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Abstract

We discuss in this paper some implementation aspects of a �nite element formula-

tion for the incompressible Navier-Stokes equations which allows the use of equal order

velocity-pressure interpolations. The method consists in introducing the projection of

the pressure gradient and adding the di�erence between the pressure Laplacian and the

divergence of this new �eld to the incompressibility equation, both multiplied by suitable

algorithmic parameters. The main purpose of this paper is to discuss how to deal with

the new variable in the implementation of the algorithm. Obviously, it could be treated

as one extra unknown, either explicitly or as a condensed variable. However, we take

for granted that the only way for the algorithm to be eÆcient is to uncouple it from

the velocity-pressure calculation in one way or another. Here we discuss some iterative

schemes to perform this uncoupling of the pressure gradient projection (PGP) from the

calculation of the velocity and the pressure, both for the stationary and the transient

Navier-Stokes equations. In the �rst case, the strategies analyzed refer to the interaction

of the linearization loop and the iterative segregation of the PGP, whereas in the second

the main dilemma concerns the explicit or implicit treatment of the PGP.
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1 Introduction

Finite element formulations for incompressible ows allowing to circumvent the inf-sup sta-

bility condition for the velocity and pressure interpolations are the subject of active research.

These may fall basically into two categories, namely, methods that allow the use of equal in-

terpolations (and therefore continuous pressures) and techniques to stabilize simple elements,

such as the Q1=P0 pair (multilinear velocity, piecewise constant pressure). Examples of the

�rst group are the methods in [1, 2], the Galerkin/least-squares (GLS) technique [3, 4, 5] and

least-squares methods for �rst-order systems as those in [6], whereas examples of the second

are those in [7, 8], among others.

The practical numerical implementation of such stabilized formulations is sometimes not

addressed completely. For instance, methods involving pressure jumps, integrals over bound-

aries, the introduction of many auxiliary variables or macroelement �ltering strategies may

have attractive convergence results and may be theoretically appealing. However, they may

involve a high computational complexity that makes these methods hardly applicable in real-

life problems, where the weight of eÆciency in the accuracy-eÆciency balance is higher the

larger the problem is. Maybe one of the reasons for the success of the Galerkin/least-squares

technique is that its implementation is straightforward, at least for linear and multilinear

elements for which elementwise second derivatives of �nite element functions are either zero

or can be neglected.

In this paper we discuss the implementation of a pressure stabilized �nite element method

for the incompressible Navier-Stokes equations whose motivation, development and theoreti-

cal foundations have been presented in [9, 10, 11]. This method can be considered of the same

type as the GLS method, in the sense that it intends to allow the use of equal velocity-pressure

interpolations. This is possible due to a stabilization technique based on the introduction as

unknown of the discrete problem of the pressure gradient projection (PGP) onto the �nite

element space of continuous vector �elds. The divergence of the di�erence between these

two vectors (pressure gradient and its projection) is introduced in the continuity equation

multiplied by suitable algorithmic parameters. This method turns out to be formally the

same as that proposed independently in [12]. We shall refer to the resulting formulation as

the stabilized by pressure gradient projection (SPGP) method.

The presence of the PGP as a new unknown in the problem makes the applicability of the

method questionable, since the number of nodal unknowns is increased. The main purpose

of this paper is to show that it is not necessary to solve in a fully coupled manner for the

velocity, the pressure and the PGP. For stationary problems, this can be done by using

iterative techniques, but for transient problems the natural way to uncouple the resolution is

by treating explicitly the PGP. We show that this is not only feasible, but also very convenient

in general situations. Nevertheless, in some cases the iterative coupling is also eÆcient.

Note also that the only purpose of the stabilization technique presented here is to stabilize
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the pressure. The instabilities due to the convective term when the viscosity is very small

are not considered in our formulation and thus they have to be treated by other stabilization

mechanisms. This point is also addressed later on.

We have organized the paper in two main sections. In the next one, the pressure stabi-

lized method is fully described and their stability and convergence properties summarized.

Its performance will be compared against the algebraic subgrid scale (ASGS) method, which

is also presented at the end of Section 2. This method is based on the ideas of [13], whereas its

extension to the Navier-Stokes equations and its analysis is presented in [14]. In Section 3 the

implementation aspects of the SPGP formulation are treated, starting with the matrix formu-

lation of the method, a brief discussion on the possibility of dealing with the full system, and

the basic description of iterative schemes for the nonlinear problem and the PGP treatment

in transient problems. Numerical results are presented in Section 4. As it is shown there,

even though the computational cost relative to the ASGS method is problem dependent, the

accuracy is usually higher, in particular in what concerns the pressure approximation near

boundaries. The summary of the most salient conclusions is �nally presented in Section 5.

2 Description of the method

2.1 Problem statement

Let us consider the transient Navier-Stokes equations for an incompressible uid. Let 
 be

an open, bounded and polyhedral domain of R
nsd , where nsd = 2 or 3 is the number of space

dimensions, � = @
 its boundary and [0; T ] the time interval of analysis. The Navier-Stokes

problem consists in �nding a velocity u and a pressure p such that

@tu+ u � ru� ��u+rp = f in 
; t 2 (0; T ); (1)

r � u = 0 in 
; t 2 (0; T ); (2)

u = 0 on �; t 2 (0; T ); (3)

u = u
0 in 
; t = 0; (4)

where � is the kinematic viscosity, f is the force vector and u0 is the velocity initial condition.

We have considered the homogeneous Dirichlet boundary condition (3) for simplicity.

