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Abstract

Empirical analyses on income and wealth inequality and those in other fields in economics
and finance often face the difficulty that the data is heterogeneous, heavy-tailed or correlated in
some unknown fashion. The paper focuses on applications of the recently developed t-statistic
based robust inference approaches in the analysis of inequality measures and their comparisons
under the above problems. Following the approaches, in particular, a robust large sample test
on equality of two parameters of interest (e.g., a test of equality of inequality measures in two
regions or countries considered) is conducted as follows: The data in the two samples dealt with
is partitioned into fixed numbers 𝑞1, 𝑞2 ≥ 2 (e.g., 𝑞1 = 𝑞2 = 2, 4, 8) of groups, the parameters
(inequality measures dealt with) are estimated for each group, and inference is based on a stan-
dard two-sample 𝑡−test with the resulting 𝑞1, 𝑞2 group estimators. Robust 𝑡−statistic approaches
result in valid inference under general conditions that group estimators of parameters (e.g., in-
equality measures) considered are asymptotically independent, unbiased and Gaussian of possibly
different variances, or weakly converge, at an arbitrary rate, to independent scale mixtures of
normal random variables. These conditions are typically satisfied in empirical applications even
under pronounced heavy-tailedness and heterogeneity and possible dependence in observations.
The methods dealt with in the paper complement and compare favorably with other inference
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approaches available in the literature. The use of robust inference approaches is illustrated by an
empirical analysis of income inequality measures and their comparisons across different regions
in Russia.

Keywords: Income inequality, inequality measures, robust inference, heavy-tailedness, Russian
economy.

JEL Codes: C14, D31, D63

1 Introduction

Empirical analyses on income and wealth inequality and those in other fields in economics and
finance often face the difficulty that the data is heterogeneous, heavy-tailed or correlated in some
unknown fashion (see, among others, the discussion and reviews in

Importantly, many studies going back to V. Pareto indicate that income and wealth distributions
are heavy-tailed and follow power laws

𝑃 (𝑋 > 𝑥) ∼ 𝐶𝑥−𝜁 , 𝐶 > 0, (1)

with the tail index 𝜁 > 0 (see, among others, the discussion and reviews in Piketty and Saez, 2003,
Atkinson, 2008, Gabaix, 2009, Milanovic, 2005, 2011, Atkinson and Piketty, 2010, Atkinson et al.,
2011, Toda, 2012, Ibragimov et al., 2015, Gabaix et al., 2016, Ibragimov and Ibragimov, 2018, Toda
and Wang, 2020, and references therein).1

Typical empirical results are 𝜁 ∈ (1.5, 3) for income, and 𝜁 ≈ 1.5 for wealth. Thus, the variance is
infinite for wealth and may be infinite for income.2

More generally, the tail index parameter 𝜁 of power law distributions (1) characterize the heaviness
(the rate of decay) of its tails, with smaller values of 𝜁 corresponding to more pronounced heavy-
tailedness in the distributions, and vice versa. The tail index 𝜁 governs the likelihood of observing
outliers and extreme values of 𝑋, e.g., very high income/wealth levels in the case of income and
wealth distributions. It is further important as it governs existence of moments of the r.v. 𝑋 > 0,

with the moment 𝐸𝑋𝑝 of order 𝑝 > 0 of 𝑋 being finite if and only if 𝜁 > 𝑝. In particular, the second
1As is well-known, heavy-tailedness and power law distributons are also exhibited by many other key variables

in economics and finance, including financial returns, foreign exchange rates, insurance risks and losses from natural
disasters, to name a few (see, among others, the reviews in Embrechts et al. (1997), Gabaix (2009), Ibragimov et al.
(2015), McNeil et al. (2015), and references therein.

2Importantly, the value of the tail index 𝜁 in power law income or wealth distributions (1) may be regarded as a
measure of upper tail inequality (that is, among the rich), with smaller values of the tail index corresponding to larger
inequality in the upper tails. This may be motivated by the fact that, in the case of Pareto distributions with 𝜁 > 1

for income or wealth, where (1) holds exactly for all values 𝑥 greater than a certain threshold 𝑥𝑚, the Gini coefficient
of inequality over the whole income/wealth distribution is equal to 1/(2𝜁 − 1) and is thus decreasing in 𝜁 (see also
the discussion in Atkinson, 2008, Gabaix et al., 2016, that focuses on the analysis and estimation of the top income
inequality measure 𝜂 = 1/𝜁, Blanchet et al., 2018, and Ibragimov and Ibragimov, 2018).
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moment 𝐸𝑋2 of the r.v. 𝑋 is finite and its variance 𝑉 𝑎𝑟(𝑋) is defined if and only if 𝜁 > 2, and the
first moment - the mean 𝐸𝑋- of 𝑋 is finite if and only if 𝜁 > 1.

Applicability of commonly used approaches to inference on inequality measures based on asymp-
totic normality becomes problematic under heavy-tailedness, heterogeneity and correlation in the
data. For instance, sample inequality measures - estimators of measures of inequality like sample
Gini coefficient - converge to non-Gaussian limits given by stable random variables (r.v.’s) under
sufficiently pronounced heavy-tailedness with infinite second moments and variances (see Fontanari
et al. (2018) and the discussion in Appendix B).3

Provided normal convergence for sample inequality measures holds, asymptotic methods based
on it often have poor finite sample properties under the problems of extreme values, outliers and
heavy-tailedness in data.4 Similar problems are also observed for bootstrap methods (see Cowell and
Flachaire, 2007, Davidson and Flachaire, 2007). Bootstrap methods are also known to fail in heavy-
tailed infinite variance settings (see the discussion in Section 5 in Davidson and Flachaire, 2007, and
references therein).

The problems with inference on inequality measures are discussed in detail in Dufour et al. (2019,
2020). These works also emphasize that reliable methods remain scarce for both the one-sample
problem of inference on a single inequality index and the two-sample problem of testing for equality
of and inference on the difference between two inequality indices. As discussed in Dufour et al. (2019,
2020), the latter problem is much more challenging than the former (see also Ibragimov and Müller,
2016, for the discussion and the results on robust inference on equality of and the difference between
two general parameters of interest under heterogeneity and dependence). Dufour et al. (2019) propose
permutation tests for the hypothesis of equality of two inequality measures from independent samples
which outperforms other asymptotic and bootstrap methods available in the literature (see also Canay
et al., 2017, for permutation tests of equality of two general parameters of interest under heterogeneity
and clustered dependence). As discussed in Dufour et al. (2020), the latter tests for the two-sample
problem for inequality indices are limited to testing the equality of two inequality measures. In
particular, they do not provide a way of making inference on a possibly non-zero difference between
the two measures considered nor building a confidence interval for the difference.

3As is well-known, finiteness of variances for variables dealt with, such as economic and financial indicators like finan-
cial returns and exchange rates, is crucial for applicability of standard statistical and econometric approaches, including
regression and least squares methods. Similarly, the problem of potentially infinite fourth moments of (economic and
financial) variables and time series dealt with needs to be taken into account in applications of autocorrelation-based
methods and related inference procedures in their analysis (see, among others, the discussion in Granger and Orr, 1972,
Embrechts et al., 1997, Cont, 2001, Ch. 1 in Ibragimov et al., 2015, and references therein).

4More generally, poor finite sample properties are often observed for asymptotic methods based on normal con-
vergence of estimators and consistent estimation of their limiting variances under heterogeneity and dependence in
observations (e.g., inference approaches based on heteroskedasticity and autocorrelation consistent - HAC - and clus-
tered standard errors, especially with data with pronounced autocorrelation, dependence and heterogeneity, see, among
others, Andrews, 1991, den Haan and Levin, 1997, the discussion in Phillips, 2005, Ibragimov and Müller, 2010, 2016,
Canay et al., 2017, Esarey and Menger, 2019, and references therein).
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Dufour et al. (2020) propose Fieller-type methods for inference on the generalized entropy (GE)
class of inequality measures. Among other results, the authors develop approaches to testing and con-
struction of confidence intervals for any possibly non-zero difference between the inequality measures
that can be used under independent samples of i.i.d. observations with possibly unequal sizes and
equal-sized samples of i.i.d. observation with arbitrary dependence between the samples.

This paper focuses on applications of recently developed 𝑡−statistic approaches (see Ibragimov
and Müller, 2010, 2016, and also Ch. 3 in Ibragimov et al., 2015) in robust inference on income and
wealth inequality measures under the problems of heterogeneity, heavy-tailedness and possible depen-
dence in observations. Following the approaches, in particular, a robust large sample test on equality
or a non-zero difference of two parameters of interest (e.g., a test of equality of inequality measures
in two regions or countries considered) is conducted as follows: The data in the two samples dealt
with is partitioned into fixed numbers 𝑞1, 𝑞2 ≥ 2 (e.g., 𝑞1 = 𝑞2 = 2, 4, 8) of groups, the parameters
(inequality measures dealt with) are estimated for each group, and inference is based on a standard
two-sample 𝑡−test with the resulting 𝑞1, 𝑞2 group estimators (see the next section). As follows from the
results in Ibragimov and Müller (2010, 2016), robust 𝑡−statistic approaches result in valid inference
under general conditions that group estimators of parameters of interest (e.g., inequality measures)
considered weakly converge, at an arbitrary rate, to independent normal or scale mixtures of nor-
mal r.v.’s. These conditions are typically satisfied in empirical applications even under pronounced
heavy-tailedness, heterogeneity and possible dependence in observations.5 The approaches proposed
in the paper complement and compare favorably with other inference methods available in the lit-
erature, including computationally expensive bootstrap procedures and permutation-based inference
methods. Importantly, the approaches proposed in the paper can be used in testing and construction
of confidence intervals for any possibly non-zero difference between inequality measures under the
problems of heterogeneity, heavy-tailedness and possible dependence in the data.

One should also emphasize wider range of applicability of 𝑡−statistic approaches to inference on
inequality measures proposed in the paper as compared to other inference methods available in the
literature, including those considered in Dufour et al. (2019, 2020). The inference approaches can be
used in the case where observations (e.g., on income or wealth levels) in each of the samples considered
are dependent among themselves - for instance, due to spatial or clustered dependence (see Conley
(1999) and Bhattacharya (2007) for a review of settings and methods of inference under spatial and
clustered dependence, including complex stratified and clustered household surveys), common shocks
affecting them (see Andrews (2005) and Hwang (2021) for a review of and inference using data with
common shock dependence), or, in the case of time series or panel data on income or wealth levels,
due to autocorrelation and dependence in observations over time. Further, in the case of testing for
equality of inequality measures or inference on their difference in two populations using two samples

5In particular, as discussed in Ibragimov and Müller (2010) and Ch. 3 in Ibragimov et al. (2015), the asymptotic
Gaussianity of group estimators of the parameters of interest typically follows from the same reasoning and holds under
the same conditions as the asymptotic Gaussianity of their full-sample estimators.
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of possibly dependent observations, as above, the 𝑡−statistic inference approaches may be used under
an arbitrary dependence between the samples as well as under possibly unequal sample sizes.

Application of the robust inference approaches is illustrated by an empirical analysis of income
inequality measures and their comparisons across different regions in Russia.

The paper is organized as follows. Section 2 describes the robust 𝑡−statistic approaches to inference
on inequality measures analyzed in the paper and discusses the conditions for their validity. Section
3 provides numerical results on finite sample performance of the robust inference approaches dealt
with and their comparisons with other inference methods in the literature, with a particular focus
on testing equality of two inequality measures and inference on the difference between two inequality
indices in Section 3.2. Section 4 presents empirical applications of the robust 𝑡−statistic approaches
in the analysis of income inequality in Russia and comparisons of inequality measures across Russian
regions. Section 5 makes some concluding remarks and discusses some suggestions for future research.
Appendix A provides tables on the numerical and empirical results in the paper. Appendix B provides
a review of the definitions and asymptotic properties of the Gini, Theil and Generalized Entropy
measures referred to in the paper and a discussion of applicability of the robust approaches dealt
with in inference on the measures.

2 Methodology: Robust t-statistic approaches to inference on

inequality measures

We focus on inference on inequality measures using the t-statistic approaches to robust inference
under heterogeneity, heavy-tailedness and dependence of largely unknown form recently developed
in Ibragimov and Müller (2010, 2016). Ibragimov and Müller (2010) provide an approach to robust
inference on an arbitrary single parameter of interest. Ibragimov and Müller (2016) provide approaches
to robust testing of equality of two arbitrary parameters of interest and to robust inference on the
difference of the parameters.

We refer to, among others, Section 13.F in Cowell and Flachaire (2007), Davidson and Flachaire
(2007), Marshall et al. (2011), Ibragimov and Ibragimov (2018), Dufour et al. (2019) and Dufour et al.
(2020) for definitions of the most widely inequality measures, including Gini, Generalized Entropy
and Theil indices, and their values for different income distributions, including empirically relevant
heavy-tailed Pareto, double Pareto and Singh-Maddala distributions (see the next section).

In the context of a one-sample inference on a single (income or wealth) inequality (e.g., a Theil,
Generalized entropy - GE - or Gini index) the robust 𝑡−statistic approaches are implemented as
follows.

Throughout the paper, we denote by 𝑇𝑘 a r.v. that has a Student-𝑡 distribution with 𝑘 ≥ 1

degrees of freedom. Further, for 𝑞 ≥ 2 and 0 < 𝛼 < 1, by 𝑐𝑣𝑞,𝛼 we denote the (1− 𝛼/2)−quantile of
the Student-𝑡 distribution with 𝑞 − 1 degrees of freedom: 𝑃 (|𝑇𝑞−1| > 𝑡𝛼)= 𝛼.

Consider the one-sample problem of testing a hypothesis on or constructing a confidence interval
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for an inequality measure ℒ. Following the 𝑡−statistic robust inference approaches in Ibragimov
and Müller (2010), a (large) sample I 1, I 2,..., I𝑁 of observations on income or wealth levels 𝐼, is
partitioned into a fixed number 𝑞 ≥ 2 (e.g., 𝑞 = 2, 4 or 8) of groups, and the income inequality
measure ℒ is estimated using the data for each group thus resulting in 𝑞 group empirical income
inequality measures ̂︀ℒ𝑗, 𝑗 = 1, ..., 𝑞. The robust test of the null hypothesis 𝐻0 : ℒ = ℒ0 against
the two-sided alternative 𝐻𝑎 : ℒ ̸= ℒ0 is based on the usual 𝑡−statistic 𝑡𝐼ℒ in the 𝑞 group empirical
inequality measures ̂︀ℒ𝑗, 𝑗 = 1, ..., 𝑞 :

𝑡ℒ =
√
𝑞
̂︀ℒ − ℒ0

𝑠 ̂︀ℒ (2)

with ̂︀ℒ =
∑︀𝑞

𝑗=1
̂︀ℒ𝑗

𝑞
and 𝑠2̂︀ℒ =

∑︀𝑞
𝑗=1

(︁ ̂︀ℒ𝑗− ̂︀ℒ)︁2

𝑞−1
̂︀ℒ𝑗. The above null hypothesis 𝐻0 is rejected in favor of the

alternative 𝐻𝑎 at level 𝛼 ≤ 0.83 (e.g., at the usual significance level 𝛼 = 0.05) if the absolute value
|𝑡ℒ| of the 𝑡−statistic in group estimates ̂︀ℒ𝑗 exceeds the (1−𝛼/2)−quantile of the standard Student-𝑡
distribution with 𝑞 − 1 degrees of freedom: |𝑡ℒ| > 𝑐𝑣𝑞,𝛼. The test of 𝐻0 against 𝐻𝑎 of level 𝛼 ≤ 0.1

is conducted in the same way if 2 ≤ 𝑞 ≤ 14. Using the results in Bakirov and Székely (2006) and
Ibragimov and Müller (2010), one can further calculate the 𝑝−values of the above 𝑡−statistic robust
tests in the case of an arbitrary number 𝑞 of groups thus enabling conducting robust tests on the
inequality measure ℒ of an arbitrary level.6

By implication, for all 𝛼 ≤ 0.83 (and all 𝛼 ≤ 0.1 for 2 ≤ 𝑞 ≤ 14) a confidence interval for the
inequality measure ℒ with asymptotic coverage of at least 1− 𝛼 may be constructed as ̂︀ℒ𝑗 ± 𝑐𝑣𝑞,𝛼𝑠 ̂︀ℒ.
For instance, the 95% confidence interval for ℒ is given by ( ̂︀ℒ − 𝑐𝑣𝑞,0.05𝑠 ̂︀ℒ, ̂︀ℒ + 𝑐𝑣𝑞,0.05𝑠 ̂︀ℒ), where
cv 𝑞,0.05 is the 0.975-quantile of the Student-t distribution with q−1 degrees of freedom: 𝑃 (|𝑇𝑞−1| >
𝑐𝑣𝑞,0.05)=0.05.

As follows from Ibragimov and Müller (2010), the above approach results in asymptotically valid
inference under the assumption that the group empirical income inequality measures ̂︀ℒ𝑗, 𝑗 = 1, ..., 𝑞,

are asymptotically independent, unbiased and Gaussian of possibly different variances.
The asymptotic validity of the t-statistic based inference approach continues to hold even when

the group estimators ̂︀ℒ𝑗 of ℒ converge (at an arbitrary rate) to independent but potentially heteroge-
neous scale mixtures of normal r.v.’s, such as heavy-tailed stable symmetric r.v.’s. It also holds under
convergence of the group estimators to conditionally normal r.v.’s which are unconditionally depen-
dent through their second moments or have a common shock-type dependence (see Andrews, 2005,
for inference methods under common shock dependence structures, and Hwang, 2021, for applications
of 𝑡−statistic robust inference approaches in such settings).7 This implies that the t-statistic based
robust inference on ℒ can thus be applied under extremes and outliers in observations generated by

6One-sided tests are conducted in a similar way; one may note that quantiles of Student-𝑡 distributions with 𝑞 − 1

degrees of freedom can also be used in one-sided tests of level 𝛼 ≤ 0.1 if 𝑞 ∈ {2, 3}.
7Justification of asymptotic validity of the robust 𝑡−statistic inference approaches in Ibragimov and Müller (2010)

is based on a small sample result in Bakirov and Székely (2006) that implies validity of the standard 𝑡−test on the
mean under independent heterogeneous normal observations. Justification of asymptotic validity of the approaches in
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heavy-tailedness with infinite variances and, among others, dependence structures that include mod-
els with multiplicative common shocks (see Ibragimov, 2007, 2009). The 𝑡−statistic based approaches
do not require at all estimation of limiting variances of estimators of interest, in contrast to inference
methods based on consistent, e.g., HAC or clustered, standard errors (see Section 1). The numerical
analysis in Ibragimov and Müller (2007, 2016) and Section 3 in Ibragimov et al. (2015) indicates
favorable finite sample performance of the 𝑡−statistic based robust inference approaches in inference
on models with time series, panel, clustered and spatially correlated data. See also Esarey and Menger
(2019) for a detailed numerical analysis of finite sample performance of different inference procedures,
including 𝑡−statistic and related approaches, under small number of clusters of dependent data and
their software (STATA and R) implementation.

The above conditions for asymptotic validity of 𝑡−statistic approaches to robust inference are
typically satisfied in applications, under the appropriate choice of the groups implying asymptotic
unbiasedness and independence of group estimators of parameters of interest - inequality measures
considered (see below). Namely, the asymptotic Gaussianity (or other weak convergence results, e.g.,
convergence to heavy-tailed scale mixtures of Gaussian distributions) of group estimators - group
empirical inequality measures - ̂︀ℒ𝑗 typically follows from the same reasoning and holds under the
same conditions as the asymptotic Gaussianity (or other relevant asymptotics) of the full-sample
estimator - full-sample empirical inequality measure - ̂︀ℒ.

