

 

F SS
4 4 ,     =1,5B Bγ γ γ=

 
F F
5 1 4

F F
53 1 1 43

F F
5( 3) 1 1 4( 3)( )

i k l klij j i

k l klij i j

i k l klij klij j i

B n s B d C B

B C n s F d d C B

B n s D C F d C B+ +

= −

= − −

= − −

 

F SS
6 6 ,     =1,5B Bγ γ γ=          (B.3) 

 

Coefficients  Bij  for G boundary in TSDT 

 
G F G C G F

1 1 2 2 3 3

G C G F G C
4 4 5 5 6 6

,    ,   

,    ,   ,     1,5

B B B B B B

B B B B B B

γ γ γ γ γ γ

γ γ γ γ γ γ γ

= = =

= = = =
 (B.4)

         

Coefficients  Bij  for SS boundary in FSDT 

 
SS SS SS
1 13 1( 3),   =0i i iB s B B += =

 
SS SS SS
2 23 2( 3),    0,    i k l klij j i k l klij jB n n A d B B n n B d+= = =  

SS SS SS
3 33 3(3 )0,    =1,   0i iB B B += =

 
SS SS SS
4 43 4( 3)0,   0,   i i iB B B s+= = =

 
SS SS SS
5 53 5( 3),    0,    i k l klij j i k l klij jB n n B d B B n n D d+= = =

 (B.5)
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Coefficients Bij  for C boundary in FSDT 

 
C C C

1 13 1( 3),   =0i i iB s B B += =  

C C C
2 23 2( 3),   =0i i iB n B B += =  

C C C
3 33 3(3 )0,    =1,   0i iB B B += =

 
C C C
4 43 4( 3)0,   0,   i i iB B B s+= = =  

C C C
5 53 5( 3)0,   i i iB B B n+= = =

 (B.6)
 

 

Coefficients Bij  for F boundary in FSDT 

 
F F F

1 13 1( 3),    0,    i k l klij j i k l klij jB n s A d B B n s B d+= = =  

F SS
2 2 ,     =1,5B Bγ γ γ=

 
F F F
3 33 3 3 3( 3) 3 30,    ,    i k s k i i i k s k iB B n k A d B n k A+= = =  

F F
4 43

F
4( 3)

,    0,i k l klij j

i k l klij j

B n s B d B

B n s D d+

= =

=
 

F SS
5 5 ,     =1,5B Bγ γ γ=

 (B.7)
 

 

Coefficients  Bij  for G boundary in FSDT 

 
G F G C G F

1 1 2 2 3 3

G C G F
4 4 5 5

,    ,   

,    ,    1,5

B B B B B B

B B B B

γ γ γ γ γ γ

γ γ γ γ γ

= = =

= = =
 

 (B.8) 

Coefficients Bij  for SS boundary in CLPT 

SS SS
1 13,   =0i iB s B=  

SS SS
2 23,   i k l klij j k l klij i jB n n A d B n n B d d= = −  

SS SS
3 330,    =1iB B=  

SS SS
4 43,    i k l klij j k l klij i jB n n B d B n n D d d= = −

 
 (B.9)

 

Coefficients Bij  for C boundary in CLPT 

 
C C

1 13,   =0i iB s B=  

C C
2 23,   0i iB n B= =  

C C
3 330,    =1iB B=  
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C C
4 430,    i i iB B n d= =

 (B.10)
 

 

Coefficients Bij  for F boundary in CLPT 

1 13,   F F
i k l klij j k l klij i jB n s A d B n s B d d= = −  

2 23,   F F
i k l klij j k l klij i jB n n A d B n n B d d= = −

 

3

33

( ) /

( ) /

F
i k klij j l k l klij j

F
k klij i j l k l klij i j

B n B d d n s B d s

B n D d d d n s D d d s

= + ∂ ∂

= − − ∂ ∂
 

4 43,    F F
i k l klij j k l klij i jB n n B d B n n D d d= = −

 (B.11)
 

Coefficients Bij  for G boundary in CLPT 

G F G C
1 1 2 2

G F G C
3 3 4 4

,    ,

,    ,      1,3

B B B B

B B B B

γ γ γ γ

γ γ γ γ γ

= =

= = =  (B.12)
 

in the above indicial notations 

 

1 2

1 2 1 2

, , , 1,2   

(.)
 (i=1, 2),   ,  x

,  ,   ,  

i

i

x x x y

i j k l

d x x y
x

n n n n s s s s

=

∂
= ↔ ↔

∂

↔ ↔ ↔ ↔
 (B.13)

 
 

     The stiffness components, expressed in the double indexed system, can be related to their 

corresponding ones in the single indexed system as follows  

 

11 1,    22 2,    12 or 21 6,    13 or 31 5,    23 or 32 4≡ ≡ ≡ ≡ ≡  (B.14)
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