To write the weak form of problem (1)-(4) we need to introduce some notation. We

denote by H1(
) the Sobolev space of functions whose �rst derivatives belong to L2(
),

and by H1
0 (
) the subspace of H1(
) of functions with zero trace on �. A bold character

is used for the vector counterpart of these spaces. The L2 scalar product in a set ! is

denoted by (�; �)! , and the L2 norm by k � k!. The subscript ! is omitted when it coincides

with 
. To pose the problem, we also need the functional spaces V st = H
1
0(
)

nsd , and

Qst =
�
q 2 L2(
) j

R

 q = 0

	
, as well as V = L

2(0; T ;V st) and Q = L2(0; T ;Qst) for the

transient problem.
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Assuming for simplicity the force vector to be square integrable, the weak form of problem

(1)-(4) consists in �nding (u; p) 2 V �Q such that

(@tu;v) + (u � ru;v) + �(ru;rv)� (p;r � v) = (f ;v); (5)

(q;r � u) = 0; (6)

for all (v; q) 2 V st �Qst, and satisfying the initial condition in a weak sense.

2.2 Time discretization

Any time integration of (5)-(6) is in principle possible. However, we shall concentrate on the

monolithic trapezoidal rule (solving for the velocity and the pressure at the same time). The

time discretized version of (5)-(6) in this case consists in solving the following problem: from

known un, �nd un+1 2 V st and pn+1 2 Qst such that

(Ænt u;v) + (un+�
� ru

n+�;v) + �(run+�;rv)� (pn+1;r � v) = (�f
n+�

;v); (7)

(q;r � un+1) = 0; (8)

for all (v; q) 2 V st�Qst, where Æt is the time step size, superscript m refers to the time step

level tm = mÆt, � 2 [0; 1] and we use the notation

u
n+� := �un+1 + (1� �)un; Æun := u

n+1
� u

n and Ænt u :=
Æun

Æt
:

The force term �f
n+�

in (7) and below has to be understood as the time average of the force

in the interval [tn; tn+1], even though we use a superscript n + � to characterize it. The

pressure value computed here has been identi�ed as the pressure evaluated at tn+1, although

this is irrelevant for the velocity approximation. The values of interest of � are � = 1=2,

corresponding to the second order Crank-Nicolson scheme, and � = 1, which corresponds

to the backward Euler method. In this case, the convective term in (7) can be replaced by

(un � run+1;v), since it also leads to a �rst order unconditionally stable scheme, well suited

for the long term time integration.

2.3 Pressure stabilized �nite element discretization

Let Th denote a �nite element partition of the domain 
 of diameter h, from which we

construct the �nite element spaces Qh;V h and V h;0, approximations to Qst; H
1(
)nsd and

V st, respectively. The former is made up with continuous functions of degree kq and the

other two with continuous vector functions of degree kv, the latter verifying the homogeneous

Dirichlet boundary conditions.

The Galerkin �nite element approximation of problem (7)-(8) is standard. It is well known

that the �nite element spaces used to interpolate the velocity and the pressure need to satisfy

the discrete inf-sup condition (see [15] for a complete discussion and analysis of this problem
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when � = 1=2). In order to avoid this, a pressure stabilized �nite element formulation was

proposed in [9] for the stationary Stokes problem, extended to the stationary Navier-Stokes

equations in [10] and to the transient case in [11]. The method consists in adding to the

incompressibility equation the divergence of the di�erence between the pressure gradient

and its projection onto V h, both multiplied by algorithmic parameters de�ned elementwise.

Similarly to the ASGS method (see Section 2.5), we take these parameters as

�K :=

"
c1

�

h2
K

+ c2
juhj1;K

hK

#
�1

; (9)

for K 2 Th, where hK is the diameter of K, juhj1;K the supremum of the norm of uh in K

and c1 and c2 are algorithmic constants, that we take as c1 = 4 and c2 = 2 for linear elements

and c1 = 16 and c2 = 4 for quadratics.

Having introduced these parameters, the discrete version of problem (7)-(8) can be de�ned

as: �nd �nite the element approximations (un+�
h

; pn+1
h

) to (un+�; pn+1) and also �n+1
h

such

that

(Ænt uh;vh) + (un+�
h
� ru

n+�
h

;vh) + �(run+�
h

;rvh)� (pn+1
h

;r � vh) = (�f
n+�

;vh); (10)X
K

�K(rqh;rp
n+1
h
� �

n+�

h
)K + (qh;r � u

n+1
h

) = 0; (11)

(rpn+1
h

;�h)� (�n+1
h

;�h) = 0; (12)

for all (vh; qh;�h) 2 V h;0 �Qh � V h:

In these equations we have introduced the parameter �, whose values of interest are � = 0

and � = 1. In the �rst case, the pressure gradient projection is treated explicitly, whereas in

the second it is treated implicitly.

2.4 Stability and convergence

In this section we summarize the main results proved in [9, 10, 11] concerning the stability

and convergence properties of both (10)-(12) and its stationary version. All these results

were obtained taking c2 = 0 in (9), which leads to stability and convergence estimates whose

`constants' depend on the inverse of �. Therefore, from the numerical point of view they

are only meaningful for large values of �. When this parameter is small, convection needs

to be stabilized (see Section 2.5). For the sake of simplicity, we consider here the case of

quasi-uniform meshes, with equal algorithmic parameters for all the elements (although the

numerical examples presented in Section 4 have been solved using expression (9) for each

element).

Let us consider �rst the stationary problem (obtained by setting Æt = 1 in (10)). It

can be shown that the solution (uh; ph) is stable when continuous pressure interpolations are

used. More precisely, the following stability estimate holds:

�kruhk
2 + �krphk

2
� Ckfk2: (13)
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Here and below, C, possibly with subscripts, denotes a constant independent of h and Æt,

but possibly depending on �.

Convergence can also be proven if the solution (u; p) of the continuous problem is smooth

enough. The convergence estimate associated to the previous stability result is

�kru�ruhk
2 + �krp�rphk

2
� Ch2k; k = minfkv; kq + 1g: (14)

Let us move now to the transient case. The stability estimate for the velocity is

uN+1
h

2 + NX
n=0

Æt �
run+1

h

2 � C1

NX
n=0

Æt
fn+12 + C2: (15)

whereas for the pressure it is

NX
n=0

Æt
�
�krpn+1

h
k
2
�s
� C1

NX
n=0

Æt
fn+12 + C2; (16)

where s = 1=2 for the 3D Navier-Stokes equations and s = 1 if either the convective term

is dropped (Stokes problem) or nsd = 2 (recall that C1 and C2 can depend on � in these

estimates).