Concerning the choice of the groups, the condition that group estimators of parameters of interest -
inequality measures dealt with - should be asymptotically unbiased (and independent) places natural
- again typically satisfied in applications - restrictions on formation of groups in applications of
𝑡−statistic approaches in the context of inference on inequality indices and their comparisons (see also
discussion of general 𝑡−statistic inference approaches in Ibragimov and Müller, 2010). For instance,
in the problem of inference on a single inequality measure in the whole country, e.g., Russia, using
household income surveys with random samples of households in the country and its regions and thus
i.i.d data on income levels, groups cannot be chose to be the country regions. This is because each
of the group estimators - group inequality measures - will estimate the inequality index considered
in the corresponding region but not in the whole country and unbiasedness of the group estimators
with the mean asymptotically equal to the country’s inequality index of interest will not hold. The
“between-region” component of inequality in the whole country would be missed out by the group
estimators.

On the other hand, in the problem of testing equality of or inference on the difference between
inequality indices in two regions of a country, e.g., Russia as in the empirical application in Section
4 in this paper, using household income surveys with i.i.d. data on household income levels in the
regions considered, the groups in applications of two-sample 𝑡−statistic approaches can be formed
just by taking subsequent observations on incomes in the two samples of i.i.d. income data in the

inference on equality of two parameters in Ibragimov and Müller (2016) is based on the analogues of the above small
sample result for two-sample 𝑡−tests and Behrens-Fisher problem obtained therein.
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regions (similar to applications of the approaches with time series data, see Ibragimov and Müller,
2010). Namely, in the case of inference on equality of inequality indices of interest in two regions
using the random samples 𝐼1, 𝐼2, ..., 𝐼𝑁1 , 𝑌1, 𝑌2, ..., 𝑌𝑁2 of (i.i.d.) income levels in them, the 𝑞1, 𝑞2

groups in applications of two-sample 𝑡−statistic approaches based on 𝑡ℒ in (3) can be taken to
be the groups {𝐼𝑘, (𝑖 − 1)𝑁1/𝑞1 < 𝑘 ≤ 𝑖𝑁1/𝑞1}, {𝑌𝑙, (𝑗 − 1)𝑁2/𝑞2 < 𝑙 ≤ 𝑗𝑁2/𝑞2}, 𝑖 = 1, ..., 𝑞1,

𝑗 = 1, ..., 𝑞2, of subsequent observations on household incomes in the samples considered. The groups
of subsequent observations in the two samples in applications of 𝑡−statistic approaches based on
˜̃𝑡ℒ in (4) with 𝑞1 = 𝑞2 = 𝑞 are formed in a similar way. With the above simple choice of groups,
asymptotic unbiasedness and independence of group estimators - group inequality measures - holds
due to i.i.d.ness of data in the random samples considered.

Let us now turn to testing that the values 𝐿1 and 𝐿2 of an inequality measure ℒ are equal in
two populations (e.g., for income distributions in two regions of a country) and to inference on the
difference 𝑑 = 𝐿1 − 𝐿2 between the two inequality indices using the (large) samples 𝐼1, 𝐼2, ..., 𝐼𝑁1 and
𝑌1, 𝑌2, ..., 𝑌𝑁2 on income or wealth levels in the populations. We first assume that the two samples are
independent. Following the 𝑡−statistic approaches to robust inference on two parameters of interest
in Ibragimov and Müller (2016), each of the two samples 𝐼1, 𝐼2, ..., 𝐼𝑁1 and 𝑌1, 𝑌2, ..., 𝑌𝑁2 is partitioned
into fixed numbers 𝑞1, 𝑞2 ≥ 2 (e.g., 𝑞1, 𝑞2 = 2, 4 or 8) groups, respectively, and the income inequality
measure ℒ is estimated using the data for each of the groups in the two samples. This thus results
in 𝑞1 + 𝑞2 group empirical income inequality measures ̂︀ℒ𝐼

1, ..., ̂︀ℒ𝐼
𝑞1
, and ̂︀ℒ𝑌

1 , ..., ̂︀ℒ𝑌
𝑞2
. The robust test

of the null hypothesis 𝐻0 : 𝐿1 − 𝐿2 = 𝑑0 (e.g., with 𝑑0 = 0, the test of the hypothesis 𝐻0 : 𝐿1 = 𝐿2

of equality of the values 𝐿1, 𝐿2 of the inequality index ℒ in the two populations considered) against
the two-sided alternative 𝐻𝑎 : 𝐿1 − 𝐿2 ̸= 𝑑0 (resp., with 𝑑0 = 0, against the two-sample alternative
𝐻𝑎 : 𝐿1 ̸= 𝐿2) is based on the usual two-sample 𝑡−statistic 𝑡ℒ in the 𝑞1+𝑞2 group empirical inequality
measures ̂︀ℒ𝐼

𝑗 , ̂︀ℒ𝑌
𝑘 , 𝑗 = 1, ..., 𝑞1, 𝑘 = 1, ..., 𝑞2 :

𝑡ℒ =
̂︀ℒ𝐼 − ̂︀ℒ𝑌 − 𝑑0√︁
𝑠2̂︀ℒ𝐼

/𝑞1 + 𝑠2̂︀ℒ𝑌
/𝑞2

(3)

with ̂︀ℒ𝐼 =
1

𝑞1

𝑞1∑︁
𝑗=1

̂︀ℒ𝐼
𝑗 ,

̂︀ℒ𝑌 =
1

𝑞2

𝑞2∑︁
𝑘=1

̂︀ℒ𝑌
𝑘 ,

𝑠2̂︀ℒ𝐼 =
1

𝑞1 − 1

𝑞1∑︁
𝑗=1

(︁ ̂︀ℒ𝐼
𝑗 − ̂︀ℒ𝐼

)︁2

, 𝑠2̂︀ℒ𝑌 =
1

𝑞2 − 1

𝑞2∑︁
𝑘=1

(︁ ̂︀ℒ𝑌
𝑘 − ̂︀ℒ𝑌

)︁2

.

For the number of groups 𝑞1, 𝑞2 ≤ 14 the above null hypothesis 𝐻0 : 𝐿1−𝐿2 = 𝑑0 is rejected in favor
of the alternative 𝐻𝑎 : 𝐿1−𝐿2 ̸= 𝑑0 (resp., with 𝑑0 = 0, the null hypothesis 𝐻0 : 𝐿1 = 𝐿2 of equality of
the inequality measures values in the populations is rejected in favor of the alternative 𝐻𝑎 : 𝐿1 ̸= 𝐿2)
at level 𝛼 ∈ {0.001, 0.002, ..., 0.099, 0.10} (e.g., at the usual significance levels 𝛼 = 0.01, 0.05 and 0.1)
if the absolute value |𝑡ℒ| of the two-sample 𝑡−statistic in group empirical inequality measures ̂︀ℒ𝐼

𝑗 , ̂︀ℒ𝑌
𝑘 ,

8



𝑗 = 1, ..., 𝑞1, 𝑘 = 1, ..., 𝑞2, exceeds the (1− 𝛼/2)−quantile of the standard Student-𝑡 distribution with
𝑞 − 1 degrees of freedom, where 𝑞 = min(𝑞1, 𝑞2) : |𝑡ℒ| > 𝑐𝑣𝑞,𝛼 = 𝑐𝑣min(𝑞1,𝑞2),𝛼.

89

One further obtains that, for 𝛼 = 0.01, 0.05, 0.1 and the number of groups 𝑞1, 𝑞2 ≤ 14,min(𝑞1, 𝑞2) =

𝑞, a confidence interval for the difference 𝑑0 = 𝐿1 − 𝐿2 between the values of the inequality measure
ℒ in two populations with asymptotic coverage of at least 1− 𝛼 may be constructed aŝ︀ℒ𝐼 − ̂︀ℒ𝑌 ± 𝑐𝑣𝑞,𝛼

√︁
𝑠2̂︀ℒ𝐼

/𝑞1 + 𝑠2̂︀ℒ𝑌
/𝑞2. For instance, the 95% confidence interval for ℒ is given by ̂︀ℒ𝐼 −̂︀ℒ𝑌 ± 𝑐𝑣𝑞,0.05

√︁
𝑠2̂︀ℒ𝐼

/𝑞1 + 𝑠2̂︀ℒ𝑌
/𝑞2, where 𝑐𝑣𝑞,0.05 is the 0.975-quantile of the Student-t distribution with

min(𝑞1, 𝑞2)− 1 degrees of freedom: 𝑃 (
⃒⃒
𝑇min(𝑞1,𝑞2)−1

⃒⃒
> 𝑐𝑣𝑞,0.05)=0.05.

As follows from Ibragimov and Müller (2016), the two-sample 𝑡−statistic approach is asymp-
totically valid under the assumption - as above, typically satisfied in applications - that the group
empirical income inequality measures ̂︀ℒ𝐼

𝑗 , 𝑗 = 1, ..., 𝑞1, ̂︀ℒ𝑌
𝑘 , 𝑘 = 1, ..., 𝑞2, are asymptotically inde-

pendent, unbiased and Gaussian of possibly different variances (or converge at an arbitrary rate to
independent but potentially heterogeneous scale mixtures of normal r.v.’s, such as heavy-tailed stable
symmetric r.v.’s).

Let us now consider the problem of testing for equality of the values 𝐿1 and 𝐿2 of an inequality
measure ℒ and to inference on the difference 𝑑 = 𝐿1 − 𝐿2 between the inequality indices in two
populations using income or wealth level samples 𝐼1, 𝐼2, ..., 𝐼𝑁1 and 𝑌1, 𝑌2, ..., 𝑌𝑁2 of possibly unequal
sizes 𝑁1, 𝑁2 that may exhibit an arbitrary dependence between them. Suppose that the samples are
divided into an equal number 𝑞1 = 𝑞2 = 𝑞 ≥ 2 (e.g., 𝑞1, 𝑞2 = 2, 4 or 8) of groups, and the sample
inequality measures - estimates of the inequality index ℒ of interest - are calculated using the data
for each of the 2𝑞 groups in the two samples. One thus has the group empirical income inequality
measures ̂︀ℒ𝐼

1, ..., ̂︀ℒ𝐼
𝑞 , and ̂︀ℒ𝑌

1 , ..., ̂︀ℒ𝑌
𝑞 . The robust test of the null hypothesis 𝐻0 : 𝐿1 − 𝐿2 = 𝑑0 (e.g.,

with 𝑑0 = 0, the test of the hypothesis 𝐻0 : 𝐿1 = 𝐿2 of equality of the values 𝐿1, 𝐿2 of the inequality
index ℒ in the two populations) against the two-sided alternative 𝐻𝑎 : 𝐿1 − 𝐿2 ̸= 𝑑0 (resp., with
𝑑0 = 0, against the two-sample alternative 𝐻𝑎 : 𝐿1 ̸= 𝐿2) may be based on the one-sample 𝑡−statistic
˜̃𝑡ℒ in the 𝑞 differences ̂︀ℒ𝐼

𝑗 − ̂︀ℒ𝑌
𝑗 , 𝑗 = 1, ..., 𝑞, of the calculated group empirical inequality measures:

˜̃𝑡ℒ =
√
𝑞
̂︀ℒ𝐼 − ̂︀ℒ𝑌 − 𝑑0

𝑠 ̂︀ℒ𝐼−𝑌

(4)

with ̂︀ℒ𝐼 =
1

𝑞

𝑞∑︁
𝑗=1

̂︀ℒ𝐼
𝑗 ,

̂︀ℒ𝑌 =
1

𝑞

𝑞∑︁
𝑗=1

̂︀ℒ𝑌
𝑗 ,

𝑠2̂︀ℒ𝐼−𝑌 =
1

𝑞 − 1

𝑞∑︁
𝑗=1

(︁
( ̂︀ℒ𝐼

𝑗 − ̂︀ℒ𝑌
𝑗 )− ( ̂︀ℒ𝐼 − ̂︀ℒ𝑌 )

)︁2

.

As in the case of 𝑡−statistic inference on one parameter, for any 𝛼 ≤ 0.83 (any 𝛼 ≤ 0.1 for
2 ≤ 𝑞 ≤ 14), the null hypothesis 𝐻0 : 𝐿1 − 𝐿2 = 𝑑0 (for 𝑑0 = 0, the null hypothesis 𝐻0 : 𝐿1 = 𝐿2 of

8As in the one-sample case, one-sided tests are conducted in a similar way.
9As follows from the analysis in Ibragimov and Müller (2016), the described tests may also be used for all 𝑞1, 𝑞2 ≤ 50

if 𝛼 ∈ {0.001, 0.002, ..., 0.083}, e.g., for the usual critical values 𝛼 = 0.01, 0.05.

9



equality of the values 𝐿1, 𝐿2 of the inequality index ℒ in two populations) is rejected in favor of the
two-sided alternative 𝐻𝑎 : 𝐿1 − 𝐿2 ̸= 𝑑0 (resp., for 𝑑0 = 0, in favor of the alternative 𝐻𝑎 : 𝐿1 ̸= 𝐿2)
at level 𝛼 if the absolute value |˜̃𝑡ℒ| of the 𝑡−statistic in the differences ̂︀ℒ𝐼

𝑗 − ̂︀ℒ𝑌
𝑗 , 𝑗 = 1, ..., 𝑞 of group

sample inequality measures exceeds the (1 − 𝛼/2)−quantile of the standard Student-𝑡 distribution
with 𝑞 − 1 degrees of freedom: |˜̃𝑡ℒ| > 𝑐𝑣𝑞,𝛼. Further, as in the case of 𝑡−statistic inference on a single
inequality measure, the 𝑝−values of the above tests can be calculated in the case of an arbitrary
number 𝑞 = 𝑞1 = 𝑞2 of groups thus enabling conducting robust tests of an arbitrary level.

For all 𝛼 ≤ 0.83 (and all 𝛼 ≤ 0.1 for 2 ≤ 𝑞 ≤ 14) a confidence interval for the difference 𝑑0 = 𝐿1−𝐿2

between the values of the inequality measure ℒ in two populations with asymptotic coverage of at
least 1−𝛼 may be constructed as ̂︀ℒ𝐼

𝑗 − ̂︀ℒ𝑌
𝑗 ± 𝑐𝑣𝑞,𝛼𝑠 ̂︀ℒ𝐼−𝑌 . For instance, the 95% confidence interval for

ℒ is given by ( ̂︀ℒ𝐼
𝑗 − ̂︀ℒ𝑌

𝑗 − 𝑐𝑣𝑞,0.05𝑠 ̂︀ℒ𝐼−𝑌 , ̂︀ℒ𝐼
𝑗 + ̂︀ℒ𝑌

𝑗 − 𝑐𝑣𝑞,0.05𝑠 ̂︀ℒ𝐼−𝑌 ), where cv 𝑞,0.05 is the 0.975-quantile of
the Student-t distribution with q−1 degrees of freedom: 𝑃 (|𝑇𝑞−1| > 𝑐𝑣𝑞,0.05)=0.05.

As above, the 𝑡−statistic approaches to robust inference based on (4) are asymptotically valid
under the assumption that the group empirical income inequality measures ̂︀ℒ𝐼

𝑗 , ̂︀ℒ𝑌
𝑗 , 𝑗 = 1, ..., 𝑞, are

asymptotically independent across 𝑗, unbiased and Gaussian of possibly different variances (or have
limiting scale mixtures of Gaussian distributions).

3 Finite sample performance

In this section, we provide numerical results on finite sample properties of the asymptotic, robust
𝑡−statistic, bootstrap and permutation approaches to inference and tests on inequality measures. The
results are provided for inference on Theil and Gini inequality, similar to the numerical analysis in
Cowell and Flachaire (2007) and Dufour et al. (2019).

We first present the results for the one-sample problem of inference on a single inequality measure
in Section 3.1.

Then, in Section 3.2, the numerical results are provided for the two-sample problem of tests on
equality of two inequality measures and inference on the difference between two inequality indices.

As in Dufour et al. (2019), the numerical analysis of finite-sample performance of different ap-
proaches to inference on inequality measure(s) is based on simulations from Singh-Maddala distribu-
tions that were reported to provide a good fit to real-world income distributions in various countries
(see the discussion in Cowell and Flachaire, 2007, Davidson and Flachaire, 2007, Dufour et al., 2019,
and references therein). The cdf of the Singh-Maddala distribution with the scale parameter 𝑏 > 0

and the shape parameters 𝑎, 𝑐 > 0 is given by

𝐹 (𝑥) = 1−
[︁
1 +

(︁𝑥
𝑏

)︁𝑎]︁−𝑐

, 𝑥 > 0, (5)

(see the above references). Similar to Dufour et al. (2019), the Singh-Madalla distribution with pa-
rameters 𝑎, 𝑏, 𝑐 > 0 is denoted by 𝑆𝑀(𝑎, 𝑏, 𝑐) in what follows. It is easy to see that the cdf 𝐹 (𝑥) of the
Singkh-Maddala distribution 𝑆𝑀(𝑎, 𝑏, 𝑐) satisfies 𝐹 (𝑥) ∼ 𝑐

(︀
𝑥
𝑏

)︀𝑎 as 𝑥 → 0, and 1− 𝐹 (𝑥) ∼
(︀
𝑥
𝑏

)︀−𝑎𝑐 as
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𝑥 → ∞. 10 Therefore, the Singh-Maddala distribution has the (double) power law or (double) Pareto
behavior in the lower tails - for small income levels - and the upper tails - for high incomes (see Toda,
2012, for the analysis of double Pareto and related distributions for income).

In particular, the Singh-Maddala distributions belong to the class of distributions with heavy
power law tails, so that for for large 𝑥 > 0 and r.v.’s (income or wealth levels) 𝑋 > 0 with the
Singh-Maddala distribution 𝑆𝑀(𝑎, 𝑏, 𝑐) follows power law (1) with the tail index 𝜁 = 𝑎𝑐.

Following Dufour et al. (2019), in the numerical experiments, we use the parameter values 𝑎0 =

2.8, 𝑏0 = 100−1/2.8, 𝑐0 = 1.7 for the Singh-Maddala distribution, with the corresponding tail index
𝜁 = 𝑎0𝑐0 = 4.76, as a benchmark. The Theil index for this distribition equals to 0.1401151, and
the Gini index equals to 0.2887138 (see Dufour et al., 2019). The Singh-Maddala distribution with
the above values for the parameters was also used in Cowell and Flachaire (2007) and Davidson
and Flachaire (2007) to demonstrate poor finite-sample performance of asymptotic and bootstrap
inference approaches.

Further, as in Dufour et al. (2019), in the numerical experiments, we consider several other Singh-
Maddala distributions 𝑆𝑀(𝑎, 𝑏0, 𝑐) with the above scale parameter 𝑏0 = 100−1/2.8 for which the Theil
inequality index and the Gini index are the same as in the case of the distribution 𝑆𝑀(𝑎0, 𝑏0, 𝑐0), and
equal to 0.1401151 (the Theil index) and 0.2887138 (the Gini index).

Following Dufour et al. (2019), in simulations involving the Theil index, we take the parame-
ters (𝑎, 𝑐) of the Singh-Maddala distributions 𝑆𝑀(𝑎, 𝑏0, 𝑐) equal to (2.5, 2.502199), (2.6, 2.149747),

(2.7, 1.894309), (2.8, 1.7), (3.0, 1.4223847), (3.2, 1.2320215), (3.4, 1.0922125), (3.8, 0.8984488),

(4.8, 0.6366578) and (5.8, 0.4996163). The corresponding tail indices 𝜁 of these distributions equal to
𝜁 = 6.26, 5.59, 5.11, 4.76, 4.27, 3.94, 3.71, 3.41, 3.06, 2.9.

In simulations involving the Gini index, we take, as in Dufour et al. (2019), the parameters (𝑎, 𝑐) of
the Singh-Maddala distributions 𝑆𝑀(𝑎, 𝑏0, 𝑐) equal to (2.5,2.640350), (2.6,2.218091), (2.7,1.920967),
(2.8,1.7), (3.0,1.3921126), (3.2,1.1866026), (3.4,1.0388049), (3.8,0.8387663), (4.8,0.5784599) and
(5.8,0.4473111). The corresponding tail indices 𝜁 of these distributions equal to 𝜁 =6.6, 5.77, 5.19,
4.76, 4.18, 3.80, 3.53, 3.19, 2.78, 2.59.