Concerning convergence for the transient problem, when � = 1 and the solution of the

continuous problem is smooth enough it can be shown that the error in the norms de�ned

by the left-hand-sides of (15) and (16) is of order O(Æt+ hk), where k is the same as in (14).

We have not performed yet the analysis of the scheme with � = 1=2, but we presume that

results similar to those obtained for the Galerkin method in [15] will also hold in our case.

2.5 Algebraic subgrid scale (ASGS) stabilized method

Perhaps the simplest �nite element formulation that allows equal velocity-pressure interpo-

lations is the GLS method (see [16] for its application to the Navier-Stokes equations). In

the numerical examples, we shall compare the performance of the SPGP and the Algebraic

Subgrid Scale (ASGS) method, which is very similar to the GLS method (identical for linear

elements) but easier to extend to more general settings.

The basic idea of the ASGS method can be found in [13] and its application to the

Navier-Stokes equations in [14]. We shall use here a slightly simpli�ed version of the method

presented in this reference. Calling

m
n+�
h;K

:= Ænt uh + u
n+�
h
� ru

n+�
h
� ��un+�

h
+rpn+1

h
in K 2 Th;

the momentum rate within each element, the method consists in �nding (un+�
h

; pn+1
h

) 2

V h;0 �Qh such that

(Ænt uh;vh) + (un+�
h
� ru

n+�
h

;vh) + �(run+�
h

;rvh)� (pn+1
h

;r � vh)� (fn+1;vh)

+
X
K

�K(u
n+�
h
� rvh + ��vh;m

n+�
h;K
� f

n+1)K = 0; (17)

X
K

�K(rqh;m
n+�
h;K
� f

n+1)K + (qh;r � u
n+1
h

) = 0; (18)
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for all (vh; qh) 2 V h;0 �Qh. There is also the possibility of adding a term involving a least-

squares form of the velocity divergence, that we have omitted for simplicity. As shown in

[14], if the parameter �K is taken as indicated in (9), optimal convergence can be proved for

the linearized problem. Observe also that this scheme is identical to the GLS method except

for the + sign of the viscous operator applied to the velocity test function vh.

At this point it is important to highlight the di�erences in the implementation of the

ASGS and the SPGP methods:

1. The presence of the term u
n+�
h
�rvh multiplying the element residual in (17) introduces

a streamline di�usion that stabilizes convection. For the SPGP method, this term, or

a similar one, must be introduced also when convection dominates. This would imply

that the SPGP method is combined with the SUPG method.

2. The whole element residual needs to be computed within each element when the ASGS

is employed. In particular, second order derivatives of the shape functions have to be

computed and stored for higher order elements, a cumbersome and time consuming

process.

3. No variables other than the velocity and the pressure need to be dealt with when the

ASGS is used. In particular, no projections need to be performed.

Clearly, from a computational point of view item 2 is favorable to the SPGP method

and item 3 to the ASGS method. The issue is to decide whether they make one method

preferable to the other, once combined with accuracy considerations. Our purpose is this

paper is to give hints in this direction, although we anticipate that no de�nite conclusion is

to be expected.

The stabilization of convection is a point that we shall omit in our discussion. Obviously, if

a SUPG strategy needs to be employed combined with the SPGP, the whole element residual

needs to be computed also in this case. Nevertheless, it is shown in [17] that the SPGP

method can be consistently extended to stabilize also convection.

3 Implementation aspects

3.1 Matrix form

For our discussion concerning the implementation of the SPGP method given by (10)-(12),

it is convenient to introduce the matrix version of this problem.

Let Na be the standard (Lagrangian) shape function associated to node a of the �nite

element mesh. If equal interpolation is used for all the variables (velocity, pressure and PGP)
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the matrix form of the problem is:

M0ÆtU
n +Kconv(U

n+�)Un+� +KviscU
n+� +G0P

n+1 = F
n+1; (19)

�L�P
n+1 +D��

n+� +DUn+1 = 0; (20)

GP
n+1
�M�n+1 = 0: (21)

If we denote the node indexes with superscripts a, b and the space indexes with subscripts i,

j, the components of the arrays involved in these equations are:

M
ab

ij = (Na; N b) Æij

Kconv(U)
ab

ij
= (Na;uh � rN

b) Æij

Kvisc
ab

ij = �(rNa;rN b) Æij

G
ab

i = (Na; @iN
b)

F
a

i = (Na; fi)

L�
ab = �

X
K

�K(rN
a;rN b)K

D�
ab

j = �
X
K

�K(@jN
a; N b)K

D
ab

j = (Na; @jN
b)

Matrices M0 and G0 have the same components as M and G, respectively, with index a

running only over the set of interior nodes. Also, it is understood that all the arrays are

matrices (except F, which is a vector) whose components are obtained by grouping together

the left indexes in the previous expressions (a and possibly i) and the right indexes (b and

possibly j). Finally, note that D ab

j = G
ab

j .

3.2 Two-step Laplacian matrix

If the nodal unknowns of the PGP are eliminated from (21) it is found that

�n+1 =M
�1
GP

n+1:

Inserting the expression of �n+� in (20) yields

D�M
�1
GP

n+�
� L�P

n+1 +DUn+1 = 0:

If � = 0 the �rst term can be moved to the right-hand-side of the resulting algebraic system.

Let us concentrate on the case � = 1. Introducing the notation

~L� := D�M
�1
G;

the matrix of the system to be solved is of the form

A =

"
K G0

D ~L� � L�

#
; (22)
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where K is the matrix multiplying the vector of nodal velocities, which takes into account

the temporal, convective and viscous contributions.

Except for the dependence of ~L� on � , this can be understood as the matrix resulting from

the discrete divergence applied to the projection of the discrete gradient. Therefore, it is a

Laplacian computed in two steps. It is shown in [18] that the di�erence ~L� � L� is positive

semi-de�nite, thus explaining from an algebraic point of view why the terms depending on �

in (19)-(21) enhance the stability with respect to the standard Galerkin approach.

If an algebraic system with matrix (22) is to be solved exactly, there are basically two

possibilities to deal with ~L� , depending on the method of solution:

Direct solution In this case, ~L� needs to be stored. The only feasible way to do this

is by approximating the mass matrix M by the (lumped) diagonal mass matrix M`, since

otherwise M�1 is a full matrix. This approach has been used in fractional step methods

which do not use the continuous pressure Laplacian equation (see e.g. [19, 20]), since matrix

~L := DM
�1
G appears in the projection step. However, this is computationally expensive

because the nonzero entries of this matrix are not only those of the mesh graph, but of its

square (using a �nite di�erence expression, it has a twice larger stencil).

Iterative solution In this case, the problem is to compute matrix-vector products of the

form (~L� � L� )P. This can be eÆciently done in three steps as follows:

1. Compute Y = GP.

2. Solve MZ = Y. This is trivial if M is approximated by M`. Otherwise, the simple

Jacobi iteration

Z0 = 0; Zk+1 = Zk +M
�1
`

(Y�MZk) ; k = 1; 2; ::: (23)

is extremely eÆcient. We shall use it later on.

3. Compute D�Z� L�P.

This algorithm is similar to what is commonly used for the dual problem for the Lagrange

multiplier in conjugate gradient methods for optimization problems with restrictions. The

matrix of the system in this case is BA�1Bt, A being the matrix for the primal problem and

B the matrix of the restrictions.

In order to avoid the numerical diÆculties present in both direct and iterative solution

methods, we advocate for the iterative elimination of the PGP. This is the subject of the

following sections and the strategy employed in the numerical results.
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3.3 Nonlinear iterative schemes

In this section we consider three di�erent possibilities of uncoupling the PGP from the

velocity-pressure calculation. We assume that � � 1=2 in (19) and therefore the convec-

tive term of the Navier-Stokes equations needs to be linearized, either with the simple Picard

iteration or with the Newton-Raphson scheme. For the sake of simplicity, only the �rst

method is considered here, although our results apply to the Newton-Raphson linearization

as well.

Using the same notation as in (22), the nonlinear algebraic system to be solved within

each time step is of the form

K(U)U+G0P = F; (24)

�L�P+D��+DU = 0; (25)

GP�M� = 0: (26)

This system may arise either from the transient problem (19)-(21) or from the direct dis-

cretization of the stationary equations.

3.3.1 Coupled PGP update-nonlinearity scheme

The �rst scheme that we considered consists of a single loop in which the nonlinearity of the

problem is accounted for together with the updating of the PGP. This coupling is solved by

a block Gauss-Seidel type scheme, in which a new value of the velocity and the pressure is

obtained from a known value of the PGP, which is then updated from the new pressure. The

scheme reads as indicated in Box 1, where subscripts refer to iteration counters.

There are several remarks to be made about this algorithm:

1. If the external forces (or part of them) are potential, the PGP could be initialized to its

projection onto the �nite element space. Observe also that setting U0 = 0 implies that

the �rst e�ective velocity will be the solution of a Stokes problem. These comments are

also valid for the following algorithms.

2. The updating of the PGP implies the solution of an algebraic system with a mass

matrix. As discussed before, it can be approximated by the diagonal matrix M`, which

turns out to be the most eÆcient choice and does not upset accuracy, as it will be shown

in a numerical test. However, if the `consistent' mass matrix is to be used, the Jacobi

iteration (23) provides an inexpensive way to update the PGP.

3. Most of the computational e�ort of each iteration is concentrated in the solution of

the velocity-pressure problem, whose matrix must be rebuilt at each iteration. Thus,

if the presence of the PGP increases the number of iterations to converge, it can be

anticipated that the CPU time will be substantially increased .
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4. In all our numerical examples, we have checked convergence in the relative discrete

Euclidian norm of the arrays of unknowns. For this particular scheme there is no way

to discern between the lack of convergence due to the nonlinearity and that due to the

PGP update.

5. In this and the following algorithms, convergence can be checked for all the variables

(unless otherwise speci�ed) or for those that may be considered relevant in a certain

problem.

Box 1: Coupled PGP update-nonlinearity

� Set i = 0, U0 = 0, �0 = 0.

WHILE (not converged) DO:

� Build up matrices K(Ui), G0, D, L� .

� Solve for the velocity and the pressure:

K(Ui)Ui+1 +G0Pi+1 = F;

DUi+1 � L�Pi+1 = �D��i:

� Solve for the PGP:

M�i+1 = GPi+1:

� Set i i+ 1 and check convergence.

END

3.3.2 Nested PGP update-nonlinearity scheme

This second scheme consists of a pair of nested loops: an outer loop for the PGP update

and an inner loop for the nonlinearity. The algorithm is presented in Box 2, where subscript

i refers to the iteration counter for the nonlinearity and j for the PGP update. Unknowns

converged in the innermost loop have been identi�ed by a subscript c.

This method has the disadvantage that at each of the inner iterations, a number of linear

systems has to be solved with di�erent system matrices, which have to be computed every
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time. Nevertheless, we hoped that as the outer iteration scheme proceeds, the number of

inner iterations needed to solve the nonlinearity would decrease, since the initial values for

the nonlinear solver progressively approach the solution. This fact could, in principle, make

this method competitive with the previous one, but that was not the case.

Box 2: Nested PGP update-nonlinearity

� Set j = 0, Uc;0 = 0, �0 = 0.

WHILE (not converged in j) DO:

� Set i = 0, U0;j+1 = Uc;j

WHILE (not converged in i) DO:

� Build up matrices K(Ui;j+1), G0, D, L� .

� Solve for the velocity and the pressure:

K(Ui;j+1)Ui+1;j+1 +G0Pi+1;j+1 = F;

DUi+1;j+1 � L�Pi+1;j+1 = �D��j :

� Set i i+ 1 and check convergence for U, P in i.

END

� Set Uc;j+1 = Ui;j+1, Pc;j+1 = Pi;j+1.