We note that the tail index 𝜁 = 2.78, 2.59, 2.9 for the considered Singh-Maddala distributions lie
in the interval (1.5, 3) as is typically the case for real-world income distributions, as discussed above.
Additionally, we also consider more heavy-tailed distributions 𝑆𝑀(𝑎, 𝑏0, 𝑐) with (𝑎, 𝑐) = (2, 1.1),

(2, 0.7) and 𝑏0 = 100−1/2.8. The corresponding tail indices 𝜁 in power laws (1) for these distributions
equal to 𝜁 = 2.2, 1.4.

10As usual, we write 𝑓(𝑥) ∼ 𝑔(𝑥) as 𝑥 → 𝑥0 or 𝑥 → ∞ for two positive functions 𝑓(𝑥) and 𝑔(𝑥) if 𝑓(𝑥)/𝑔(𝑥) → 1 as
𝑥 → 𝑥0 or 𝑥 → ∞.
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3.1 One-sample problem: Inference on a single inequality measure

3.1.1 Inference in one-sample problem: Finite-sample distributions

We follow the notation in the previous sections that is largely similar to Cowell and Flachaire
(2007), Davidson and Flachaire (2007) and Dufour et al. (2019). In the numerical analysis in this
section, ℒ0 = ℒ(𝐹 ) denotes the true value of the inequality measure ℒ of interest (e.g., the Theil or
Gini inequality index) for a population with the cdf 𝐹 considered. As before, ℒ̂ = ℒ̂(𝐼1, ..., 𝐼𝑁) denotes
the full-sample estimator of ℒ (the full-sample empirical inequality measure) calculated using a sample
of observations 𝐼1, ..., 𝐼𝑁 from the population. Further, as in Section 2, ℒ̂𝑗, 𝑗 = 1, ..., 𝑞, denote the
group estimators of ℒ (group empirical inequality measures) in applications of 𝑡−statistic inference
approaches.

Asymptotic approaches to inference on an inequality measure ℒ are based on normal approxi-
mations to sample distributions of full-sample estimators ℒ̂ of the measures (full-sample empirical
inequality measures), more precisely, on standard normal approximations to sample distributions of
(full-sample) 𝑡−statistics 𝑆ℒ̂ = (ℒ̂ − ℒ0)/𝑠.𝑒.ℒ̂ calculated using these estimators, where 𝑠.𝑒.ℒ denotes
the usual consistent standard error of ℒ̂ (see the formulas for the empirical inequality measures con-
sidered and their standard errors in Cowell and Flachaire, 2007, Davidson and Flachaire, 2007, and
Dufour et al., 2019). As discussed in Section 2, validity of 𝑡−statistic robust inference approaches
requires weak convergence of group estimators ℒ̂𝑗, 𝑗 = 1, ..., 𝑞, of the inequality measures ℒ (without
any Studentization/normalization of the group estimators by their standard errors in contrast to the
𝑡−statistics 𝑆ℒ̂ calculated using the full-sample estimators) to possibly heterogeneous Gaussian distri-
butions (or scale mixtures of Gaussian distributions). Further (see the discussion in the introduction
and the Section 2), asymptotic normality of group estimators ℒ̂𝑗 holds under the same conditions as
in the case of the full-sample estimators ℒ̂.

We, therefore, begin the analysis with an assessment of finite-sample distributions of (full-sample)
empirical inequality measures ℒ̂ and the (full-sample) 𝑡−statistics 𝑆ℒ̂ calculated using them. We, in
particular, focus on the assessment of closeness of the above finite-sample distributions to Gaussian
ones.

We focus on comparisons of finite-sample distributions of the (full-sample) 𝑡−statistics 𝑆ℒ̂ with
those of the centered empirical inequality measures normalized by their true standard deviations,
that is, of the statistics 𝑍ℒ̂ = (ℒ̂ − ℒ0)/𝜎ℒ̂, where 𝜎2

ℒ̂ = 𝑉 𝑎𝑟(ℒ̂). The true values of the standard
deviations 𝜎ℒ̂ for the populations and sample sizes considered are obtained using direct simulations.

Figures 1-3 provide kernel estimates of densities of the finite-sample distributions of the statistics
𝑍ℒ̂ and 𝑆ℒ̂ for different population distributions and sample sizes.11

Figures 1 and 2 provide kernel density functions of the statistics 𝑍ℒ̂ (sample sizes 𝑁 = 50, 100, 1000)
and 𝑆ℒ̂ (sample size 𝑁 = 100)12 for, respectively, the empirical Theil and Gini inequality measures in

11The number of replications in all simulation experiments is equal to 100,000.
12Qualitatively similar results for other sample sizes 𝑁 are omitted for brevity and available on request.
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the case of samples from the Singh-Maddala distributions 𝑆𝑀(𝑎0, 𝑏0, 𝑐0) with the parameters 𝑎0 = 2.8,

𝑏0 = 100−1/2.8, 𝑐0 = 1.7 and the corresponding tail index 𝜁 = 4.76, discussed before.
In the case of the Theil measure in Figure 1, we observe some non-Gaussianity in the distribution

of the statistics 𝑍ℒ̂ and 𝑆ℒ̂ in small and moderate samples. In addition, the density of the 𝑡−statistic
𝑆ℒ̂ for Theil index is considerably (left) skewed in comparison to the densities of the statistic 𝑍ℒ̂.

In the case of the Gini measure in Figure 2, we can see that the distribution of the statistic
𝑍ℒ̂ is very close to the standard normal even in small samples. In contrast, the distribution of the
𝑡−statistic 𝑆 is again skewed towards left.

For Singh-Maddala distributions with heavier tails as in the case of the parameters (𝑎, 𝑐) =

(5.8, 0.4473111) and the corresponding tail index 𝜁 = 2.59 in Figure 3, the finite sample distributions
of the statistics 𝑍ℒ̂ and 𝑆ℒ̂ for the Gini measure become more skewed (the same is observed for the
Theil measure; the results are omitted for brevity and available on request). Skewness is especially
pronounced in the case of small samples and the 𝑡−statistic 𝑆.

Overall, according to Figures 1-3, normal approximation appears to perform better for finite-
sample distributions of the statistic 𝑍ℒ̂ as compared to those of the full-sample 𝑡−statistic 𝑆ℒ̂ used in
asymptotic tests and inference. We further note that the group estimators ℒ̂𝑗 −ℒ0 used in 𝑡−statistic
robust inference approaches are just scaled versions of the statistics 𝑍ℒ̂ calculated using observations
in the groups considered. Therefore, the above comparisons are expected to translate into better finite-
sample performance of 𝑡−statistic inference approaches as compared to the asymptotic ones, provided
that the number of observations in each of the groups in 𝑡−statistic approaches in sufficiently large,
e.g., greater than 100 (this is usually the case in empirical applications with the number of groups
𝑞 = 2, 4, 8). For better size control, the number of groups, 𝑞, should be chosen to be smaller if the
total sample size 𝑁 is not very large.

3.1.2 Inference in one-sample problem: Finite-sample properties

Table 1 provides the results on the empirical size of asymptotic and the 𝑡−statistic robust tests
on the Theil and Gini measures for sample sizes 𝑁 = 200, 500, 1000 and Singh-Maddala distribu-
tions 𝑆𝑀(𝑎, 𝑏0, 𝑐) with the parameters (𝑎, 𝑐) = (2.5, 2.502199), (3.2, 1.2320215), (5.8, 0.4996163) cor-
responding to the tail indices 𝜁 = 6.6, 3.94, 2.9 in the case of the Theil index and the parameters
(𝑎, 𝑐) = (2.5, 2.640350), (3.2, 1.1866026), and (5.8, 0.4473111) corresponding to 𝜁 = 6.26, 3.8, 2.9 in
the case of the Gini index.

In accordance with the above discussion of finite-sample distributions of statistics 𝑍 and 𝑆 like
those in Figures 1-3, the results in the table show that the finite-sample size of both the asymptotic
and 𝑡−statistic robust tests becomes more distorted if the tail index decreases and thus the degree of
heavy-tailedness in observations becomes more pronounced. Importantly, however, size distortions for
the Gini measure are not so large as for the Theil measure. In the case of the number of groups 𝑞 = 4

or 𝑞 = 8, the finite-sample size properties of robust tests based on 𝑡−statistics in group estimates are
usually better than those of the tests based on asymptotic normality of the (full-sample) 𝑡−statistics
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Figure 1: Kernel density functions for the statistics 𝑍ℒ̂ and 𝑆ℒ̂ for the Theil index: Singh-Maddala
distribution 𝑆𝑀(𝑎0, 𝑏0, 𝑐0) with (𝑎0, 𝑐0) = (2.8, 1.7) and 𝜁 = 4.76. Gaussian density: ; Statistic
𝑍ℒ̂, 𝑁 = 50: ; Statistic 𝑍ℒ̂, 𝑁 = 100: ; Statistic 𝑍ℒ̂, 𝑁 = 1000: ; Statistic 𝑆ℒ̂, 𝑁 = 100:
·

for the measures. Further, the finite sample size properties of the robust 𝑡−statistic-based tests (with
𝑞 = 4) appear to be better than those of the asymptotic tests in the cases where each of the groups
contains more than 100 observations, in accordance with the discussion of Figures 1-3.

3.2 Two-sample problem: Testing equality of two inequality measures and

inference on their difference

3.2.1 Inference in two-sample problem: Finite-sample distributions

In this section, we focus on comparisons of the finite-sample performance of the two-sample
𝑡−statistic robust inference approaches discussed in Section 2 with permutation and bootstrap tests
proposed by Dufour et al. (2019).

In the numerical analysis in this section, ℒ𝐼 = ℒ(𝐹1) and ℒ𝑌 = ℒ(𝐹2) denote the true values of the
inequality measure ℒ of interest (e.g., the Theil or Gini inequality index, as in the previous section)
in two populations with cdf’s 𝐹1 and 𝐹2 considered. By ℒ̂𝐼 = ℒ̂𝐼(𝐼1, ..., 𝐼𝑁1) and ℒ̂𝑌 = ℒ̂𝑌 (𝑌1, ..., 𝑌𝑁2)

we denote the full-sample estimators of the measure ℒ (the full-sample empirical inequality measures)
calculated using samples of observations 𝐼1, ..., 𝐼𝑁1 and 𝑌1, ..., 𝑌𝑁2 from the two populations. Further,
as in Section 2, by ℒ̂𝐼

1, ..., ℒ̂𝐼
𝑞1

and ℒ̂𝑌
1 , ..., ℒ̂𝑌

𝑞2
we denote the group estimators of ℒ (group empirical
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Figure 2: Kernel density functions for the statistics 𝑍ℒ̂ and 𝑆ℒ̂ for the Gini index: Singh-Maddala
distribution 𝑆𝑀(𝑎, 𝑏0, 𝑐0) with (𝑎0, 𝑐0) = (2.8, 1.7) and 𝜁 = 4.76. Gaussian density: ; Statistic
𝑍ℒ̂, 𝑁 = 50: ; Statistic 𝑍ℒ̂, 𝑁 = 100: ; Statistic 𝑍ℒ̂, 𝑁 = 1000: ; Statistic 𝑆ℒ̂, 𝑁 = 100:
·

inequality measures) in the two samples dealt with in applications of 𝑡−statistic inference approaches.
Asymptotic approaches to testing the hypothesis 𝐻0 : 𝐿1 − 𝐿2 = 𝑑0 (e.g., with 𝑑0 = 0, testing

the hypothesis 𝐻0 : 𝐿1 = 𝐿2 of equality of the values 𝐿1, 𝐿2 of the measure ℒ in the two populations
considered) against the two-sided alternative 𝐻𝑎 : 𝐿1 − 𝐿2 ̸= 𝑑0 (resp., with 𝑑0 = 0, against the two-
sample alternative 𝐻𝑎 : 𝐿1 ̸= 𝐿2) are based on the normal approximation to the sample distribution of
the difference ℒ̂𝐼−ℒ̂𝑌 between the full-sample estimators ℒ̂𝐼 and ℒ̂𝑌 (full-sample empirical inequality
measures). More precisely, the asymptotic approaches are based on the standard normal approxima-
tion to the sample distribution of the two-sample 𝑡−statistic 𝑆ℒ̂1−ℒ̂2

= (ℒ̂1 − ℒ̂2 − 𝑑0)/𝑠.𝑒.ℒ̂1−ℒ̂2

calculated using the estimators ℒ̂1 and ℒ̂2, where 𝑠.𝑒.ℒ̂1−ℒ̂2
denotes the usual consistent standard

error of the difference ℒ̂1−ℒ̂2 (see the formulas for the empirical inequality measures considered and
the standard errors in Cowell and Flachaire, 2007, Davidson and Flachaire, 2007, Dufour et al., 2019).

Similar to the previous section, validity of two-sample 𝑡−statistic robust inference approaches
based on (3) requires weak convergence of group estimators ℒ̂𝐼

𝑗 , 𝑗 = 1, ..., 𝑞1, ℒ̂𝑌
𝑘 , 𝑘 = 1, ..., 𝑞2, of the

inequality measure ℒ in the two samples considered to possibly heterogeneous Gaussian distributions
(or scale mixtures of Gaussian distributions). As discussed in the introduction and the previous
section, asymptotic normality of group estimators ℒ̂𝐼

𝑗 , ℒ̂𝑌
𝑘 , hold under the same conditions as in the

case of the full-sample estimators ℒ̂𝐼 and ℒ̂𝑌 . We refer to the previous section for the assessment
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Figure 3: Kernel density functions for the statistics 𝑍ℒ̂ and 𝑆ℒ̂ for the Gini index: Singh-Maddala
distribution 𝑆𝑀(𝑎, 𝑏0, 𝑐) with (𝑎, 𝑐) = (5.8, 0.4473111) and 𝜁 = 2.59. Gaussian density: ; Statistic
𝑍ℒ̂, 𝑁 = 50: ; Statistic 𝑍ℒ̂, 𝑁 = 100: ; Statistic 𝑍ℒ̂, 𝑁 = 1000: ; Statistic 𝑆ℒ̂, 𝑁 = 100:
·

of finite-sample distributions of the full-sample empirical inequality measures and their closeness to
normality.

On the other hand, with 𝑞1 = 𝑞2 = 𝑞, validity of the (two-sample) 𝑡−statistic robust inference
approaches based on (4) - that is, the one-sample 𝑡−statistic ˜̃𝑡ℒ in the 𝑞 differences ̂︀ℒ𝐼

𝑗− ̂︀ℒ𝑌
𝑗 , 𝑗 = 1, ..., 𝑞,

of the group empirical inequality measures ℒ̂𝐼
𝑗 , ℒ̂𝑌

𝑗 (without any Studentization/normalization of the
differences between the group estimators by their standard errors in contrast to the 𝑡−statistics 𝑆ℒ̂1−ℒ̂2

calculated using the full-sample estimators) requires weak convergence of the differences ̂︀ℒ𝐼
𝑗 − ̂︀ℒ𝑌

𝑗 ,

𝑗 = 1, ..., 𝑞, of the group estimators to possibly heterogeneous Gaussian distributions (or scale mixtures
of Gaussian distributions). Further, asymptotic normality of the differences ℒ̂𝐼

𝑗 − ℒ̂𝑌
𝑗 between the

group estimators holds under the same conditions as in the case of the difference ℒ̂𝐼 − ℒ̂𝑌 between
the full-sample estimators.

We, therefore, begin the analysis with an assessment of finite-sample distributions of the difference
ℒ̂𝐼 − ℒ̂𝑌 between the (full-sample) empirical inequality measures ℒ̂𝐼 , ℒ̂𝑌 and of the (full-sample)
𝑡−statistics 𝑆ℒ̂𝐼−ℒ̂𝑌 calculated using them. We, in particular, focus on the assessment of closeness of
the above finite-sample distributions to Gaussian ones.

We focus on comparisons of finite-sample distributions of the 𝑡−statistic 𝑆ℒ̂𝐼−ℒ̂𝑌 with those of
the difference ℒ̂𝐼 − ℒ̂𝑌 normalized by its true standard deviation, that is, of the statistic 𝑍ℒ̂𝐼−ℒ̂𝑌 =
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Table 1: Empirical size: Identical distributions with 𝜁𝐼 = 𝜁𝑌 = 𝜁 and sample sizes 𝑁1 = 𝑁2 = 𝑁

Theil 𝜁 = 6.26 𝜁 = 3.94 𝜁 = 2.9 Gini 𝜁 = 6.6 𝜁 = 3.8 𝜁 = 2.59

𝑁 = 200

asymptotic 8.2 14.5 25.5 asymptotic 6.2 7.5 13.0
𝑞 =4 6.9 10.6 18.0 𝑞 = 4 5.2 5.2 7.7
𝑞 =8 11.0 17.8 28.7 𝑞 = 8 5.2 6.0 11.3
𝑞 =12 15.9 24.9 37.3 𝑞 = 12 5.5 6.6 14.2
𝑞 =16 21.3 33.1 45.9 𝑞 = 16 5.5 6.9 16.9

𝑁 = 500

asymptotic 6.9 11.9 20.2 asymptotic 5.7 6.5 10.8
𝑞 =4 5.8 8.2 13.5 𝑞 = 4 4.8 5.1 7.1
𝑞 =8 8.3 12.9 20.6 𝑞 = 8 5.3 5.9 9.5
𝑞 =12 10.0 16.2 25.6 𝑞 = 12 5.1 6.3 11.5
𝑞 =16 12.7 20.0 30.0 𝑞 = 16 5.1 6.4 13.0

𝑁 = 1000

asymptotic 6.0 9.6 17.0 asymptotic 5.2 5.7 8.6
𝑞 =4 5.3 6.5 10.5 𝑞 = 4 4.8 4.9 5.8
𝑞 =8 6.1 9.3 16.3 𝑞 = 8 4.9 5.1 7.4
𝑞 =12 7.4 11.8 19.5 𝑞 = 12 4.9 5.2 8.5
𝑞 =16 8.7 14.2 22.6 𝑞 = 16 5.0 5.4 10.1

(ℒ̂𝐼 − ℒ̂𝑌 )/𝜎ℒ̂𝐼−ℒ̂𝑌 , where 𝜎2
ℒ̂𝐼−ℒ̂𝑌 = 𝑉 𝑎𝑟(ℒ̂𝐼 − ℒ̂𝑌 ).

In Figures 4-6, we present kernel estimates of the finite-sample densities of the statistics 𝑍ℒ̂𝐼−ℒ̂𝑌

and 𝑆ℒ̂𝐼−ℒ̂𝑌 for the difference between the empirical inequality measures in two samples from popu-
lations with the same Singh-Maddala distribution.

Figures 4-5 provide kernel density functions, for sample sizes 𝑁1 = 𝑁2 = 𝑁, of the statistics 𝑍ℒ̂𝐼−ℒ̂𝑌

(𝑁 = 50, 100, 1000) and 𝑆ℒ̂𝐼−ℒ̂𝑌 (sample sizes 𝑁 = 100)13 for the difference between, respectively, the
Theil and Gini empirical inequality measures in two samples from the Singh-Maddala distribution
𝑆𝑀(𝑎0, 𝑏0, 𝑐0) with the parameters 𝑎0 = 2.8, 𝑏0 = 100−1/2.8, 𝑐0 = 1.7 and the corresponding tail
index 𝜁 = 4.76. Figure 6 provides the above kernel density functions for the Gini index in the
case of two samples from a more heavy-tailed Singh-Maddala distribiion 𝑆𝑀(𝑎, 𝑏0, 𝑐) with (𝑎, 𝑐) =

(5.8, 0.4473111) and the tail index 𝜁 = 2.59.