� Solve for the PGP:

M�j+1 = GPc;j+1:

� Set j  j + 1 and check convergence in j.

END

3.3.3 Nested nonlinearity-PGP update scheme

Finally, we considered a method in which the inner and outer iteration loops of the previous

scheme are performed in reversed order. That is, an outer iterative method is considered to

solve the nonlinearity of the full problem, within which an inner iteration scheme is used for

the PGP update. The resulting algorithm is shown in Box 3, where the subscript notation is

the same as in Box 2.
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The remarks to be made about this algorithm are the following:

1. As it will be demonstrated in the numerical examples, this method turns out to be

superior to any of the schemes previously considered. At each of the outer iterations, a

single system matrix needs to be computed, which is the same for all the inner iterations

(since it does not depend on j). Moreover, the number of inner iterations required to

solve the formulation decreases as the outer iteration scheme advances, becoming very

small in the last stages, as the initial approximation approaches the solution.

2. The computational cost due to the PGP update in this case is given by the cost of solving

linear systems of equations with a given matrix. When direct solution techniques are

employed, this is very low (of order the number of unknowns), since the matrix of the

system needs to be factored only once and only forward and backward substitutions

need to be performed for each j iteration. When iterative methods are used, the initial

guess for this iterative method becomes closer to the converged solution as the inner loop

advances, and thus less iterations of the linear system solver are required. Moreover, in

this case the cost of solving the algebraic system relative to that of the whole calculation

is smaller.

3. Since the innermost iteration can be viewed as a block Gauss-Seidel scheme for a linear

problem, we have tested the performance of over-relaxation strategies, consisting in

rede�ning the unknowns as

Ui+1;j+1  !1Ui+1;j+1 + (1� !1)Ui+1;j;

Pi+1;j+1  !2Pi+1;j+1 + (1� !2)Pi+1;j;

�i+1;j+1  !3�i+1;j+1 + (1� !3)�i+1;j;

right after solving for the PGP. In these expressions, !i, i = 1; 2; 3, are numerically

determined over-relaxation parameters. Even though for the linear (Stokes) problem

we found a certain improvement in the number of iterations required to converge (with

values of !i close to 1.3), this turned out to be insigni�cant for the nonlinear problem

(meaning that !i = 1 was found to be the best choice), and we did not pursue the

investigation of this possibility any further.

3.4 Transient scheme: explicit pressure gradient projection

In the previous section we have tacitly assumed that if a transient problem is being analyzed,

� in (20) is taken 1, and therefore at each time step a nonlinear algebraic problem of the form

(24)-(25) needs to be solved. However, it is also possible to take � = 0, case in which the

update of the PGP can be performed at the end of each time step. It is important to note
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Box 3: Nested nonlinearity-PGP update

� Set i = 0, U0;c = 0, �0;c = 0.

WHILE (not converged in i) DO:

� Build up matrices K(Ui;c), G0, D, L� .

� Set j = 0, Ui+1;0 = Ui;c, �i+1;0 = �i;c.

WHILE (not converged in j) DO:

� Solve for the velocity and the pressure:

K(Ui;c)Ui+1;j+1 +G0Pi+1;j+1 = F;

DUi+1;j+1 � L�Pi+1;j+1 = �D��i+1;j:

� Solve for the PGP:

M�i+1;j+1 = GPi+1;j+1:

� Set j  j + 1 and check convergence in j.

END

� Set Ui+1;c = Ui+1;j, Pi+1;c = Pi+1;j, �i+1;c = �i+1;j.

� Set i i+ 1 and check convergence in i.

END
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that the scheme thus obtained is unconditionally stable. The stability estimates (15)-(16)

hold both for � = 0 and � = 1 (in the former case, there is a technical condition on Æt to

obtain (16); see [11]).

For the sake of completeness, we have presented in Box 4 the transient algorithm treating

explicitly the PGP. The time step counter has been denoted by n and the total number of

time steps by N .

Box 4: Transient scheme with explicit PGP

� Read U0 and set �0 = 0.

FOR n = 0; 1; 2; :::; N � 1 DO:

� Solve the nonlinear problem:

M0ÆtU
n +Kconv(U

n+�)Un+� +KviscU
n+� +G0P

n+1 = F
n+1;

DU
n+1
� L�P

n+1 = �D��
n:

� Project the pressure gradient:

M�n+1 = GP
n+1:

END

It is important to remark that this scheme has proved to be very eÆcient and accurate in

general transient problems, but there are two small misbehaviors that need to be reported.

First, its low numerical damping, even when � = 1, causes that steady-state solutions are

reached after a larger number of time steps than with other schemes, such as mixed div-stable

velocity-pressure interpolations or the ASGS formulation. For long term time integrations,

its performance turns out to be similar to that of classical projections schemes. This point

is demonstrated in a numerical example.

The second problem encountered is that the explicit treatment of the PGP produces a

spurious initial pressure wave that is damped out after the �rst few time steps. This in

particular implies that the steady-state, whenever it exists, is reached faster by treating

implicitly the PGP, as it will be shown in one of the numerical examples. This phenomenon

was identi�ed and analyzed in [21].
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4 Numerical examples

In this section we present a study of the computational performance of all the di�erent

schemes discussed before. Our reference to decide whether the SPGP method is computa-

tionally feasible or not is the ASGS method, which is also formulated in terms of primitive

variables and allows the use of equal order interpolations.

An overview of the numerical examples presented below and what they intend to demon-

strate is the following:

1. A general performance test. This example serves to illustrate several facts: (1) the most

eÆcient nonlinear solver among those presented in Section 3.3 is the nested nonlinearity-

PGP update; (2) the use of the lumped mass matrix is preferable to the consistent one

in the projection of the pressure gradient; (3) for stationary problems, the SPGP is

only marginally more expensive than the ASGS method and more accurate.

2. Flow in a cavity. We obtain the steady-state solution of this classical example by

stepping in time to show that: (1) sometimes it is faster to treat implicitly the PGP,

since the steady-state is reached in fewer time steps; (2) pressure peaks using the SPGP

are better captured than using the ASGS method.