According to Figures 4-6, the finite-sample distributions of the statistic 𝑍ℒ̂𝐼−ℒ̂𝑌 and thus of the
difference ℒ̂𝐼 − ℒ̂𝑌 between the estimators of the Theil and Gini measures is approximately sym-
metric even in rather small samples and also under pronounced heavy-tailedness, with good perfor-
mance of Gaussian approximations, e.g., as compared to finite-sample distribution of the (full-sample)
𝑡−statistic 𝑆ℒ̂𝐼−ℒ̂𝑌 . This also holds in the case when the sample sizes are not very different. 14

13Qualitatively similar results for other sample sizes 𝑁 are omitted for brevity and available on request.
14If the sample sizes of two groups are very different, then different partition, 𝑞1, 𝑞2 should be used in applications
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Figure 4: Kernel density functions for the statistics 𝑍ℒ̂𝐼−ℒ̂𝑌 and 𝑆ℒ̂𝐼−ℒ̂𝑌 for the difference between
Theil indices: Singh-Maddala distributions 𝑆𝑀(𝑎0, 𝑏0, 𝑐0) with (𝑎0, 𝑐0) = (2.8, 1.7) and 𝜁 = 4.76.

Gaussian density: ; Statistic 𝑍ℒ̂𝐼−ℒ̂𝑌 , 𝑁 = 50: ; Statistic 𝑍ℒ̂𝐼−ℒ̂𝑌 , 𝑁 = 100: ; Statistic
𝑍ℒ̂𝐼−ℒ̂𝑌 , 𝑁 = 1000: ; Statistic 𝑆ℒ̂𝐼−ℒ̂𝑌 , 𝑁 = 100: ·

3.2.2 Inference in two-sample problem: Finite-sample size properties

Tables 2-7 provide the results on the finite-sample size properties of the asymptotic, permutation,
bootstrap and 𝑡−statistic robust tests on equality of Theil and Gini measures. As before, we consider
two samples 𝐼1, ..., 𝐼𝑁1 and 𝑌1, ..., 𝑌𝑁2 from, respectively, Singh-Maddala distributions 𝑆𝑀(𝑎𝐼 , 𝑏0, 𝑐𝐼)

and 𝑆𝑀(𝑎𝑌 , 𝑏0, 𝑐𝑌 ), with 𝑏0 = 100−1/2.8 and the tail indices 𝜁𝐼 = 𝑎𝐼𝑐𝐼 , 𝜁𝑌 = 𝑎𝑌 𝑐𝑌 . In simulations, we
consider the following settings with identical/different sample sizes 𝑁1, 𝑁2; distributions 𝑆(𝑎𝐼 , 𝑏0, 𝑐𝐼)
and 𝑆(𝑎𝑌 , 𝑏0, 𝑐𝑌 ) in the samples and the number 𝑞1, 𝑞2 of groups used in 𝑡−statistic robust tests.

Tables 2-6 provide the results on finite-sample size properties of asymptotic, permutation, boot-
strap and 𝑡−statistic robust tests based on (3) and (4) with the equal number of groups 𝑞1 = 𝑞2 = 𝑞.

(i) Identical distributions and sample sizes 𝑁1 = 𝑁2 = 𝑁 = 200 (Table 2).

The values of the parameters (𝑎, 𝑐) as in Dufour et al. (2019) and Table 2: (𝑎𝐼 , 𝑐𝐼) = (𝑎𝑌 , 𝑐𝑌 ) =

(2.5, 2.502199), (3.2, 1.2320215), (5.8, 0.4996163) and 𝜁𝐼 = 𝜁𝑌 = 𝜁 = 6.6, 3.94, 2.9 (Theil in-
dex); (𝑎𝐼 , 𝑐𝐼) = (𝑎𝑌 , 𝑐𝑌 ) = (2.5, 2.640350), (3.2, 1.1866026), (5.8, 0.4473111) and 𝜁𝐼 = 𝜁𝑌 = 𝜁 =

6.6, 3.8, 2.59 (Gini index);

of the 𝑡-statistic inference approaches.
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Figure 5: Kernel density functions for the statistics 𝑍ℒ̂𝐼−ℒ̂𝑌 and 𝑆ℒ̂𝐼−ℒ̂𝑌 for the difference between Gini
indices: Singh-Maddala distributions 𝑆𝑀(𝑎0, 𝑏0, 𝑐0) with (𝑎0, 𝑐0) = (2.8, 1.7) and 𝜁 = 4.76.. Gaussian
density: ; Statistic 𝑍ℒ̂𝐼−ℒ̂𝑌 , 𝑁 = 50: ; Statistic 𝑍ℒ̂𝐼−ℒ̂𝑌 , 𝑁 = 100: ; Statistic 𝑍ℒ̂𝐼−ℒ̂𝑌 ,
𝑁 = 1000: , Statistic 𝑆ℒ̂𝐼−ℒ̂𝑌 , 𝑁 = 100: ·

Singh-Maddala distributions with tail indices 𝜁 similar to the empirical results in the literature
with 𝜁 ∈ (1.5, 3) for income and 𝜁 ≈ 1.5 for wealth (see Section 3 and references therein):

(𝑎𝐼 , 𝑐𝐼) = (𝑎𝑌 , 𝑐𝑌 ) = (2, 1.1) and 𝜁𝐼 = 𝜁𝑌 = 𝜁 = 2.2; (𝑎𝐼 , 𝑐𝐼) = (𝑎𝑌 , 𝑐𝑌 ) = (2, 0.7) and
𝜁𝐼 = 𝜁𝑌 = 𝜁 = 1.4 (Theil and Gini measures).

The results in Table 2 indicate that the size of all the tests, except the asymptotic ones, never
exceeds the nominal 5% level. In addition, in a number of cases, it is quite close to the nominal level
for the permutation, bootstrap and the robust 𝑡−statistic tests.

(ii) Identical sample sizes 𝑁1 = 𝑁2 = 𝑁 = 200 and different distributions (Table 3).

(𝑎𝐼 , 𝑐𝐼) = (2.8, 1.7) and 𝜁𝐼 = 4.76;

(𝑎𝑌 , 𝑐𝑌 )=(2.5, 2.502199), (3.2, 1.2320215), (5.8, 0.4996163); 𝜁𝑌 = 2.9, 3.94, 6.6 (Theil index);

(𝑎𝑌 , 𝑐𝑌 )=(2.5, 2.640350), (3.2, 1.1866026), (5.8, 0.4473111); 𝜁𝑌 = 2.9, 3.8, 6.26 (Gini index).

According to Table 3, the empirical sizes of the robust two-sample 𝑡−statistic tests based on (3)
with 𝑞 = 4, 8 in the case of more heavy-tailed distributions and on (4) with 𝑞 = 4, 8, 12, 16 in the
case of less heavy-tailed distributions are comparable and in some cases are better than those of the

19



Figure 6: Kernel density functions for the statistics 𝑍ℒ̂𝐼−ℒ̂𝑌 and 𝑆ℒ̂𝐼−ℒ̂𝑌 for the difference between
Gini indices: Singh-Maddala distributions 𝑆𝑀(𝑎, 𝑏0, 𝑐) with (𝑎, 𝑐) = (5.8, 0.4473111) and 𝜁 = 2.59.

Gaussian density: ; Statistic 𝑍ℒ̂𝐼−ℒ̂𝑌 , 𝑁 = 50: ; Statistic 𝑍ℒ̂𝐼−ℒ̂𝑌 , 𝑁 = 100: ; Statistic
𝑍ℒ̂𝐼−ℒ̂𝑌 , 𝑁 = 1000: ; Statistic 𝑆ℒ̂𝐼−ℒ̂𝑌 , 𝑁 = 100: ·

permutation and bootstrap tests. Comparing the robust tests based on the two-sample 𝑡−statistic (3)
in group estimators and those based on the one-sample 𝑡−statistic (4) in the differences of the group
estimators, overall, the former tests with the same number of groups 𝑞1 = 𝑞2 = 𝑞 appear to have less
over-rejections as compared to the latter ones.

(iii) Different sample sizes 𝑁1, 𝑁2 and identical distributions (Tables 4 and 5).

𝑁1 = 200, 𝑁2 = 50, 200, 500, 1000, 5000;

(𝑎𝐼 , 𝑐𝐼) = (𝑎𝑌 , 𝑐𝑌 ) = (5.8, 0.4996163) and 𝜁𝐼 = 𝜁𝑌 = 2.9 in the case of the Theil index; (𝑎𝐼 , 𝑐𝐼) =
(𝑎𝑌 , 𝑐𝑌 ) = (5.8, 0.4473111) and 𝜁𝐼 = 𝜁𝑌 = 2.59 in the case of the Gini index (Table 4);

(𝑎𝐼 , 𝑐𝐼) = (𝑎𝑌 , 𝑐𝑌 ) = (2, 0.7) and 𝜁𝐼 = 𝜁𝑌 = 1.4 (Theil and Gini measures, Table 5).

The finite-sample size of all the tests, except the asymptotic ones, appears to be good in all pa-
rameter settings: e.g., essentially no over-rejections are observed for 𝑡−statistic inference approaches,
including the settings with more pronounced heavy-tailedness and infinite variances in Table 5. Fur-
ther, the finite sample properties of the robust 𝑡−statistic approaches are comparable or similar and in
some cases are better than those of the bootstrap and permutation approaches. Importantly, asymp-
totic normality of sample Theil and Gini measures is lost under infinite variances, as is the case for
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tail indices 𝜁𝐼 = 𝜁𝑌 = 1.4 in Table 5 (see Fontanari et al. (2018) and the discussion in Appendix B).
However, according to the results in the table, the 𝑡−statistic approaches have good finite sample
size properties even in such heavy-tailed settings. This is due to robustness of 𝑡−statistic approaches
to heavy-tailedness as they may be used under convergence of group estimators of parameters in
consideration to scale mixtures of normals.

(iii) Different sample sizes 𝑁1, 𝑁2 and different distributions (Table 6).

𝑁1 = 200, 𝑁2 = 50, 200, 500, 1000, 5000;

(𝑎𝐼 , 𝑐𝐼) = (2.8, 1.7) and 𝜁𝐼 = 4.76;

(𝑎𝑌 , 𝑐𝑌 ) = (5.8, 0.4996163) and 𝜁𝑌 = 2.9 (Theil index); (𝑎𝑌 , 𝑐𝑌 ) = (5.8, 0.4473111) and 𝜁𝑌 =

2.59 (Gini index).

In Table 6, one can observe better size properties for two-sample 𝑡−statistic inference approaches
based on 𝑡ℒ in (3) (with 𝑞1 = 𝑞2 = 4, 8, 12 for all sample sizes and also 𝑞 = 16 for large sample sizes)
and those based on ˜̃𝑡ℒ in (4) (with 𝑞1 = 𝑞2 = 4, 8 for all sample sizes) in comparison to permutation
and bootstrap tests.

Table 2: Empirical size, identical distributions with 𝜁𝐼 = 𝜁𝑌 = 𝜁 and sample sizes 𝑁1 = 𝑁2 = 200

Theil \𝜁 6.26 3.94 2.9 2.2 1.4 Gini\𝜁 6.6 3.8 2.59 2.2 1.4

asymptotic 5.4 5.5 5.3 7.6 22.1 asy 5.7 6.1 7.0 8.4 18.8
𝑡ℒ(𝑞 = 4) 2.0 1.7 1.5 1.5 1.3 𝑡ℒ(𝑞 = 4) 2.1 1.9 1.9 2.0 2.0
𝑡ℒ(𝑞 = 8) 3.2 2.7 2.2 2.4 2.4 𝑡ℒ(𝑞 = 8) 3.5 3.4 3.0 3.2 3.4
𝑡ℒ(𝑞 = 12) 3.6 3.2 2.7 2.9 3.0 𝑡ℒ(𝑞 = 12) 3.8 3.7 3.4 3.7 3.7
𝑡ℒ(𝑞 = 16) 4.0 3.7 3.1 3.4 3.5 𝑡ℒ(𝑞 = 16) 4.4 4.2 4.1 4.0 4.1
˜̃𝑡ℒ(𝑞 = 4) 4.6 4.4 3.5 3.5 2.9 ˜̃𝑡ℒ(𝑞 = 4) 5.0 4.9 4.4 4.6 4.6
˜̃𝑡ℒ(𝑞 = 8) 4.7 4.1 3.3 3.7 3.7 ˜̃𝑡ℒ(𝑞 = 8) 4.9 4.8 4.5 4.9 4.9
˜̃𝑡ℒ(𝑞 = 12) 4.9 4.3 3.5 3.8 4.1 ˜̃𝑡ℒ(𝑞 = 12) 5.1 4.9 4.6 4.8 4.9
˜̃𝑡ℒ(𝑞 = 16) 5.0 4.5 3.8 4.1 4.3 ˜̃𝑡ℒ(𝑞 = 16) 5.3 5.1 4.7 4.8 5.0

permutation 4.8 4.7 4.9 4.7 4.7 permutation 4.4 4.5 4.8 4.8 4.5
bootstrap 4.5 4.2 3.4 3.3 2.8 bootstrap 4.8 4.4 4.1 3.9 3.9

Table 7 is an analogue of Tables 4 and 5 with different numbers 𝑞1, 𝑞2 of groups used in two-sample
𝑡−statistic robust inference approaches based on 𝑡ℒ in (3). It provides the results on the empirical
size of the tests based on these approaches with asymptotic, bootstrap and permutation tests in the
following settings.

(iii) Identical distributions and different sample sizes 𝑁1, 𝑁2 and the numbers 𝑞1, 𝑞2 of groups

(𝑎𝐼 , 𝑐𝐼) = (𝑎𝑌 , 𝑐𝑌 ) = (2, 1.1), 𝜁𝐼 = 𝜁𝑌 = 2.2;

𝑁1 = 200, 𝑁2 = 400, 600, 800.
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Table 3: Empirical size, identical sample sizes 𝑁1 = 𝑁2 = 200 and different distributions, 𝜁𝐼 = 4.76

Theil\𝜁𝑌 6.26 3.94 2.9 Gini \𝜁𝑌 6.6 3.8 2.59

asy 5.1 5.4 12.3 asy 5.2 5.5 8.0
𝑡ℒ(𝑞 = 4) 1.9 1.5 4.0 𝑡ℒ(𝑞 = 4) 1.9 1.7 2.7
𝑡ℒ(𝑞 = 8) 3.1 2.9 8.7 𝑡ℒ(𝑞 = 8) 3.2 3.1 5.1
𝑡ℒ(𝑞 = 12) 3.6 3.4 11.4 𝑡ℒ(𝑞 = 12) 3.8 3.6 6.6
𝑡ℒ(𝑞 = 16) 4.0 3.9 13.6 𝑡ℒ(𝑞 = 16) 3.9 3.9 7.8
˜̃𝑡ℒ(𝑞 = 4) 4.8 4.3 7.2 ˜̃𝑡ℒ(𝑞 = 4) 5.1 4.7 5.7
˜̃𝑡ℒ(𝑞 = 8) 5.0 4.5 10.6 ˜̃𝑡ℒ(𝑞 = 8) 5.1 4.8 6.6
˜̃𝑡ℒ(𝑞 = 12) 4.8 4.6 12.6 ˜̃𝑡ℒ(𝑞 = 12) 5.0 4.8 8.1
˜̃𝑡ℒ(𝑞 = 16) 5.1 4.8 14.5 ˜̃𝑡ℒ(𝑞 = 16) 5.0 4.8 8.8

permutation 4.8 4.8 11.0 permutation 4.4 4.6 6.2
bootstrap 4.8 4.7 10.6 bootstrap 4.6 4.4 6.3

Table 4: Empirical size, identical distributions with 𝜁𝐼 = 𝜁𝑌 = 𝜁 and different sample sizes, 𝑁1 = 200

Theil, 𝜁 = 2.9 \𝑁2 50 200 500 1000 5000 Gini, 𝜁 = 2.59\𝑁2 50 200 500 1000 5000

asymptotic 8.7 5.3 4.7 4.6 4.5 asy 12.3 6.6 5.7 5.4 5.2
𝑡ℒ(𝑞 = 4) 1.2 1.2 1.6 1.5 1.6 𝑡ℒ(𝑞 = 4) 1.5 1.5 1.8 1.8 1.7
𝑡ℒ(𝑞 = 8) 2.2 2.0 2.4 2.4 2.5 𝑡ℒ(𝑞 = 8) 3.1 2.7 3.2 3.1 3.4
𝑡ℒ(𝑞 = 12) 2.7 2.4 2.9 2.8 3.0 𝑡ℒ(𝑞 = 12) 3.6 3.4 3.5 3.6 4.0
𝑡ℒ(𝑞 = 16) 3.5 2.8 3.2 3.3 3.4 𝑡ℒ(𝑞 = 16) 4.3 3.7 3.6 3.9 4.2
˜̃𝑡ℒ(𝑞 = 4) 2.9 3.1 3.7 3.7 3.7 ˜̃𝑡ℒ(𝑞 = 4) 4.3 4.4 4.8 4.7 4.8
˜̃𝑡ℒ(𝑞 = 8) 3.6 3.2 3.9 3.7 4.0 ˜̃𝑡ℒ(𝑞 = 8) 4.5 4.4 4.8 4.7 4.6
˜̃𝑡ℒ(𝑞 = 12) 3.8 3.7 3.8 3.7 4.4 ˜̃𝑡ℒ(𝑞 = 12) 4.9 4.6 4.7 4.9 5.1
˜̃𝑡ℒ(𝑞 = 16) 4.5 3.5 3.8 3.9 4.0 ˜̃𝑡ℒ(𝑞 = 16) 5.2 4.6 4.7 4.7 4.8

permutation 5.0 4.8 4.9 4.9 5.0 permutation 5.1 4.9 5.0 4.9 5.2
bootstrap 4.0 4.2 4.1 4.5 4.7 bootstrap 4.6 4.8 4.8 5.1 5.3

According to the results in Table 7, in the case of two-sample 𝑡−statistic inference on equality
of/the difference between Theil indices, only the choice of 𝑞1 = 𝑞2 = 4 leads to size control for all
sample sizes considered. Size distortion of the 𝑡−statistic approaches in the case of Theil indices
is apparently due to skewness in finite-sample distributions of (group) empirical Theil inequality
measures implying poor quality of normal approximations to them (see Section 3.1.1). The solution
may be to use different number of groups 𝑞1, 𝑞2 for different sample size pairs 𝑁1, 𝑁2. E.g., according
to Table 7, in the case of inference on equality/the difference between the Theil indices, good size
properties of two-sample 𝑡−statistic approaches are observed with (𝑞1, 𝑞2) = (8, 8) for 𝑁1 = 200, 𝑁2 =

400, (𝑞1, 𝑞2) = (6, 8) for 𝑁1 = 200, 𝑁2 = 600 and (𝑞1, 𝑞2) = (6, 12) for 𝑁1 = 200, 𝑁2 = 800. The finite-
sample distributions of (group) empirical Gini measures are not so skewed and better approximated by
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Table 5: Empirical size, identical distributions with 𝜁𝐼 = 𝜁𝑌 = 1.4 and different sample sizes, 𝑁1 = 200

Theil\𝑁2 50 200 500 1000 5000 Gini \𝑁2 50 200 500 1000 5000

asymptotic 31.5 21.9 16.7 13.8 8.7 asymptotic 28.9 18.3 14.0 12.3 8.6
𝑡ℒ(𝑞 = 4) 1.0 1.1 1.3 1.1 1.1 𝑡ℒ(𝑞 = 4) 1.7 1.7 1.9 1.6 1.6
𝑡ℒ(𝑞 = 8) 2.5 2.2 2.3 2.1 2.0 𝑡ℒ(𝑞 = 8) 3.3 3.0 3.1 3.2 2.7
𝑡ℒ(𝑞 = 12) 3.5 3.0 3.1 2.9 2.7 𝑡ℒ(𝑞 = 12) 3.8 3.5 3.8 3.7 3.5
𝑡ℒ(𝑞 = 16) 4.0 3.3 3.3 3.5 3.0 𝑡ℒ(𝑞 = 16) 4.3 3.8 4.1 4.0 4.0
˜̃𝑡ℒ(𝑞 = 4) 3.0 3.0 3.1 2.8 2.7 ˜̃𝑡ℒ(𝑞 = 4) 4.7 4.5 4.5 4.3 3.9
˜̃𝑡ℒ(𝑞 = 8) 4.0 3.5 3.6 3.5 3.2 ˜̃𝑡ℒ(𝑞 = 8) 5.2 4.8 4.9 4.7 4.3
˜̃𝑡ℒ(𝑞 = 12) 4.7 4.1 3.9 3.8 3.7 ˜̃𝑡ℒ(𝑞 = 12) 5.1 5.0 4.9 4.9 4.8
˜̃𝑡ℒ(𝑞 = 16) 5.2 4.2 4.1 4.2 3.7 ˜̃𝑡ℒ(𝑞 = 16) 5.4 4.9 4.7 5.0 4.6

permutation 4.9 4.8 5.1 5.1 4.9 permutation 5.1 4.7 4.9 5.0 5.0
bootstrap 3.3 3.4 3.6 3.6 3.6 bootstrap 4.5 4.2 4.3 4.4 4.1