3. Kovasznay ow. This is a general convergence test that shows that optimal orders of

convergence are achieved for the four element types analyzed there, namely, P1, P2, Q1

and Q2 elements.

4. Newtonian ow through sinusoidally constricted tubes. This examples shows the be-

havior of the SPGP in a more realistic problem, for which experimental and numerical

reference results exist. It demonstrates that the SPGP is more accurate in such situa-

tions than the ASGS formulation.

4.1 Performance test

Let us consider a 3D steady state test with analytical solution to check the behavior of the

SPGP method. We take 
 as the unit cube and the force term so that the exact solution

is p = 0 and u(x; y; z) = (h(z)f(x)g0(y);�h(z)f 0(x)g(y); 0), with f(x) = x2(1 � x)2, g(y) =

y2(1 � y)2 and h(z) = z(1 � z). This velocity �eld vanishes on @
. The viscosity has been

set to � = 0:1.

We have used a uniform �nite element mesh of 213 nodal points, connected in di�erent

manners so as to obtain meshes of P1, P2, Q1 and Q2 elements. The resulting value of the

element Reynolds number is not very high and for this particular example and therefore no

stabilization is needed for the convective term. The convergence tolerance has been taken as

0:01% in the Euclidian norm of the arrays of nodal velocities.
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The �rst point that is investigated is which is the best iterative scheme among those dis-

cussed in Section 3.3. For that we have considered the mesh of P1 elements and approximated

the mass matrix by M`. The number of iterations required to converge and the CPU needed

are displayed in Table 1. Since the relative importance of the CPU time needed to construct

the matrices and to solve the algebraic system depends on the algorithms used in both cases,

we have split these two contributions to the total CPU. In this example, the algorithm em-

ployed to construct the matrices is that proposed in [22], whereas the linear system has been

solved with a standard direct solver.

From Table 1 it is seen that when the nonlinearity (NL in Table 1) and the PGP update

(simply identi�ed by PGP in Table 1) are coupled, the latter clearly drives the iterative

process, making the scheme uneÆcient due to the need for solving di�erent systems at each

iteration. The same is true for the nested PGP-NL, although the situation is now aggravated

by the inner iterations. The best method is the nested NL-PGP. The cost of the inner

iterations is extremely low, since the matrix of the system needs not to be recomputed and

it needs to be factored only once. The CPU time increase with respect to the ASGS method

is only 7% for the linear solver and 3% for the construction of the matrices.

The second point tested is whether it is preferable to use M or M`. As before, we have

used the mesh of P1 elements and now the nested NL-PGP scheme. Table 2 shows that the

convergence of the inner iterations is better usingM` and the CPU time is smaller. Moreover,

the accuracy is not deteriorated and, in this case, it is even slightly higher using the lumped

mass matrix. The error has been measured in the discrete `2 norm, which is de�ned as

E =

"
nptsX
a=1

2X
i=1

(Uai � ui(x
a))2

#1=2 "nptsX
a=1

2X
i=1

(ui(x
a))2

#�1=2
;

where npts is the total number of nodal points, U
a

i is the i-th component of the nodal velocity

at node a and xa are the coordinates of this node.

For all the interpolations we have tested the behavior of M and M` is similar, except for

the P2 element. The reason may be due to the fact that for this particular case the diagonal

mass matrix obtained from nodal quadrature has zero diagonal entries (those corresponding to

the vertex nodes). To obtain a nonsingular diagonal matrix, we split the quadratic tetrahedra

into linear tetrahedra and build up the lumped mass matrix from this splitting. The behavior

of the inner iterations depending on M and M` is highly problem dependent.

A comparison of the CPU time and accuracy between the ASGS and the SPGP, using

in this case the nested NL-PGP scheme and M`, is shown in Table 3. It is seen there that

the SPGP is slightly more expensive in all the cases and also slightly more accurate for �rst

order elements. The behavior of the P2 may be due to the construction of M`, and for the

Q2 it is seen that accuracy is much higher using the SPGP formulation.
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4.2 Flow in a cavity

In this example we solve the classical cavity ow problem in the unit square. The velocity is

prescribed to (1; 0) at the lid, including the corners (leaky case) and to (0; 0) on the rest of

the boundary. The domain is discretized using a mesh of 2888 P1 elements and 1521 nodal

points, uniformly re�ned near the boundaries.

Let us take � = 0:001 �rst. The resulting Reynolds number is Re = 1000, which is small

enough to ensure that a steady-state solution exists and can be well captured without stabi-

lizing convection. In this example the steady-state is reached through a transient evolution

from rest, both for the ASGS and the SPGP methods. The parameter � is set to 1 in (10),

although, as mentioned before, it is often interesting to replace the convective term in this

equation by (un
h
� ru

n+1
h

;vh). Thus, we take it as (u
n+

h
� ru

n+1
h

;vh) and consider the cases

 = 0 and  = 1.

The number of time steps needed to reach the steady-state with Æt = 100, as well as the

required CPU time, are reported in Table 4. The steady-state tolerance has been set to 10�4,

normalized with ÆtU
1, and the convergence tolerance to 10�3. It can be observed that the

case  = 0 requires more time steps due to the smaller numerical damping of the scheme,

even though it is less time consuming that the nonlinear case  = 1. For the SPGP method,

it turns out that the case � = 1 needs less CPU time than � = 0, especially when  = 1. This

is due to the faster convergence to the steady-state when the PGP is treated implicitly, case

which does not su�er from the spurious pressure wave of the explicit case mentioned earlier.

In this relatively small problem, the increase of CPU time of the SPGP with respect to

the ASGS is bigger than in the �rst example. Considering the cases with � = 1, it is 38.6 %

for  = 0 and 45.9 % for  = 1. This is due to the bigger relative cost of the forward and

backward substitutions (needed at each PGP update) with respect to the matrix factorization

in the direct solver that we have used (see remark 2 to Box 3).