Table 6: Empirical size, different distributions and sample sizes, 𝜁𝐼 = 4.76, 𝑁1 = 200

Theil, 𝜁𝑌 = 2.9 \𝑁2 50 200 500 1000 5000 Gini, 𝜁𝑌 = 2.59\𝑁2 50 200 500 1000 5000

asymptotic 14.5 12.3 12.2 11.2 9.0 asymptotic 12.6 8.0 7.5 6.6 6.0
𝑡ℒ(𝑞 = 4) 3.9 4.0 4.8 4.2 4.0 𝑡ℒ(𝑞 = 4) 2.8 2.7 2.9 2.7 2.6
𝑡ℒ(𝑞 = 8) 8.8 8.7 8.6 8.0 6.7 𝑡ℒ(𝑞 = 8) 6.0 5.1 5.1 4.8 4.3
𝑡ℒ(𝑞 = 12) 11.4 11.4 11.3 9.7 7.8 𝑡ℒ(𝑞 = 12) 7.7 6.6 6.6 5.8 5.1
𝑡ℒ(𝑞 = 16) 13.9 13.6 12.8 11.2 8.4 𝑡ℒ(𝑞 = 16) 9.8 7.8 7.5 6.6 5.5
˜̃𝑡ℒ(𝑞 = 4) 6.9 7.2 7.8 7.3 6.6 ˜̃𝑡ℒ(𝑞 = 4) 5.7 5.7 6.1 5.7 5.2
˜̃𝑡ℒ(𝑞 = 8) 11.1 10.6 10.2 9.6 7.9 ˜̃𝑡ℒ(𝑞 = 8) 8.2 6.6 6.8 6.2 5.6
˜̃𝑡ℒ(𝑞 = 12) 13.0 12.6 12.2 10.9 8.7 ˜̃𝑡ℒ(𝑞 = 12) 9.3 8.1 7.7 6.9 6.2
˜̃𝑡ℒ(𝑞 = 16) 14.9 14.5 13.6 12.1 9.0 ˜̃𝑡ℒ(𝑞 = 16) 11.0 8.8 8.2 7.4 6.2

permutation 12.4 11.0 11.6 10.5 8.8 permutation 8.9 6.2 6.5 6.1 5.6
bootstrap 12.2 10.6 11.1 10.4 8.5 bootstrap 9.1 6.3 6.3 6.0 5.7

normal ones as compared to the Theil measures (see Section 3.1.1). In Table 7, one observes good size
control for different combinations of 𝑞1 and 𝑞2 in 𝑡−statistic robust tests of equality of/the difference
between the Gini indices except only the cases 𝑞1 = 𝑞2 = 12, 𝑞1 = 𝑞2 = 16 and 𝑞1 = 12, 𝑞2 = 16 with
rather small number of observations in each of the group. To avoid very conservative size properties,
the best choices for the number of groups in applications of 𝑡−statistic robust tests in the case of
Gini indices appear to be (𝑞1, 𝑞2) = (8, 8), (𝑞1, 𝑞2) = (9, 12) and (𝑞1, 𝑞2) = (8, 16) for all sample sizes
𝑁1, 𝑁2 considered.

Finally, Table 8 provides the results for the case of samples with dependent observations, i.e.,
those with spatially dependent data relevant for studies of income distributions and inequality. Each
of the two samples consists of 192 observations with the standard (parameters 𝜇 = 0 and 𝜎 = 1)
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Table 7: Empirical size, identical distributions with 𝜁𝐼 = 𝜁𝑌 = 2.2 and different sample sizes, 𝑁1 = 200

Theil \𝑁2 400 600 800 Gini\𝑁2 400 600 800

asymptotic 8.8 9.3 11.4 asymptotic 8.8 8.1 9.1
𝑡ℒ(𝑞1 = 4, 𝑞2 = 4) 1.9 2.3 3.2 𝑡ℒ(𝑞1 = 4, 𝑞2 = 4) 2.2 2.1 2.7
𝑡ℒ(𝑞1 = 8, 𝑞2 = 8) 4.2 6.3 8.6 𝑡ℒ(𝑞1 = 8, 𝑞2 = 8) 3.9 4.3 5.1

𝑡ℒ(𝑞1 = 12, 𝑞2 = 12) 6.8 11.1 15.1 𝑡ℒ(𝑞1 = 12, 𝑞2 = 12) 5.1 5.7 6.8
𝑡ℒ(𝑞1 = 16, 𝑞2 = 16) 9.4 15.9 21.6 𝑡ℒ(𝑞1 = 16, 𝑞2 = 16) 5.8 6.6 8.7
𝑡ℒ(𝑞1 = 3, 𝑞2 = 4) 0.7 0.7 1.1 𝑡ℒ(𝑞1 = 3, 𝑞2 = 4) 0.8 1.0 1.3
𝑡ℒ(𝑞1 = 6, 𝑞2 = 8) 2.5 3.6 5.5 𝑡ℒ(𝑞1 = 6, 𝑞2 = 8) 2.8 3.1 3.8
𝑡ℒ(𝑞1 = 9, 𝑞2 = 12) 4.1 6.3 9.4 𝑡ℒ(𝑞1 = 9, 𝑞2 = 12) 3.9 4.1 5.0
𝑡ℒ(𝑞1 = 12, 𝑞2 = 16) 6.0 9.5 14.0 𝑡ℒ(𝑞1 = 12, 𝑞2 = 16) 4.8 5.1 6.4
𝑡ℒ(𝑞1 = 2, 𝑞2 = 4) 0.1 0.1 0.1 𝑡ℒ(𝑞1 = 2, 𝑞2 = 4) 0.0 0.1 0.1
𝑡ℒ(𝑞1 = 4, 𝑞2 = 8) 1.1 1.1 1.9 𝑡ℒ(𝑞1 = 4, 𝑞2 = 8) 1.4 1.5 2.0
𝑡ℒ(𝑞1 = 6, 𝑞2 = 12) 2.1 2.9 4.6 𝑡ℒ(𝑞1 = 6, 𝑞2 = 12) 2.6 2.8 3.4
𝑡ℒ(𝑞1 = 8, 𝑞2 = 168) 3.1 4.5 6.9 𝑡ℒ(𝑞1 = 8, 𝑞2 = 16) 3.4 3.6 4.5

permutation 5.4 4.9 4.9 permutation 5.4 4.7 4.8
bootstrap 4.6 3.7 4.0 bootstrap 5.3 4.4 4.4

lognormal distribution located on a rectangular array of unit squares with 16 rows and 12 columns.
The observations are generated such that the correlation between the logarithms of two observations
is given by exp(−𝜑𝑑) for some 𝜑 > 0, where 𝑑 is the Euclidean distance between the two observations
(see Section 3.4 in Ibragimov and Müller (2010) for the use of a similar spatially correlated setting
in the analysis of finite sample size properties of one-sample 𝑡−statistic approaches in inference on
the mean of Gaussian observations with spatial dependence). The case 𝜑 = ∞ to samples of i.i.d.
observations.

More precisely, the observations in the samples are given by 𝐼𝑖𝑗 = exp(𝑢𝑖𝑗), 𝑌𝑖𝑗 = exp(𝑣𝑖𝑗), 𝑖 =

1, ..., 16, 𝑗 = 1, ..., 12, where 𝑢𝑖𝑗 and 𝑣𝑖𝑗 are multivariate mean zero unit variance Gaussian with
correlation between 𝑢𝑖𝑗 and 𝑢𝑙𝑘 and between 𝑣𝑖𝑗 and 𝑣𝑙𝑘 equals exp(−𝜑

√︀
(𝑖− 𝑙)2 + (𝑗 − 𝑘)2).

According to the results in Table 8, the empirical size properties of 𝑡−statistic tests of equality of
Theil and Gini indices in the two samples with spatial dependence are comparable (especially, for the
tests based on the two-sample 𝑡−statistic ˜̃𝑡 with 𝑞1 = 𝑞2 = 𝑞 = 4 groups and the one-sample 𝑡−statistic
𝑡 in differences with 𝑞 = 8) to those of permutation and bootstrap procedures. Furthermore, the finite
sample size properties of essentially all robust 𝑡−statistic tests are better than those of bootstrap and
permutation tests under pronounced spatial dependence with 𝜑 = 1.
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Table 8: Empirical size, spatial correlation

Theil \𝜑 ∞ 2 1 Gini\𝜑 ∞ 2 1

asymptotic 7.1 7.6 14.6 asymptotic 7.4 7.9 16.3
𝑡ℒ(𝑞 = 4) 1.6 1.6 2.0 𝑡ℒ(𝑞 = 4) 1.6 1.6 2.0
𝑡ℒ(𝑞 = 8) 5.4 5.3 6.0 𝑡ℒ(𝑞 = 8) 5.4 5.3 6.0
𝑡ℒ(𝑞 = 12) 6.8 7.3 8.1 𝑡ℒ(𝑞 = 12) 6.8 7.3 8.1
𝑡ℒ(𝑞 = 16) 7.5 7.8 8.7 𝑡ℒ(𝑞 = 16) 7.5 7.8 8.7
˜̃𝑡ℒ(𝑞 = 4) 4.2 4.3 4.7 ˜̃𝑡ℒ(𝑞 = 4) 4.2 4.3 4.7
˜̃𝑡ℒ(𝑞 = 8) 7.1 7.4 8.1 ˜̃𝑡ℒ(𝑞 = 8) 7.1 7.4 8.1
˜̃𝑡ℒ(𝑞 = 12) 8.2 8.6 9.7 ˜̃𝑡ℒ(𝑞 = 12) 8.2 8.6 9.7
˜̃𝑡ℒ(𝑞 = 16) 8.7 9.0 9.8 ˜̃𝑡ℒ(𝑞 = 16) 8.7 9.0 9.8

permutation 4.4 4.8 10.1 permutation 4.1 4.3 9.3
bootstrap 4.4 4.9 11.2 bootstrap 4.3 4.9 11.0

3.2.3 Inference in two-sample problem: Finite-sample power properties

Next, we investigate finite-sample power properties of the tests considered. We report finite-sample
size adjusted power for two-sample 𝑡−statistic and permutation tests.15. Under size adjustment, the
resulting empirical size of a given 𝑡-statistic-based robust test and its permutation counterpart coincide
under the null hypothesis, thereby enabling meaningful power comparisons.

We consider the following simulation designs.
Table 9 presents the size-adjusted power when the two samples come from different Singh-Maddala

distributions 𝑆𝑀(𝑎0, 𝑏0, 𝑐). The sample sizes are 𝑁1 = 𝑁2 = 200, and the number of groups is the
same for 𝑡−statistic tests: 𝑞1 = 𝑞2 = 𝑞. The first sample has a fixed Singh-Maddala distribution
𝑆𝑀(𝑎0, 𝑏0, 𝑐0) with 𝑎0 = 2.8, 𝑐0 = 1.7 and the corresponding tail index 𝜁𝐼 = 4.76 and the distribution
of the second sample varies, with 𝑎0 = 2.8, 𝑐 = 0.7, 1.1, 1.7, 2.7, 31.7 and the corresponding tail indices
𝜁𝑌 = 1.96, 3.08, 4.76, 7.56, 88.76. The permutation test appears to be the most powerful although the
two-sample 𝑡-statistic tests (based on 𝑡ℒ in (3)) have only slightly lower power (for 𝑞 = 12, 16). The
two-sample tests based on the 𝑡−statistic 𝑡ℒ in (3) with 𝑞1 = 𝑞2 = 𝑞 are always more powerful than
those based on the one-sample 𝑡−statistic ˜̃𝑡ℒ in (4) in the differences of the group estimators with
the same number of groups. In inference on both Theil and Gini indices, the power of 𝑡−statistic
approaches based on (3) is very similar across 𝑞 = 8, 12, 16 if the second distribution is more light-
tailed than the first one, so that 𝑐 > 𝑐0 and 𝜁𝑌 > 𝜁𝐼 and also very similar for 𝑞 = 12, 16 if the second
distribution is more heavy-tailed than the first one, with 𝑐 < 𝑐0 and 𝜁𝑌 < 𝜁𝐼 . In the former case of
more lighted second distribution (𝑐 > 𝑐0 and 𝜁𝑌 > 𝜁𝐼), the best power is exhibited by 𝑡−statistic tests
based on (3) with 𝑞1 = 𝑞2 = 𝑞 = 8, 12. In the latter case of more heavy-tailed second distribution
(𝑐 < 𝑐0 and 𝜁𝑌 < 𝜁𝐼), the most powerful 𝑡−statistic test for inference on Theil indices is the one

15Size adjustment is not performed for bootstrap tests as they are strongly dominated in terms of power by permu-
tation test in all settings considered, see also Dufour et al. (2019).
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based on (3) with 𝑞1 = 𝑞2 = 16, and the second best test is the 𝑡-statistic test based on (3) with
𝑞1 = 𝑞2 = 12. Also, in the above case where the second distribution is more heavy-tailed than the
first one, with 𝑐 < 𝑐0 and 𝜁𝑌 < 𝜁𝐼 , the most powerful 𝑡−statistic test for inference on Gini indices is
the test based on (3) with 𝑞1 = 𝑞2 = 12.

Table 9: Size-adjusted power, 𝜁𝐼 = 4.76, identical sample sizes 𝑁1 = 𝑁2 = 200

Theil\𝜁𝑌 1.96 3.08 4.76 7.56 88.76 Gini \𝜁𝑌 1.96 3.08 4.76 7.56 88.76

asymptotic 87.2 35.6 4.7 23.6 90.4 asymptotic 97.5 39.2 4.5 23.3 91.4
𝑡ℒ(𝑞 = 4) 62.6 22.5 4.7 17.6 72.3 𝑡ℒ(𝑞 = 4) 82.4 26.2 4.5 17.5 75.4
𝑡ℒ(𝑞 = 8) 82.7 29.4 4.7 20.7 83.6 𝑡ℒ(𝑞 = 8) 93.6 31.6 4.5 19.6 84.1
𝑡ℒ(𝑞 = 12) 88.3 30.5 4.7 21.4 83.5 𝑡ℒ(𝑞 = 12) 94.7 32.5 4.5 20.3 83.6
𝑡ℒ(𝑞 = 16) 91.1 30.8 4.7 20.8 82.8 𝑡ℒ(𝑞 = 16) 94.7 31.3 4.5 19.2 81.9
˜̃𝑡ℒ(𝑞 = 4) 43.6 17.3 4.7 15.2 55.2 ˜̃𝑡ℒ(𝑞 = 4) 63.4 20.0 4.5 14.7 57.9
˜̃𝑡ℒ(𝑞 = 8) 75.5 26.3 4.7 19.5 77.2 ˜̃𝑡ℒ(𝑞 = 8) 89.2 28.8 4.5 18.5 77.7
˜̃𝑡ℒ(𝑞 = 12) 83.6 27.5 4.7 19.3 78.7 ˜̃𝑡ℒ(𝑞 = 12) 92.0 29.2 4.5 18.1 78.5
˜̃𝑡ℒ(𝑞 = 16) 88.4 28.7 4.7 19.6 79.4 ˜̃𝑡ℒ(𝑞 = 16) 93.1 29.8 4.5 18.2 78.8

permutation 91.6 37.4 4.7 21.9 88.7 permutation 97.6 39.7 4.5 21.6 90.0
bootstrap 77.7 33.6 4.3 20.6 87.2 bootstrap 95.2 39.0 4.6 21.8 90.2

Table 10 provides the results on finite sample power properties of different inference approaches
in the case of more heavy-tailed distributions. In the numerical analysis in the table, the fist sample
has Singh-Maddala distribution 𝑆𝑀(𝑎, 𝑏0, 𝑐), with 𝑎 = 2, 𝑐 = 1.1 and 𝜁𝐼 = 2.2, and the second sample
is from the Singh-Maddala distribution 𝑆𝑀(𝑎, 𝑏0, 𝑐) with 𝑎 = 2, 𝑐 = 0.7, 0.9, 1.1, 1.5, 3.7 and the
corresponding tail indices 𝜁𝑌 = 1.4, 1.8, 2.2, 3, 7.4. The sample sizes are 𝑁1 = 𝑁2 = 200. According to
the results in Table 10, in the case of inference on Theil or Gini indices, the 𝑡−statistic tests based on
𝑡ℒ in (3) with 𝑞1 = 𝑞2 = 8, 12, 16 are typically the most powerful (this is the case for not very lighted
second distribution); in particular, they are typically more powerful than permutation tests. In the
case of inference on Theil indices, the best power properties are exhibited by the 𝑡−statistic tests
based on with 𝑞 = 16, and the second best test is the 𝑡-statistic test based on (3) with 𝑞1 = 𝑞2 = 12.

The choice of 𝑞 = 12, 16 also provides the best power properties for 𝑡−statistic tests based on 𝑡ℒ in
(3) in inference on Gini indices.

Tables 11 and 12 provide the results on finite-sample power properties of different inference ap-
proaches in the case of heavy-tailed distributions, including those considered in Table 10 (𝑎 = 2,

𝑐 = 0.7, 0.9, 1.1, 1.5 and the corresponding tail indices 𝜁𝑌 = 1.4, 1.8, 2.2, 3, and also 𝑐 = 3.7, 𝜁𝑌 = 7.4

in the case of Theil indices and 𝑐 = 2.2 and 𝜁𝑌 = 4.4 in the case of Gini indices), and different sample
sizes, with 𝑁1 = 200, 𝑁2 = 400 in the former table and 𝑁1 = 400, 𝑁2 = 200 in the later one.

One can see that two-sample 𝑡-statistic tests are typically much more powerful than permutation
tests if the more heavy-tailed distribution has larger sample size. Again, two-sample 𝑡-statistic tests
based on 𝑡ℒ in (3) with the number of groups 𝑞1 = 𝑞2 = 𝑞 are always more powerful than those
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Table 10: Size-adjusted power, 𝜁𝐼 = 2.2, identical sample sizes 𝑁1 = 𝑁2 = 200

Theil\𝜁𝑌 1.4 1.8 2.2 3 7.4 Gini\𝜁𝑌 1.4 1.8 2.2 3 7.4

asymptotic 49.76 13.71 4.71 17.72 85.99 asymptotic 59.93 15.61 4.75 21.05 95.03
𝑡ℒ(𝑞 = 4) 28.37 9.25 4.71 15.83 73.85 𝑡ℒ(𝑞 = 4) 39.79 10.82 4.75 17.89 83.77
𝑡ℒ(𝑞 = 8) 40.72 11.3 4.71 18.76 87.21 𝑡ℒ(𝑞 = 8) 51.02 12.83 4.75 20.52 92.41
𝑡ℒ(𝑞 = 12) 45.08 11.97 4.71 19.95 90.05 𝑡ℒ(𝑞 = 12) 52.19 13.36 4.75 21.2 92.33
𝑡ℒ(𝑞 = 16) 47.94 12.4 4.71 20.1 91.22 𝑡ℒ(𝑞 = 16) 52.51 13.08 4.75 20.71 91.51
˜̃𝑡ℒ(𝑞 = 4) 20.04 7.72 4.71 12.81 56.42 ˜̃𝑡ℒ(𝑞 = 4) 28.35 9.3 4.75 14.38 64.9
˜̃𝑡ℒ(𝑞 = 8) 34.93 9.77 4.71 16.56 80.37 ˜̃𝑡ℒ(𝑞 = 8) 44.19 11.25 4.75 18.05 86.69
˜̃𝑡ℒ(𝑞 = 12) 40.99 10.53 4.71 18.18 86.32 ˜̃𝑡ℒ(𝑞 = 12) 48.82 12.43 4.75 19.97 89.29
˜̃𝑡ℒ(𝑞 = 16) 45.19 11.98 4.71 19.17 89.14 ˜̃𝑡ℒ(𝑞 = 16) 50.57 12.85 4.75 20.14 89.97

permutation 34.17 11.79 4.71 17.33 89.95 permutation 48.24 13.6 4.75 19.63 94.18
bootstrap 26.18 8.92 3.32 13.78 78.16 bootstrap 43.1 12.25 3.87 18.39 91.1

based on the one-sample 𝑡−statistic ˜̃𝑡ℒ in (4) in the differences of the group estimators with the same
number of groups.