This example also serves to point out the di�erence in the pressure peaks obtained using

the ASGS and the SPGP methods. Table 5 shows the di�erence between the maximum and

the minimum pressure values obtained for � = 0:001 and � = 0:1. Results are more `di�usive'

using the ASGS method, as it can be also seen from the curvature of the iso-pressure lines

near the boundary in Fig. 1 and Fig. 2, which in the ASGS case tend to be slightly orthogonal

to it. Nevertheless, this does not a�ect the velocity solution, which is very similar in both

cases.

4.3 Kovasznay ow

In order to check numerically the optimal orders of accuracy given in (14), we considered a

problem introduced by Kovasznay (see [23]), modeling laminar ow behind a two dimensional

grid, in which an analytical solution of the steady incompressible Navier-Stokes equations with
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no forcing term is available. The velocity solution u = (u; v) is given by:

u(x; y) = 1� e�x cos(2�y);

v(x; y) =
�

2�
e�x sin(2�y);

for (x; y) 2 R 2
, whereas the pressure is p(x; y) = p0�e

�x=2, where p0 is an arbitrary constant

and the parameter � is given in terms of the Reynolds number Re by � = Re=2 � (Re2=4 +

4�2)1=2 < 0. This ow problem was solved numerically in [24] and [25] for a value of Re = 40.

We solved it in the domain 
 = [�1=2; 1] � [�1=2; 1=2] for that value of the Reynolds number

(that is, for � = 0:025), with the elements P1, Q1, P2 and Q2, and on four di�erent uniform

meshes, made up with 19� 13, 31� 21, 43� 29 and 61� 41 nodes, respectively. In all cases,

the solution was obtained by the nested nonlinearity-PGP update scheme with a Newton-

Raphson approximation of the convective term, starting from the uid at rest, but for the

prescribed boundary conditions (which were given by the value of the analytical solution at

the boundary). The tolerance for convergence in the iteration for nonlinearity was 10�4,

and the same value was taken for the tolerance of the inner iteration. It took 5 iterations

of Newton-Raphson's method in all cases to �nd the solution. The only exception was the

P2 element case with the �ner 61 � 41 mesh: Newton-Raphson's method diverged in that

case; we used Picard's iteration instead, which required 9 iterations to �nd the solution for

the same values of the tolerances. The number of inner iterations decreased with the outer

iteration scheme in all cases, from about a hundred in the �rst iteration, in the worst cases,

to one in the �fth iteration in all cases.

We then computed the exact errors ku�uhk, (velocity error in L
2), kru�ruhk, (velocity

error in H1) kp� phk (velocity error in L2) and krp�rphk (pressure error in H1) for each

mesh and element. The results obtained can be seen in Fig. 3 as a function of the mesh

size, where we have included the errors obtained for the ASGS method with a Q1 element

interpolation for comparison. As can be observed, optimal orders of accuracy were found in

all cases. Those of the velocity solution are specially sharp, whereas for the pressure there

seems to be a gain of one order of accuracy both in the velocity and its gradient. In particular,

the convergence of the pressure gradient was not ensured by the theory for linear and bilinear

elements.

Moreover, it is clearly seen that the ASGS method, although optimal in all cases, produces

less accurate results than our method, specially for the pressure. The Q2 element provides

the most accurate results.

4.4 Newtonian ow through sinusoidally constricted tubes

This numerical example concerns a rather well-studied ow with recirculating regions but

without singularities. Precise measurements and simulations [26, 27] exist so as to compare
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the SPGP and ASGS methods in what regards accuracy, with emphasis on that of global

quantities.

The problem consists of a periodic ow through a tube with radius dependent on x1 as

r(x1) = R0

�
1 + � cos

2�x1

�

�
;

and thus the geometry involves two non-dimensional quantities: The constriction ratio �,

and the non-dimensional period � = 2�R0=�. In [26] detailed results are provided for the

case � = 0:3, � = 1, that we will consider in the following. The quantity of interest is the

friction factor f , usually considered within the product

fRe =
2�R4

0rp

�Q
;

where rp is the mean pressure gradient and Q the ow rate. In the steady case and for given

� and �, fRe is a function of the Reynods number alone, de�ned as

Re =
2Q

��R0

:

Experiments indicate that the ow is steady and axisymmetric up to Re = 200 or greater,

depending on the geometry. Our computations are thus axisymmetric, stepping in time until

a steady state is reached.

We consider two meshes: A coarse one consisting of 30 � 40 nodes that is shown in

Fig. 4, and a �ne one consisting of 120 � 80 nodes used as reference. We investigate the

range 0 < Re < 300 using the SPGP method and the ASGS method. For the former we

consider two treatments of the momentum equation, namely Galerkin and SUPG, denoted

respectively by SPGP+GAL and SPGP+SUPG. The ow structure, shown by means of the

streamline pattern, is shown in Fig. 5 as computed on the 120� 80 mesh using SPGP+GAL.

Detachment regions that grow with Re are evident.

In Figs. 6 and 7 we compare the periodic part of the pressure �elds obtained with the

di�erent methods with that obtained using the 120� 80 mesh. In the case Re = 0 the SPGP

method is more accurate (this is most noticeable from the extreme values of the pressure,

which suggests an overdi�usive behavior of ASGS). For Re � 295 the di�erences between

the pressure �elds obtained with SPGP+GAL, SPGP+SUPG and ASGS are less signi�cant.

However, ASGS remains the one for which pmax � pmin is smallest.

Quantitative comparison between the computed friction factors is carried out in Figs. 8

and 9 (which is a detail of the former for lower values of Re). Excellent agreement exists

between numerical results from the literature [26, 27] and the results obtained on the 120�80

mesh. The plots prompt the de�nition of two regimes in what concerns numerical behav-

ior of the methods. In the low-Re regime (Re < 25) momentum upwinding is negligible,

SPGP+GAL coincides with SPGP+SUPG, both being signi�cantly more accurate than the

ASGS method. In the high-Re regime (Re > 100) momentum upwinding is the dominant
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source of error and the predictions of SPGP+SUPG and ASGS are very close. In the whole

range, the fRe predicted by SPGP+GAL agrees within 0:2 % with the reference computation.

5 Conclusions

In this paper we have fully described the SPGP method and its implementation aspects,

which have been tested through numerical experiments. The main conclusions that may be

drawn from these are the following:

� If a nonlinear iterative solver needs to be used solving also for the PGP, the best

option turns out to be a pair of nested loops, the outermost of which accounts for the

linearization of the convective term and the innermost for the updating of the PGP. The

inner iterations are very inexpensive relative to the global cost of a nonlinear transient

analysis, since the matrix of the algebraic system remains unchanged.

� In general, it is preferable to use the lumped mass matrix rather than the consistent

one. From numerical examples we have found that the accuracy of the scheme is similar

in both cases, whereas the computational cost is lower using the lumped mass matrix.

This is due not only to the fact that the projection step is trivial in this case, but also

to the smaller number of iterations required for convergence in the iterative schemes

analyzed to segregate the calculation of the PGP from the velocity and the pressure.

� For transient problems, the explicit treatment of the PGP yields what to our knowledge

is the computationally simplest �nite element formulation which allows equal velocity-

pressure interpolations. A pressure Laplacian-like term needs to be introduced in the

left-hand-side of the equations and the divergence of the projected pressure gradient at

the previous time step needs to be added as a force term of the continuity equation.

This ensures consistency and does not deteriorate stability. However, when a steady-

state is sought, more time steps than for example with the ASGS need to be performed.

This reluctance to reach the steady state is similar to that found in some fractional step

methods which solve, at the steady state, an equation similar to (20).

� The accuracy of the scheme is certainly one of its most important features. Even in

stationary calculations, when the cost of the PGP update is not negligible, it might be

worth using it. In particular, the pressure near the boundary is more accurate than

with the ASGS method or classical projection schemes.

As a general conclusion, we think that the SPGP method is an accurate �nite element

formulation which originates from an innovative stabilization concept. This may stimulate

the development of new stabilization techniques in other areas of computational mechanics.
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On the other hand, its weak point is its robustness in certain situations, which deserves

further research.
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Figure 1: Pressure contours for the ow in a cavity (case Re = 1000). SPGP method.

Figure 2: Pressure contours for the ow in a cavity (case Re = 1000). ASGS method.
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Figure 3: Kovasznay ow: a) velocity error in L2, b) pressure error in L2; c) velocity error

in H1; d) pressure error in H1. + P1 Element; � Q1 Element; Æ P2 Element; � Q2

Element; = ASGS method, Q1. element
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Figure 4: Flow through sinusoidal tubes: 30� 40 mesh.
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Re=294.4

Figure 5: Flow through sinusoidal tubes: Flow pattern for di�erent Re.
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SPGP, 120x80 mesh , Re=0
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pmin=-1.211, pmax=1.201

Figure 6: Flow through sinusoidal tubes: Periodic part of the pressure �eld as computed by

the SPGP and ASGS methods for Re = 0. In this case SPGP+GAL and SPGP+SUPG are

equivalent.
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Figure 7: Flow through sinusoidal tubes: Periodic part of the pressure �eld as computed by

the SPGP and ASGS methods for Re � 295.
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Figure 8: Flow through sinusoidal tubes: Product fRe vs. Re for the di�erent methods as

compared to other authors and to the reference computation.
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Figure 9: Detail of the low-Re region of Fig. 8.
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Method
Outer

Iterations

Inner

Iterations

Matrices

CPU

Solver

CPU

Total

CPU

ASGS 3 | 100 100 100

Coupled SPGP 6 | 181 182 182

Nested SPGP, PGP-NL 6 (3,3,2,2,2,2) 389 404 402

Nested SPGP, NL-PGP 3 (6,3,2) 103 107 106

Table 1: Test to determine the best iterative scheme. Lumped mass matrix M`, P1 element.

Method
Outer

Iterations

Inner

Iterations

Matrices

CPU

Solver

CPU

Total

CPU
`2 error

ASGS 3 | 100 100 100 6:32 � 10�2

SPGP, M 3 (6,6,4) 111 107 108 4:32 � 10�2

SPGP, M` 3 (6,3,2) 103 107 106 4:01 � 10�2

Table 2: Test to compare M and M`. For the SPGP, the nested NL-PGP scheme is used. P1

element.

Element

and method

Outer

Iterations

Inner

Iterations

Matrices

CPU

Solver

CPU

Total

CPU
`2 error

ASGS, P1 3 | 100 100 100 6:32 � 10�2

SPGP, P1 3 (6,3,2) 103 107 106 4:01 � 10�2

ASGS, Q1 3 | 183 246 233 9:38 � 10�3

SPGP, Q1 3 (6,4,2) 190 263 250 7:02 � 10�3

ASGS, P2 6 | 159 237 227 3:53 � 10�1

SPGP, P2 6 (7,5,5,4,4,2) 167 258 247 4:60 � 10�1

ASGS, Q2 5 | 412 829 798 5:01 � 10�2

SPGP, Q2 5 (6,4,3,2,2) 433 904 872 5:56 � 10�3

Table 3: Test to compare the element behavior. Lumped mass matrix M`.
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Method
Number of

time steps

Matrices

CPU

Solver

CPU

Total

CPU

ASGS,  = 0 14 59.4 6.7 66.5

ASGS,  = 1 6 89.4 10.1 100.0

SPGP,  = 0; � = 0 26 129.8 13.0 144.2

SPGP,  = 0; � = 1 16 81.0 9.7 92.2

SPGP,  = 1; � = 0 22 753.6 74.4 829.4

SPGP,  = 1; � = 1 7 128.5 16.0 145.9

Table 4: Number of time steps to reach the steady state for the cavity ow problem (case

Re = 1000).

Method Re = 10 Re = 1000

ASGS 27.131 0.632

SPGP 44.093 0.866

Table 5: Maximum pressure di�erences pmax � pmin for the cavity ow problem.

34