Table 11: Size-adjusted power, 𝜁𝐼 = 2.2, different sample sizes, 𝑁1 = 200, 𝑁2 = 400

Theil\𝜁𝑌 1.4 1.8 2.2 3 7.4 Gini\𝜁𝑌 1.4 1.8 2.2 3 4.4
asymptotic 62.61 20.09 4.47 13.74 87.24 asymptotic 73.49 21.82 4.2 21.41 75.46
𝑡ℒ(𝑞 = 4) 40.75 14.61 4.47 9.84 68.67 𝑡ℒ(𝑞 = 4) 57.1 16.06 4.2 16.47 56.77
𝑡ℒ(𝑞 = 8) 58.48 19.39 4.47 8.33 80.52 𝑡ℒ(𝑞 = 8) 72.14 21.62 4.2 18.05 67.1
𝑡ℒ(𝑞 = 12) 65.39 22.06 4.47 5.08 78.17 𝑡ℒ(𝑞 = 12) 75.29 22.9 4.2 15.64 63.4
𝑡ℒ(𝑞 = 16) 70.03 23.41 4.47 3.06 73.4 𝑡ℒ(𝑞 = 16) 78.8 24.63 4.2 14.53 62.81
˜̃𝑡ℒ(𝑞 = 4) 28.92 11.94 4.47 7.94 49.73 ˜̃𝑡ℒ(𝑞 = 4) 39.41 12.4 4.2 11.21 36.8
˜̃𝑡ℒ(𝑞 = 8) 51.49 17.78 4.47 7.41 72.84 ˜̃𝑡ℒ(𝑞 = 8) 64.51 19.31 4.2 14.92 57.43
˜̃𝑡ℒ(𝑞 = 12) 59.87 20.39 4.47 4.48 71.01 ˜̃𝑡ℒ(𝑞 = 12) 72.52 22.26 4.2 15.32 60.2
˜̃𝑡ℒ(𝑞 = 16) 65.75 22.16 4.47 2.96 68.15 ˜̃𝑡ℒ(𝑞 = 16) 75.23 22.96 4.2 13.53 58.66

permutation 45.47 13.75 4.47 23.59 96.1 permutation 58.98 16.22 4.2 27.71 82.51
bootstrap 28.62 9.72 3.23 20.1 89.22 bootstrap 50.06 14.59 3.85 25.86 78.94

Table 13 gives the results on finite-sample size adjusted power of different inference approaches
in the same same distributional settings as in Table 11 and sample sizes 𝑁1 = 200 and 𝑁2 = 800.

Similarly, 14 provides the results on finite-sample size adjusted power properties of the approaches
in the same settings as in Table 12 and sample sizes 𝑁1 = 800 and 𝑁2 = 200. We also consider
different combinations of (not necessarily equal) numbers 𝑞1 and 𝑞2 of groups for 𝑡−statistic inference
approaches. According to the results in Tables 13 and 14, if smaller sample is more heavy-tailed then
the power of all two-sample 𝑡-statistic tests is dominated by that of permutation tests. Otherwise, if the
larger sample is more heavy-tailed then the power properties of two-sample 𝑡-statistics tests (except
the tests with very small 𝑞1 and 𝑞2) are typically considerably better than those of permutation test.
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Table 12: Size-adjusted power, 𝜁𝐼 = 2.2, different sample sizes, 𝑁1 = 400, 𝑁2 = 200

Theil 𝜁𝑌 1.4 1.8 2.2 3 7.4 Gini 𝜁𝑌 1.4 1.8 2.2 3 4.4
asymptotic 44.56 9.2 4.15 27.76 92.67 asymptotic 64.67 14.91 4.45 32.15 84.15
𝑡ℒ(𝑞 = 4) 19.25 4.87 4.15 23.21 83.34 𝑡ℒ(𝑞 = 4) 38.92 9.19 4.45 25.61 70.46
𝑡ℒ(𝑞 = 8) 21.13 3.53 4.15 28.2 92.52 𝑡ℒ(𝑞 = 8) 46.64 9.29 4.45 31.18 80.64
𝑡ℒ(𝑞 = 12) 15.17 2.01 4.15 27.94 93.97 𝑡ℒ(𝑞 = 12) 44 7.99 4.45 31.57 80.67
𝑡ℒ(𝑞 = 16) 11.7 1.3 4.15 30.44 95.66 𝑡ℒ(𝑞 = 16) 42.78 7.21 4.45 32.73 81.5
˜̃𝑡ℒ(𝑞 = 4) 12.9 4.23 4.15 17.61 65.25 ˜̃𝑡ℒ(𝑞 = 4) 26.82 7.66 4.45 19.65 52.38
˜̃𝑡ℒ(𝑞 = 8) 16.79 3.02 4.15 24.4 86.85 ˜̃𝑡ℒ(𝑞 = 8) 41.27 8.31 4.45 28.27 74.04
˜̃𝑡ℒ(𝑞 = 12) 13.08 1.77 4.15 25.76 90.44 ˜̃𝑡ℒ(𝑞 = 12) 40.46 7.34 4.45 29.29 76.66
˜̃𝑡ℒ(𝑞 = 16) 10.53 1.23 4.15 28.23 93.5 ˜̃𝑡ℒ(𝑞 = 16) 40.28 7.06 4.45 30.68 78.65

permutation 44.57 14.95 4.15 21.71 97.47 permutation 62.78 18.55 4.45 24.75 77.41
bootstrap 40.34 12.9 3.58 16.33 84.87 bootstrap 59.58 17.66 4.12 23.13 74.1

One can further see that for inference on Theil indices, the best (compromise) choice of the number
of groups in 𝑡−statistic testing approaches will be 𝑞1 = 12, 𝑞2 = 6 or vice versa because this choice
leads to correct size and good power in comparison to other size-controlled two-sample 𝑡-statistic
tests. For Gini indices, the finite-sample power properties are not very sensitive to choice 𝑞1 and 𝑞2.
Interestingly, even if the samples differ 4 times as in the tables, the choice 𝑞1 = 𝑞2 = 8, 12, 16 leads
to a very good size adjusted power and seems to be one of the best across all combinations of 𝑞1 and
𝑞2. The choice 𝑞1 = 12 and 𝑞2 = 9 also a good choice and leads to power properties of 𝑡−statistic
inference approaches that are comparable or slightly better than in the case 𝑞1 = 𝑞2 = 8, 12, 16. The
choice of the different number of groups 𝑞1 and 𝑞2 may be useful if the sizes of two samples differ very
much.

Table 13: Size-adjusted power, 𝜁𝐼 = 2.2, different sample sizes, 𝑁1 = 200, 𝑁2 = 800

Theil \𝜁𝑌 1.4 1.8 2.2 3 7.4 Gini \𝜁𝑌 1.4 1.8 2.2 3 4.4
asymptotic 64.9 23.7 4.7 7.6 82.03 asymptotic 81.2 29.1 4.8 21.8 79.6
𝑡ℒ(𝑞 = 4) 45.8 18.5 4.7 6.2 58.53 𝑡ℒ(𝑞 = 4) 69.9 22.6 4.8 16.8 58.7
𝑡ℒ(𝑞 = 8) 58.8 21.4 4.7 2.3 60.79 𝑡ℒ(𝑞 = 8) 83.0 28.0 4.8 15.0 65.3
𝑡ℒ(𝑞 = 12) 65.5 22.5 4.7 0.8 49.03 𝑡ℒ(𝑞 = 12) 87.1 30.6 4.8 11.6 60.9
𝑡ℒ(𝑞 = 16) 71.4 24.4 4.7 0.3 37.4 𝑡ℒ(𝑞 = 16) 89.7 31.8 4.8 9.0 57.1

𝑡ℒ(𝑞1 = 4, 𝑞2 = 3) 41.9 16.8 4.7 8.6 56.32 𝑡ℒ(𝑞1 = 4, 𝑞2 = 3) 62.8 19.6 4.8 17.5 54.6
𝑡ℒ(𝑞1 = 8, 𝑞2 = 6) 58.9 21.2 4.7 4.1 64.72 𝑡ℒ(𝑞1 = 8, 𝑞2 = 6) 80.0 27.2 4.8 17.6 66.4
𝑡ℒ(𝑞1 = 12, 𝑞2 = 9) 67.1 22.8 4.7 2.2 62.79 𝑡ℒ(𝑞1 = 12, 𝑞2 = 9) 84.6 28.9 4.8 15.6 66.8
𝑡ℒ(𝑞1 = 16, 𝑞2 = 12) 72.3 25.0 4.7 0.9 55.22 𝑡ℒ(𝑞1 = 16, 𝑞2 = 12) 87.2 30.6 4.8 13.5 64.5
𝑡ℒ(𝑞1 = 4, 𝑞2 = 2) 29.1 11.4 4.7 13.9 52.99 𝑡ℒ(𝑞1 = 4, 𝑞2 = 2) 45.7 13.6 4.8 19.0 49.1
𝑡ℒ(𝑞1 = 8, 𝑞2 = 4) 57.5 20.1 4.7 8.6 66.29 𝑡ℒ(𝑞1 = 8, 𝑞2 = 4) 74.3 23.6 4.8 19.5 63.5
𝑡ℒ(𝑞1 = 12, 𝑞2 = 6) 66.1 22.4 4.7 5.7 69.66 𝑡ℒ(𝑞1 = 12, 𝑞2 = 6) 79.3 26.1 4.8 19.2 68.1
𝑡ℒ(𝑞1 = 16, 𝑞2 = 8) 71.4 23.9 4.7 4.2 70.21 𝑡ℒ(𝑞1 = 16, 𝑞2 = 8) 81.8 27.0 4.8 18.3 69.7

permutation 54.4 16.3 4.7 33.6 97.68 permutation 65.8 18.8 4.8 38.9 91.6
bootstrap 30.3 10.3 3.6 29.7 95.78 bootstrap 56.0 16.5 4.4 36.9 90.2
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Table 14: Size-adjusted power, 𝜁𝐼 = 2.2, different sample sizes, 𝑁1 = 800, 𝑁2 = 200

Theil \𝜁𝑌 1.4 1.8 2.2 3 7.4 Gini \𝜁𝑌 1.4 1.8 2.2 3 4.4
asymptotic 34.0 4.8 4.9 35.8 93.74 asymptotic 65.1 11.7 4.8 40.8 91.4
𝑡ℒ(𝑞 = 4) 11.2 2.6 4.9 28.3 87.08 𝑡ℒ(𝑞 = 4) 35.4 7.1 4.8 32.2 81.6
𝑡ℒ(𝑞 = 8) 7.3 1.1 4.9 33.8 92.78 𝑡ℒ(𝑞 = 8) 41.1 6.2 4.8 40.3 90.1
𝑡ℒ(𝑞 = 12) 3.2 0.6 4.9 34.5 94.11 𝑡ℒ(𝑞 = 12) 37.0 4.4 4.8 42.4 91.0
𝑡ℒ(𝑞 = 16) 1.2 0.5 4.9 35.3 94.63 𝑡ℒ(𝑞 = 16) 30.6 2.8 4.8 41.1 90.1

𝑡ℒ(𝑞1 = 4, 𝑞2 = 3) 14.9 4.1 4.9 26.7 85.5 𝑡ℒ(𝑞1 = 4, 𝑞2 = 3) 35.2 8.6 4.8 29.8 76.5
𝑡ℒ(𝑞1 = 8, 𝑞2 = 6) 11.3 1.8 4.9 33.4 93.34 𝑡ℒ(𝑞1 = 8, 𝑞2 = 6) 43.2 7.5 4.8 38.3 88.6
𝑡ℒ(𝑞1 = 12, 𝑞2 = 9) 8.4 1.0 4.9 35.7 95.69 𝑡ℒ(𝑞1 = 12, 𝑞2 = 9) 45.6 6.4 4.8 41.9 91.2
𝑡ℒ(𝑞1 = 16, 𝑞2 = 12) 4.3 0.6 4.9 36.2 96.56 𝑡ℒ(𝑞1 = 16, 𝑞2 = 12) 40.3 5.1 4.8 41.4 90.9
𝑡ℒ(𝑞1 = 4, 𝑞2 = 2) 20.6 7.4 4.9 20.0 77.76 𝑡ℒ(𝑞1 = 4, 𝑞2 = 2) 32.6 9.9 4.8 21.2 60.0
𝑡ℒ(𝑞1 = 8, 𝑞2 = 4) 17.3 3.9 4.9 33.5 94.34 𝑡ℒ(𝑞1 = 8, 𝑞2 = 4) 42.7 9.3 4.8 35.1 85.7
𝑡ℒ(𝑞1 = 12, 𝑞2 = 6) 15.3 2.4 4.9 35.9 96.79 𝑡ℒ(𝑞1 = 12, 𝑞2 = 6) 47.6 8.7 4.8 38.5 89.2
𝑡ℒ(𝑞1 = 16, 𝑞2 = 8) 13.5 1.8 4.9 37.4 97.96 𝑡ℒ(𝑞1 = 16, 𝑞2 = 8) 49.1 8.1 4.8 40.1 90.6

permutation 53.5 17.2 4.9 27.4 99.34 permutation 73.7 22.5 4.8 30.5 86.8
bootstrap 53.4 16.2 4.0 20.7 90.28 bootstrap 73.6 21.5 4.4 28.9 84.5

Summarizing the results, the two-sample 𝑡-statistic robust approaches to testing equality of two
inequality measures or inference on their difference appear to be useful complements to other inference
methods, including computationally expensive bootstrap and permutation-based inference methods.
Finite-sample properties of the 𝑡−statistic inference approaches appear to be better in the case of
testing equality and comparisons of Gini measures as compared to the case of the Theil measures as
the former measures are more robust to heavy tails.

In applications of two-sample 𝑡-statistic inference approaches, the appropriate choice of the num-
bers 𝑞1 and 𝑞2 of groups is needed. The most simple way to choose the numbers of groups in the case
of distributions that are not very different from each other is to have 𝑞1/𝑞2 (approximately) equal to
𝑁1/𝑁2 so that the sizes of all the groups considered are the same. If two distributions have similar
tail indices, then in the case of inference on Gini measures, 𝑞1 and 𝑞2 may be taken to be equal. In
general, the size of the groups in the sample from a more heavy-tailed distribution should be larger
than the size of the groups from a less heavy-tailed distribution. E.g., in the case of equally sized
samples, one should take the number of groups in the more heavy-tailed sample to be less than the
number of groups in the less heavy-tailed sample.

4 Empirical application: Income inequality across Russian re-

gions

This section presents empirical results on comparisons of Gini coefficients in Moscow and Russian
regions using the asymptotic, permutation, bootstrap and the robust 𝑡−statistic inference approaches
considered in this paper.
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The empirical analysis is based on a large database on the results of household income sur-
veys conducted by the Federal State Statistics Service of Russia (Rosstat) in 2017 (available at
ℎ𝑡𝑡𝑝𝑠 : //𝑤𝑤𝑤.𝑔𝑘𝑠.𝑟𝑢/𝑓𝑟𝑒𝑒_𝑑𝑜𝑐/𝑛𝑒𝑤_𝑠𝑖𝑡𝑒/𝑣𝑛𝑑𝑛− 2017/𝑖𝑛𝑑𝑒𝑥.ℎ𝑡𝑚𝑙;
ℎ𝑡𝑡𝑝𝑠 : //𝑤𝑤𝑤.𝑔𝑘𝑠.𝑟𝑢/𝑓𝑟𝑒𝑒_𝑑𝑜𝑐/𝑛𝑒𝑤_𝑠𝑖𝑡𝑒/𝑣𝑛𝑑𝑛 − 2017/𝑂𝐻𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑.ℎ𝑡𝑚𝑙). The database covers
160,000 households in Russian regions, and provides the data on, among many other variables, house-
holds’ total income. The analysis of income inequality indices and their comparisons in this section is
based on the above income levels of Russian household normalized, following Rosstat’s methodology,
by the total number of households’ members.

Table A.1 in the appendix provides the 𝑝−values for the above tests of the null hypothesis 𝐻0 :

𝐺𝑀 = 𝐺𝑅 against the alternative 𝐻𝑎 : 𝐺𝑀 ̸= 𝐺𝑅, where 𝐺𝑀 is the Gini coefficient in Moscow and
𝐺𝑅 is the Gini coefficient in Russian region 𝑅. The entries in the table in bold are the 𝑝−values not
greater than 0.05.

The table also provides the values of the Gini coefficients and the (bias-corrected) log-log rank-size
regression estimates (with 5% tail truncation) of tail indices 𝜁 of the income distribution among 𝑁2

households surveyed in the regions (see Gabaix and Ibragimov, 2011). It also provides the values of
the ratio 𝑁1/𝑁2, where 𝑁1 is the number of households surveyed in Moscow. It should be noted that
if 𝑞1 or 𝑞2 > 14, we can use only the significance level less than 0.083.

The Gini coefficients in Moscow and Russian regions range from 0.236 (Tambov Region) to 0.354
(the Republic of Ingushetia) indicating low to moderate inequality; Tyva Republic has the Gini
coefficient of 0.423 (Tyva Republic) indicating high inequality. The value of the Gini coefficient for
Moscow is 0.264 indicating rather low inequality.

The point log-log rank-size regression estimates 𝜁 of tail indices of income distribution in most
of Russian regions lie in the interval (3, 6), with the exception of Karachay-Cherkess (𝜁 = 2.08) and
Mari El (𝜁 = 2.29) Republics and Krasnodar (𝜁 = 2.6), Kursk (𝜁 = 2.75) and Tyumen (𝜁 = 2.71)
regions. The corresponding confidence intervals for tail indices of income distribution in most of
Russian regions lie on the right of 2 implying finite second moments and finite variances. The 95%
confidence intervals for tail indices of income distribution in Krasnodar, Krasnoyarsk, Stavropol,
Khabarovsk, Arkhangelsk, Astrakhan, Belgorod, Vladimir, Volgograd, Vologda, Voronezh, Ivanovo,
Tver, Kemerovo, Kurgan, Kursk, Lipetsk, Magadan, Murmansk, Novosibirsk, Omsk, Oryol, Penza,
Pskov, Ryazan, Sakhalin, Sverdlovsk, Smolensk, Tambov, Tomsk, Tyumen, Ulyanovsk and Yaroslav
regions; Altai, Buryatia, Ingushetia, Kabardino-Balkar, Kalmykia, Karachay-Cherkess, Karelia, Komi,
Mari El, Mordovia, North Osetia, Tyva and Sakha Republics; Chukotka, Khanty-Mansi and Nenets
Autonomous Districts and Kamchatka Kray intersect with the interval (1.5, 3) where tail indices of
income distribution in developed countries typically lie. The 95% confidence intervals for tail indices of
income distribution in Amur, Bryansk, Chelyabinsk, Irkutsk, Kaliningrad, Kaluga, Kirov, Kostroma,
Leningrad, Moscow (the tail index estimate is 3,96 with the 95% confidence interval (3.44, 4.48)),
Nizhny Novgorod, Novgorod, Orenburg, Perm, Rostov, Samara, Saratov, Sevastopol and Tula re-
gions; Adygeya, Bashkortostan, Chuvash, Crimea, Dagestan, Khakassia and Tatarstan Republics and
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Kamchatka, Primorsky and Zabaykalsky Krays lie on the right of 3 thus implying finite third moments
and variances.

According to the table, on the base of all the tests considered, including the 𝑡−statistic tests with
most of the values 𝑞1, 𝑞2, the null hypothesis 𝐻0 : 𝐺𝑀 = 𝐺𝑅 is rejected in favor of the alternative
𝐻𝑎 : 𝐺𝑀 > 𝐺𝑅 (at the level 2.5%) for the Republic of Tatarstan, Sevastopol City and Bryansk,
Kostroma, Tambov and Tula regions. For Penza, Smolensk and Ulyanovsk regions and Udmurtia,
𝐻0 : 𝐺𝑀 = 𝐺𝑅 is rejected in favor of 𝐻𝑎 : 𝐺𝑀 > 𝐺𝑅 on the base of the asymptotic, bootstrap,
permutation and the 𝑡−statistic tests with some of the values 𝑞1, 𝑞2 in the table.

Further, according to all the tests considered, including the 𝑡−statistic tests for most of the values
𝑞1, 𝑞2, the null hypothesis 𝐻0 : 𝐺𝑀 = 𝐺𝑅 is rejected in favor of the alternative 𝐻𝑎 : 𝐺𝑀 < 𝐺𝑅

(at the level 2.5%) for Amur, Chelyabinsk, Irkutsk, Khabarovsk, Krasnodar, Krasnoyarsk, Kurgan,
Moscow, Sakhalin and Jewish and Yamalo-Nenets Autonomous regions as well as for the Republics
of Bashkortostan, Buryatia, Dagestan, Ingushetia, Kalmykia, Khakassia and Sakha (Yakutia); Al-
tai, Chechen, Kabardino-Balkar, Karachay-Cherkess, Komi and Tyva Republics; Kamchatka, Pri-
morskiy, Zabaykalsky Krays; Khanty-Mansi and Nenets Autonomous Okrugs and Chukotka Au-
tonomous District. For Astrakhan, Kaliningrad, Kemerovo, Novosibirsk, Omsk, Penza, Smolensk,
Sverdlovsk, Tomsk and Tyumen Regions, 𝐻0 : 𝐺𝑀 = 𝐺𝑅 is rejected in favor of 𝐻𝑎 : 𝐺𝑀 < 𝐺𝑅 on the
base of the asymptotic, bootstrap, permutation and the 𝑡−statistic tests for some of the values 𝑞1, 𝑞2
in the table.

Two conclusions are interesting to note.
First, income inequality appears to be higher in most of the Russian Regions as compared to

Moscow.
Second, the conclusions of all the approaches to testing equality of the Gini coefficients 𝐺𝑀 and

𝐺𝑅 considered - the asymptotic, bootstrap, permutation and the robust 𝑡−statistic tests - for the
above regions agree among themselves. Two exceptions are Belgorod and Novgorod Regions, where
𝐻0 : 𝐺𝑀 = 𝐺𝑅 is not rejected in favor of 𝐻𝑎 : 𝐺𝑀 < 𝐺𝑅 on the base of the asymptotic, bootstrap,
permutation, but is rejected on the base of robust 𝑡−statistic tests for some values of 𝑞1, 𝑞2.

5 Conclusion and suggestions for further research

Empirical analyses on inequality measurement and those in other fields in economics and finance
often face the difficulty that the data is correlated, heterogeneous or heavy-tailed in some unknown
fashion. In particular, as has been documented in numerous studies, observations on many variables of
interest, including income, wealth and financial returns, typically exhibit heterogeneity, dependence
and heavy tails in the form of commonly observed Pareto or power laws.

The paper focuses on applications of the recently developed t-statistic based robust inference
approaches in the analysis of inequality measures and their comparisons under the above problems.
Following the approaches, in particular, a robust large sample test on equality of two parameters
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of interest (e.g., a test of equality of inequality measures in two regions or countries considered)
is conducted as follows: The data in the two samples dealt with is partitioned into fixed numbers
𝑞1, 𝑞2 ≥ 2 (e.g., 𝑞1 = 𝑞2 = 2, 4, 8) of groups, the parameters (inequality measures dealt with) are
estimated for each group, and inference is based on a standard two-sample 𝑡−test with the resulting
𝑞1, 𝑞2 group estimators. Robust 𝑡−statistic approaches result in valid inference under general condi-
tions that group estimators of parameters (e.g., inequality measures) considered are asymptotically
independent, unbiased and Gaussian of possibly different variances, or weakly converge, at an arbi-
trary rate, to independent scale mixtures of normal random variables. These conditions are typically
satisfied in empirical applications even under pronounced heavy-tailedness and heterogeneity and
possible dependence in observations.

The methods dealt with in the paper complement and compare favorably with other inference
approaches available in the literature. We illustrate application of the proposed robust inference
approaches by an empirical analysis of income inequality measures and their comparisons across
different regions in Russia.

The 𝑡−statistic robust inference approaches, including the two-sample approaches for inference on
equality of and the difference between parameters of interest considered in this paper are simple to
use and have a wide range of applicability in econometric and statistical analysis under the problems
of heterogeneity, dependence and heavy-tailedness in observations. The approaches do not require at
all estimation of limiting variances of estimators of interest, in contrast to inference methods based
on consistent, e.g., HAC or clustered, standard errors that often have pure finite sample properties,
especially under pronounced heterogeneity and dependence in observations. In addition, the inference
approaches can be used under extremes and outliers in observations generated by heavy-tailedness
with infinite variances and also in settings where observations (e.g., on income or wealth levels) in each
of the samples considered are dependent among themselves - for instance, due to spatial or clustered
dependence, common shocks affecting them, or, in the case of time series or panel data on income or
wealth levels, due to autocorrelation and dependence in observations over time. Further, in the case
of testing for equality of inequality measures or inference on their difference in two populations using
two samples of possibly dependent observations, as above, the 𝑡−statistic inference approaches may
be used under an arbitrary dependence between the samples as well as under possibly unequal sample
sizes.

In addition to inference on inequality and wealth indices dealt with in this work, the approaches
may also be applied in inference on and comparisons of poverty and concentration indices where,
as is well-known, the presence of extreme values, outliers, heavy-tailedness and heterogeneity makes
problematic their applicability and the use of asymptotic methods in inference on the indices similar to
the case of inequality measures (see, among others, Appendix B.1 in Section E7 in Mandelbrot, 1997,
Davidson and Flachaire, 2007, and Section 3.3.2 in Ibragimov et al., 2015) as well as in inference on
tail indices in power laws (1) for income and wealth distributions and corresponding measures of top
inequality (see the discussion in Section 3 and references therein). These and other applications of the
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𝑡−statistic robust inference approaches are currently under way by the authors and their co-authors.
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Mikosch, T. and Stărică, C. (2000), ‘Limit theory for the sample autocorrelations and extremes of a GARCH
(1, 1) process’, Annals of Statistics 28, 1427–1451.

Milanovic, B. (2005), Worlds Apart: Measuring International and Global Inequality, Princeton University
Press.

Milanovic, B. (2011), The Haves and the Have-Nots: A Short and Idiosyncratic History of Global Inequality,
Basic Books.

Mills, J. A. and Zandvakili, S. (1997), ‘Statistical inference via bootstrapping for measures of inequality’,
Journal of Applied Econometrics 12, 133–150.

Phillips, P. C. B. (2005), ‘Automated discovery in econometrics’, Econometric Theory 21, 3– 20.

Piketty, T. and Saez, E. (2003), ‘Income inequality in the United States, 1913-1998’, Quarterly Journal of
Economics 118, 1–39.

35



Serfling, R. J. (1980), Approximation theorems of mathematical statistics, Wiley Series in Probability and
Mathematical Statistics, John Wiley & Sons, Inc., New York.

Toda, A. A. (2012), ‘The double power law in income distribution: Explanations and evidence’, Journal of
Economic Behavior and Organization 84, 364–381.

Toda, A. A. and Wang, Y. (2020), ‘Efficient minimum distance estimation of Pareto exponent from top income
shares’, Journal of Applied Econometrics .

36



Appendix A: Tables

37



Ta
bl

e
А

.1
:E

m
pi

ri
ca

lr
es

ul
ts

:𝑝
−

va
lu

es
,G

in
im

ea
su

re

Altairegion

Krasnodarregion

Krasnoyarskregion

PrimorskyKrai

Stavropolregion

Khabarovskregion

Amurregion

Arkhangelskregion

Astrakhanregion

NenetsAutonomousOkrug

Belgorodregion

Bryanskregion

Vladimirregion

Volgogradregion

VologdaRegion

Voronezhregion

NizhnyNovgorodRegion

G
in

i
0.

27
3

0.
29

1
0.

32
7

0.
28

4
0.

26
9

0.
31

5
0.

30
0

0.
27

4
0.

28
0

0.
32

2
0.

25
3

0.
24

3
0.

25
2

0.
25

6
0.

26
1

0.
25

8
0.

26
5

𝑁
2

25
68

43
92

28
32

21
60

24
00

16
08

12
96

14
88

14
16

48
0

17
52

15
84

17
52

25
20

15
12

24
96

33
60

𝑁
1
/𝑁

2
3.

50
2.

05
3.

18
4.

17
3.

75
5.

60
6.

94
6.

05
6.

36
18

.7
5

5.
14

5.
68

5.
14

3.
57

5.
95

3.
61

2.
68

𝜁
3.

50
2.

60
3.

03
4.

31
3.

93
3.

99
5.

04
4.

10
4.

37
4.

77
3.

74
4.

60
3.

67
3.

57
3.

92
3.

76
3.

93
as

ym
pt

ot
ic

0.
18

0.
00

0.
00

0.
00

0.
44

0.
00

0.
00

0.
14

0.
02

0.
00

0.
08

0.
00

0.
07

0.
16

0.
70

0.
28

0.
92

𝑞 1
=

𝑞 2
=

4
0.

25
0.

04
0.

00
0.

06
0.

52
0.

00
0.

02
0.

38
0.

08
0.

04
0.

31
0.

07
0.

31
0.

38
0.

73
0.

28
0.

92
𝑞 1

=
𝑞 2

=
8

0.
30

0.
02

0.
00

0.
01

0.
50

0.
00

0.
00

0.
34

0.
02

0.
00

0.
22

0.
02

0.
16

0.
23

0.
69

0.
42

0.
96

𝑞 1
=

𝑞 2
=

1
2

0.
27

0.
01

0.
00

0.
01

0.
43

0.
00

0.
00

0.
28

0.
02

0.
00

0.
17

0.
00

0.
14

0.
15

0.
69

0.
33

0.
98

𝑞 1
=

𝑞 2
=

1
6

0.
15

0.
00

0.
00

0.
01

0.
35

0.
00

0.
00

0.
31

0.
02

0.
00

0.
02

0.
00

0.
07

0.
11

0.
63

0.
28

0.
97

𝑞 1
=

4
,𝑞

2
=

3
0.

33
0.

13
0.

02
0.

03
0.

57
0.

01
0.

03
0.

50
0.

22
0.

04
0.

37
0.

06
0.

35
0.

34
0.

68
0.

29
0.

90
𝑞 1

=
8
,𝑞

2
=

6
0.

34
0.

03
0.

00
0.

03
0.

40
0.

00
0.

00
0.

31
0.

09
0.

01
0.

26
0.

01
0.

19
0.

23
0.

69
0.

22
0.

95
𝑞 1

=
1
2
,𝑞

2
=

9
0.

23
0.

01
0.

00
0.

05
0.

30
0.

00
0.

00
0.

23
0.

03
0.

00
0.

03
0.

02
0.

17
0.

19
0.

71
0.

37
0.

97
𝑞 1

=
1
6
,𝑞

2
=

1
2

0.
27

0.
01

0.
00

0.
01

0.
43

0.
00

0.
00

0.
28

0.
02

0.
00

0.
16

0.
00

0.
13

0.
15

0.
68

0.
32

1.
00

𝑞 1
=

4
,𝑞

2
=

2
0.

48
0.

20
0.

10
0.

19
0.

61
0.

09
0.

18
0.

46
0.

15
0.

12
0.

55
0.

11
0.

21
0.

60
0.

60
0.

47
0.

95
𝑞 1

=
8
,𝑞

2
=

4
0.

22
0.

04
0.

00
0.

05
0.

50
0.

00
0.

02
0.

37
0.

07
0.

04
0.

3
0.

07
0.

30
0.

36
0.

71
0.

24
0.

92
𝑞 1

=
1
2
,𝑞

2
=

6
0.

33
0.

03
0.

00
0.

02
0.

38
0.

00
0.

00
0.

30
0.

08
0.

01
0.

26
0.

01
0.

19
0.

22
0.

68
0.

20
0.

94
𝑞 1

=
1
6
,𝑞

2
=

8
0.

29
0.

02
0.

00
0.

01
0.

49
0.

00
0.

00
0.

33
0.

02
0.

00
0.

21
0.

02
0.

16
0.

21
0.

68
0.

41
0.

96
𝑞 1

=
8
,𝑞

2
=

2
0.

47
0.

19
0.

09
0.

18
0.

60
0.

09
0.

18
0.

45
0.

13
0.

12
0.

55
0.

09
0.

18
0.

60
0.

54
0.

45
0.

95
𝑞 1

=
1
2
,𝑞

2
=

3
0.

29
0.

13
0.

02
0.

01
0.

54
0.

01
0.

02
0.

49
0.

21
0.

04
0.

35
0.

05
0.

34
0.

31
0.

64
0.

21
0.

89
𝑞 1

=
1
6
,𝑞

2
=

4
0.

21
0.

04
0.

00
0.

05
0.

48
0.

00
0.

02
0.

37
0.

07
0.

04
0.

29
0.

06
0.

29
0.

35
0.

70
0.

21
0.

92
pe

rm
ut

at
io

n
0.

15
0.

01
0.

00
0.

00
0.

48
0.

00
0.

00
0.

15
0.

02
0.

00
0.

08
0.

00
0.

08
0.

19
0.

72
0.

26
0.

92
bo

ot
st

ra
p

0.
20

0.
00

0.
00

0.
00

0.
43

0.
00

0.
00

0.
15

0.
02

0.
00

0.
08

0.
00

0.
10

0.
17

0.
73

0.
33

0.
87

38



Ta
bl

e
А

.1
:E

m
pi

ri
ca

lr
es

ul
ts

:p
-v

al
ue

s,
G

in
im

ea
su

re
,C

on
ti

nu
ed

Ivanovoregion

Irkutskregion

TheRepublicofIngushetia

Kaliningradregion

Tverregion

Kalugaregion

KamchatkaKrai

Kemerovoregion

Kirovregion

Kostromaregion

RepublicofCrimea

SamaraRegion

Kurganregion

Kurskregion

SaintPetersburgcity

Leningradregion

Lipetskregion

G
in

i
0.

25
6

0.
30

9
0.

35
4

0.
27

6
0.

26
0

0.
25

6
0.

30
0

0.
27

3
0.

25
9

0.
24

7
0.

26
8

0.
26

8
0.

28
7

0.
26

2
0.

26
4

0.
26

9
0.

25
0

𝑁
2

15
12

24
48

60
0

13
68

17
04

14
40

88
8

28
08

16
80

12
48

19
92

31
68

13
68

14
88

43
44

19
44

14
88

𝑁
1
/𝑁

2
5.

95
3.

68
15

.0
0

6.
58

5.
28

6.
25

10
.1

4
3.

21
5.

36
7.

21
4.

52
2.

84
6.

58
6.

05
2.

07
4.

63
6.

05
𝜁

3.
77

4.
51

3.
69

5.
05

3.
94

6.
00

3.
34

3.
76

5.
15

4.
77

4.
45

4.
49

3.
18

2.
75

4.
27

5.
63

3.
67

as
ym

pt
ot

ic
0.

2
0.

00
0.

00
0.

05
0.

48
0.

17
0.

00
0.

12
0.

42
0.

01
0.

51
0.

41
0.

01
0.

86
0.

98
0.

39
0.

06
𝑞 1

=
𝑞 2

=
4

0.
24

0.
01

0.
01

0.
10

0.
59

0.
36

0.
02

0.
12

0.
38

0.
06

0.
53

0.
54

0.
05

0.
80

0.
97

0.
53

0.
30

𝑞 1
=

𝑞 2
=

8
0.

14
0.

00
0.

00
0.

02
0.

57
0.

23
0.

01
0.

10
0.

36
0.

02
0.

38
0.

57
0.

02
0.

76
0.

96
0.

37
0.

12
𝑞 1

=
𝑞 2

=
1
2

0.
11

0.
00

0.
00

0.
07

0.
50

0.
23

0.
03

0.
03

0.
38

0.
01

0.
57

0.
47

0.
02

0.
69

0.
94

0.
24

0.
09

𝑞 1
=

𝑞 2
=

1
6

0.
1

0.
00

0.
00

0.
02

0.
46

0.
15

0.
00

0.
10

0.
35

0.
01

0.
47

0.
59

0.
01

0.
66

0.
96

0.
46

0.
08

𝑞 1
=

4
,𝑞

2
=

3
0.

27
0.

03
0.

00
0.

18
0.

76
0.

47
0.

11
0.

16
0.

34
0.

07
0.

59
0.

72
0.

03
0.

82
0.

98
0.

61
0.

43
𝑞 1

=
8
,𝑞

2
=

6
0.

13
0.

00
0.

00
0.

11
0.

62
0.

26
0.

05
0.

07
0.

3
0.

04
0.

51
0.

58
0.

05
0.

80
0.

98
0.

46
0.

2
𝑞 1

=
1
2
,𝑞

2
=

9
0.

15
0.

00
0.

00
0.

05
0.

57
0.

25
0.

01
0.

02
0.

46
0.

02
0.

42
0.

59
0.

01
0.

80
0.

96
0.

42
0.

13
𝑞 1

=
1
6
,𝑞

2
=

1
2

0.
11

0.
00

0.
00

0.
07

0.
49

0.
22

0.
03

0.
03

0.
36

0.
01

0.
58

0.
48

0.
02

0.
68

0.
96

0.
25

0.
09

𝑞 1
=

4
,𝑞

2
=

2
0.

26
0.

08
0.

07
0.

35
0.

47
0.

44
0.

17
0.

31
0.

47
0.

23
0.

69
0.

59
0.

19
0.

80
0.

98
0.

72
0.

42
𝑞 1

=
8
,𝑞

2
=

4
0.

21
0.

01
0.

01
0.

08
0.

57
0.

35
0.

02
0.

09
0.

32
0.

05
0.

50
0.

52
0.

05
0.

78
0.

98
0.

51
0.

29
𝑞 1

=
1
2
,𝑞

2
=

6
0.

12
0.

00
0.

00
0.

10
0.

62
0.

24
0.

05
0.

05
0.

27
0.

04
0.

49
0.

56
0.

04
0.

80
0.

97
0.

44
0.

19
𝑞 1

=
1
6
,𝑞

2
=

8
0.

12
0.

00
0.

00
0.

02
0.

56
0.

22
0.

01
0.

08
0.

33
0.

01
0.

35
0.

56
0.

02
0.

75
0.

97
0.

35
0.

11
𝑞 1

=
8
,𝑞

2
=

2
0.

21
0.

07
0.

07
0.

33
0.

42
0.

42
0.

16
0.

28
0.

42
0.

21
0.

68
0.

57
0.

18
0.

78
0.

98
0.

72
0.

42
𝑞 1

=
1
2
,𝑞

2
=

3
0.

22
0.

03
0.

00
0.

16
0.

75
0.

45
0.

11
0.

10
0.

24
0.

05
0.

55
0.

71
0.

02
0.

80
0.

97
0.

58
0.

42
𝑞 1

=
1
6
,𝑞

2
=

4
0.

19
0.

01
0.

01
0.

07
0.

56
0.

34
0.

02
0.

07
0.

28
0.

05
0.

48
0.

5
0.

04
0.

76
0.

98
0.

5
0.

28
pe

rm
ut

at
io

n
0.

22
0.

00
0.

00
0.

04
0.

49
0.

18
0.

00
0.

12
0.

46
0.

04
0.

50
0.

39
0.

01
0.

85
0.

94
0.

33
0.

08
bo

ot
st

ra
p

0.
18

0.
00

0.
00

0.
04

0.
50

0.
19

0.
00

0.
11

0.
44

0.
02

0.
54

0.
44

0.
01

0.
88

0.
99

0.
36

0.
09

39



Ta
bl

e
А

.1
:E

m
pi

ri
ca

lr
es

ul
ts

:p
-v

al
ue

s,
G

in
im

ea
su

re
,C

on
ti

nu
ed

MagadanRegion

Moscowcity

Moscowregion

Murmanskregion

Novgorodregion

Novosibirskregion

Omskregion

Orenburgregion

OryolRegion

Penzaregion

Permregion

Pskovregion

Rostovregion

RyazanOblast

Saratovregion

SakhalinRegion

Sverdlovskregion

G
in

i
0.

30
3

0.
26

4
0.

29
8

0.
29

0
0.

25
2

0.
30

5
0.

29
4

0.
27

0
0.

25
7

0.
24

8
0.

27
3

0.
25

9
0.

26
2

0.
25

8
0.

25
8

0.
32

6
0.

27
8

𝑁
2

72
0

90
00

59
52

12
96

11
76

27
60

20
88

21
60

12
48

16
56

27
36

12
48

38
16

14
88

26
40

10
80

41
52

𝑁
1
/𝑁

2
12

.5
0

1.
00

1.
51

6.
94

7.
65

3.
26

4.
31

4.
17

7.
21

5.
43

3.
29

7.
21

2.
36

6.
05

3.
41

8.
33

2.
17

𝜁
4.

14
3.

96
4.

70
4.

21
4.

77
3.

50
3.

45
4.

53
3.

11
3.

06
4.

73
3.

97
4.

72
3.

06
4.

24
3.

59
3.

24
as

ym
pt

ot
ic

0.
00

0.
00

0.
00

0.
06

0.
00

0.
00

0.
27

0.
43

0.
03

0.
07

0.
49

0.
57

0.
47

0.
22

0.
00

0.
02

𝑞 1
=

𝑞 2
=

4
0.

01
0.

01
0.

06
0.

11
0.

00
0.

02
0.

41
0.

47
0.

19
0.

23
0.

37
0.

64
0.

55
0.

34
0.

01
0.

12
𝑞 1

=
𝑞 2

=
8

0.
00

0.
00

0.
01

0.
03

0.
00

0.
00

0.
35

0.
42

0.
09

0.
18

0.
43

0.
58

0.
48

0.
23

0.
00

0.
04

𝑞 1
=

𝑞 2
=

1
2

0.
00

0.
00

0.
02

0.
07

0.
00

0.
00

0.
32

0.
44

0.
08

0.
11

0.
4

0.
57

0.
44

0.
24

0.
00

0.
05

𝑞 1
=

𝑞 2
=

1
6

0.
00

0.
00

0.
01

0.
02

0.
00

0.
00

0.
31

0.
39

0.
03

0.
08

0.
35

0.
52

0.
37

0.
17

0.
00

0.
06

𝑞 1
=

4
,𝑞

2
=

3
0.

03
0.

04
0.

12
0.

16
0.

02
0.

02
0.

58
0.

52
0.

35
0.

31
0.

57
0.

69
0.

31
0.

47
0.

03
0.

23
𝑞 1

=
8
,𝑞

2
=

6
0.

00
0.

00
0.

03
0.

11
0.

00
0.

00
0.

38
0.

49
0.

14
0.

17
0.

40
0.

59
0.

49
0.

31
0.

00
0.

07
𝑞 1

=
1
2
,𝑞

2
=

9
0.

00
0.

00
0.

04
0.

07
0.

00
0.

00
0.

28
0.

44
0.

10
0.

11
0.

44
0.

62
0.

45
0.

23
0.

00
0.

04
𝑞 1

=
1
6
,𝑞

2
=

1
2

0.
00

0.
00

0.
02

0.
07

0.
00

0.
00

0.
32

0.
43

0.
08

0.
11

0.
39

0.
56

0.
43

0.
23

0.
00

0.
05

𝑞 1
=

4
,𝑞

2
=

2
0.

09
0.

07
0.

21
0.

23
0.

08
0.

15
0.

61
0.

5
0.

34
0.

48
0.

42
0.

79
0.

64
0.

49
0.

04
0.

30
𝑞 1

=
8
,𝑞

2
=

4
0.

01
0.

01
0.

06
0.

09
0.

00
0.

02
0.

39
0.

46
0.

18
0.

21
0.

31
0.

61
0.

54
0.

31
0.

01
0.

11
𝑞 1

=
1
2
,𝑞

2
=

6
0.

00
0.

00
0.

02
0.

11
0.

00
0.

00
0.

37
0.

49
0.

14
0.

16
0.

38
0.

58
0.

48
0.

3
0.

00
0.

06
𝑞 1

=
1
6
,𝑞

2
=

8
0.

00
0.

00
0.

01
0.

02
0.

00
0.

00
0.

33
0.

41
0.

09
0.

16
0.

42
0.

55
0.

47
0.

2
0.

00
0.

03
𝑞 1

=
8
,𝑞

2
=

2
0.

08
0.

06
0.

20
0.

20
0.

08
0.

14
0.

60
0.

48
0.

34
0.

47
0.

35
0.

78
0.

63
0.

46
0.

03
0.

28
𝑞 1

=
1
2
,𝑞

2
=

3
0.

02
0.

03
0.

11
0.

13
0.

02
0.

01
0.

57
0.

50
0.

35
0.

29
0.

55
0.

66
0.

25
0.

45
0.

03
0.

21
𝑞 1

=
1
6
,𝑞

2
=

4
0.

01
0.

00
0.

06
0.

08
0.

00
0.

02
0.

38
0.

44
0.

17
0.

2
0.

26
0.

58
0.

53
0.

29
0.

01
0.

10
pe

rm
ut

at
io

n
0.

00
0.

00
0.

00
0.

06
0.

00
0.

00
0.

25
0.

45
0.

02
0.

07
0.

5
0.

58
0.

52
0.

21
0.

00
0.

03
bo

ot
st

ra
p

0.
00

0.
00

0.
00

0.
08

0.
00

0.
00

0.
26

0.
41

0.
03

0.
07

0.
52

0.
6

0.
46

0.
23

0.
00

0.
02

40



Ta
bl

e
А

.1
:E

m
pi

ri
ca

lr
es

ul
ts

:p
-v

al
ue

s,
G

in
im

ea
su

re
,C

on
ti

nu
ed

Smolenskregion

Sevastopolcity

TambovRegion

Tomskregion

Tularegion

Tyumenregion

Khanty-MansiAutonomousOkrug-Yugra

Ulyanovskregion

Yamalo-NenetsAutonomousDistrict

Chelyabinskregion

ZabaykalskyKrai

ChukotkaAutonomousDistrict

Yaroslavskayaoblast

RepublicofAdygea

RepublicofBashkortostan

TheRepublicofBuryatia

TheRepublicofDagestan

G
in

i
0.

25
1

0.
24

0
0.

23
6

0.
31

5
0.

24
8

0.
32

4
0.

29
3

0.
24

5
0.

33
5

0.
28

3
0.

31
7

0.
32

8
0.

26
0

0.
26

7
0.

29
2

0.
32

7
0.

31
8

𝑁
2

14
40

79
2

14
88

14
16

18
48

15
60

16
56

15
60

10
08

34
08

13
68

52
8

16
32

93
6

36
24

12
72

19
68

𝑁
1
/𝑁

2
6.

25
11

.3
6

6.
05

6.
36

4.
87

5.
77

5.
43

5.
77

8.
93

2.
64

6.
58

17
.0

5
5.

51
9.

62
2.

48
7.

08
4.

57
𝜁

4.
41

5.
78

4.
32

3.
13

5.
40

2.
71

4.
11

4.
36

5.
46

4.
00

5.
17

4.
64

4.
19

5.
46

4.
48

3.
53

4.
26

as
ym

pt
ot

ic
0.

05
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

46
0.

7
0.

00
0.

00
0.

00
𝑞 1

=
𝑞 2

=
4

0.
12

0.
03

0.
02

0.
01

0.
03

0.
01

0.
01

0.
08

0.
00

0.
02

0.
02

0.
00

0.
42

0.
83

0.
01

0.
01

0.
03

𝑞 1
=

𝑞 2
=

8
0.

08
0.

01
0.

00
0.

00
0.

01
0.

00
0.

00
0.

03
0.

00
0.

02
0.

00
0.

00
0.

26
0.

81
0.

00
0.

00
0.

00
𝑞 1

=
𝑞 2

=
1
2

0.
03

0.
00

0.
00

0.
00

0.
01

0.
00

0.
00

0.
01

0.
00

0.
00

0.
00

0.
00

0.
28

0.
97

0.
00

0.
00

0.
00

𝑞 1
=

𝑞 2
=

1
6

0.
04

0.
01

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
30

0.
78

0.
00

0.
00

0.
00

𝑞 1
=

4
,𝑞

2
=

3
0.

24
0.

05
0.

02
0.

01
0.

08
0.

01
0.

02
0.

12
0.

01
0.

04
0.

07
0.

02
0.

33
0.

57
0.

06
0.

01
0.

06
𝑞 1

=
8
,𝑞

2
=

6
0.

08
0.

02
0.

00
0.

00
0.

01
0.

00
0.

00
0.

06
0.

00
0.

01
0.

01
0.

00
0.

3
0.

8
0.

00
0.

00
0.

00
𝑞 1

=
1
2
,𝑞

2
=

9
0.

11
0.

00
0.

00
0.

00
0.

01
0.

00
0.

00
0.

02
0.

00
0.

00
0.

00
0.

00
0.

33
0.

8
0.

00
0.

00
0.

00
𝑞 1

=
1
6
,𝑞

2
=

1
2

0.
03

0.
00

0.
00

0.
00

0.
01

0.
00

0.
00

0.
01

0.
00

0.
00

0.
00

0.
00

0.
27

0.
98

0.
00

0.
00

0.
00

𝑞 1
=

4
,𝑞

2
=

2
0.

29
0.

1
0.

12
0.

08
0.

15
0.

07
0.

11
0.

23
0.

1
0.

13
0.

08
0.

04
0.

45
0.

56
0.

12
0.

07
0.

19
𝑞 1

=
8
,𝑞

2
=

4
0.

11
0.

02
0.

02
0.

01
0.

02
0.

01
0.

00
0.

07
0.

00
0.

01
0.

02
0.

00
0.

38
0.

82
0.

01
0.

01
0.

03
𝑞 1

=
1
2
,𝑞

2
=

6
0.

07
0.

02
0.

00
0.

00
0.

01
0.

00
0.

00
0.

05
0.

00
0.

01
0.

01
0.

00
0.

27
0.

79
0.

00
0.

00
0.

00
𝑞 1

=
1
6
,𝑞

2
=

8
0.

07
0.

01
0.

00
0.

00
0.

01
0.

00
0.

00
0.

03
0.

00
0.

01
0.

00
0.

00
0.

21
0.

81
0.

00
0.

00
0.

00
𝑞 1

=
8
,𝑞

2
=

2
0.

28
0.

08
0.

11
0.

08
0.

13
0.

07
0.

1
0.

22
0.

1
0.

12
0.

08
0.

04
0.

39
0.

5
0.

11
0.

07
0.

19
𝑞 1

=
1
2
,𝑞

2
=

3
0.

22
0.

04
0.

02
0.

01
0.

06
0.

01
0.

01
0.

11
0.

00
0.

03
0.

07
0.

02
0.

20
0.

46
0.

05
0.

01
0.

06
𝑞 1

=
1
6
,𝑞

2
=

4
0.

10
0.

02
0.

02
0.

01
0.

02
0.

01
0.

00
0.

06
0.

00
0.

01
0.

02
0.

00
0.

35
0.

82
0.

01
0.

01
0.

03
pe

rm
ut

at
io

n
0.

08
0.

00
0.

00
0.

00
0.

01
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

51
0.

70
0.

00
0.

00
0.

00
bo

ot
st

ra
p

0.
07

0.
01

0.
00

0.
00

0.
00

0.
00

0.
00

0.
01

0.
00

0.
00

0.
00

0.
00

0.
47

0.
63

0.
00

0.
00

0.
00

41



Ta
bl

e
А

.1
:E

m
pi

ri
ca

lr
es

ul
ts

:p
-v

al
ue

s,
G

in
im

ea
su

re
,C

on
ti

nu
ed

Kabardino-BalkarRepublic

AltaiRepublic

RepublicofKalmykia

RepublicofKarelia

KomiRepublic

MariElRepublic

TheRepublicofMordovia

RepublicofNorthOssetia-Alania

Karachay-CherkessRepublic

RepublicofTatarstan

TyvaRepublic

Udmurtia

TheRepublicofKhakassia

ChechenRepublic

ChuvashRepublic-Chuvashia

TheRepublicofSakha(Yakutia)

JewishAutonomousRegion

G
in

i
0.

29
8

0.
34

0
0.

32
6

0.
26

8
0.

29
8

0.
28

6
0.

25
1

0.
27

7
0.

33
4

0.
24

8
0.

42
3

0.
25

1
0.

29
3

0.
32

7
0.

26
7

0.
34

1
0.

33
4

𝑁
2

96
0

60
0

72
0

12
00

13
92

11
04

12
48

91
2

72
0

34
08

74
4

17
04

10
32

10
32

14
88

13
20

60
0

𝑁
1
/𝑁

2
9.

38
15

.0
0

12
.5

0
7.

50
6.

47
8.

15
7.

21
9.

87
12

.5
0

2.
64

12
.1

0
5.

28
8.

72
8.

72
6.

05
6.

82
15

.0
0

𝜁
4.

28
3.

35
3.

47
3.

78
4.

14
2.

29
3.

12
3.

34
2.

08
4.

49
3.

04
4.

50
5.

14
3.

30
5.

27
4.

34
4.

27
as

ym
pt

ot
ic

0.
00

0.
00

0.
00

0.
64

0.
00

0.
06

0.
14

0.
18

0.
00

0.
00

0.
00

0.
03

0.
00

0.
00

0.
62

0.
00

0.
00

𝑞 1
=

𝑞 2
=

4
0.

04
0.

00
0.

01
0.

71
0.

03
0.

14
0.

28
0.

2
0.

03
0.

03
0.

00
0.

11
0.

03
0.

02
0.

63
0.

00
0.

05
𝑞 1

=
𝑞 2

=
8

0.
01

0.
00

0.
00

0.
65

0.
00

0.
15

0.
2

0.
21

0.
01

0.
01

0.
00

0.
02

0.
01

0.
00

0.
63

0.
00

0.
01

𝑞 1
=

𝑞 2
=

1
2

0.
00

0.
00

0.
00

0.
58

0.
00

0.
12

0.
11

0.
27

0.
01

0.
00

0.
00

0.
02

0.
00

0.
00

0.
64

0.
00

0.
00

𝑞 1
=

𝑞 2
=

1
6

0.
00

0.
00

0.
00

0.
63

0.
00

0.
16

0.
14

0.
23

0.
01

0.
00

0.
00

0.
08

0.
00

0.
00

0.
68

0.
00

0.
00

𝑞 1
=

4
,𝑞

2
=

3
0.

02
0.

00
0.

03
0.

68
0.

06
0.

13
0.

22
0.

43
0.

01
0.

13
0.

01
0.

08
0.

09
0.

05
0.

55
0.

00
0.

10
𝑞 1

=
8
,𝑞

2
=

6
0.

00
0.

00
0.

00
0.

59
0.

00
0.

03
0.

2
0.

32
0.

01
0.

03
0.

00
0.

08
0.

01
0.

01
0.

6
0.

00
0.

01
𝑞 1

=
1
2
,𝑞

2
=

9
0.

00
0.

00
0.

00
0.

62
0.

00
0.

14
0.

12
0.

33
0.

00
0.

01
0.

00
0.

07
0.

01
0.

00
0.

8
0.

00
0.

01
𝑞 1

=
1
6
,𝑞

2
=

1
2

0.
00

0.
00

0.
00

0.
59

0.
00

0.
12

0.
11

0.
27

0.
01

0.
00

0.
00

0.
02

0.
00

0.
00

0.
65

0.
00

0.
00

𝑞 1
=

4
,𝑞

2
=

2
0.

16
0.

03
0.

14
0.

48
0.

16
0.

16
0.

18
0.

21
0.

05
0.

18
0.

13
0.

28
0.

12
0.

05
0.

54
0.

06
0.

14
𝑞 1

=
8
,𝑞

2
=

4
0.

04
0.

00
0.

01
0.

71
0.

03
0.

13
0.

27
0.

18
0.

03
0.

02
0.

00
0.

09
0.

03
0.

02
0.

62
0.

00
0.

05
𝑞 1

=
1
2
,𝑞

2
=

6
0.

00
0.

00
0.

00
0.

58
0.

00
0.

03
0.

19
0.

31
0.

01
0.

02
0.

00
0.

07
0.

01
0.

01
0.

57
0.

00
0.

01
𝑞 1

=
1
6
,𝑞

2
=

8
0.

01
0.

00
0.

00
0.

65
0.

00
0.

15
0.

19
0.

21
0.

01
0.

01
0.

00
0.

01
0.

00
0.

00
0.

61
0.

00
0.

01
𝑞 1

=
8
,𝑞

2
=

2
0.

15
0.

03
0.

13
0.

41
0.

15
0.

15
0.

14
0.

19
0.

04
0.

16
0.

13
0.

26
0.

12
0.

04
0.

48
0.

06
0.

14
𝑞 1

=
1
2
,𝑞

2
=

3
0.

01
0.

00
0.

03
0.

66
0.

06
0.

12
0.

20
0.

42
0.

01
0.

12
0.

01
0.

05
0.

09
0.

05
0.

45
0.

00
0.

10
𝑞 1

=
1
6
,𝑞

2
=

4
0.

03
0.

00
0.

01
0.

71
0.

03
0.

13
0.

26
0.

17
0.

03
0.

02
0.

00
0.

08
0.

03
0.

02
0.

61
0.

00
0.

05
pe

rm
ut

at
io

n
0.

00
0.

00
0.

00
0.

59
0.

00
0.

04
0.

18
0.

18
0.

00
0.

00
0.

00
0.

04
0.

00
0.

00
0.

6
0.

00
0.

00
bo

ot
st

ra
p

0.
00

0.
00

0.
00

0.
63

0.
00

0.
05

0.
18

0.
17

0.
00

0.
00

0.
00

0.
05

0.
00

0.
00

0.
64

0.
00

0.
00

42



Appendix B: Inequality measures and their sample analogues

In this section, we review the definitions of the widely used Gini and Theil inequality measures, sample
analogues of the measures and their asymptotic properties (see, among others, Cowell and Flachaire (2007),
Davidson and Flachaire (2007), Section 13.F, 17.C in Marshall et al. (2011), and references therein).

Let 𝐼 be an (absolutely continuous) nonnegative r.v. (e.g., income or wealth level) with the finite first
moment 𝜇𝐼 = 𝐸[𝐼] < ∞ and the cdf 𝐹𝐼(𝑥) representing income or wealth distribution in a population, and
let 𝐼1, 𝐼2, ..., 𝐼𝑁 denote a sample of observations on the r.v. 𝐼.

As usual, we denote by 𝐼𝑁 = 𝑁−1
∑︀𝑁

𝑖=1 𝐼𝑖 and 𝑠2𝑁 = (𝑁 − 1)−1
∑︀𝑁

𝑖=1(𝐼𝑖 − 𝐼)2 the sample mean and
sample variance of the observations 𝐼𝑖.

Below, we provide the definitions of Theil and Gini inequality measures (denoted by ℒ𝐼
𝑇ℎ𝑒𝑖𝑙 and ℒ𝐼

𝐺𝑖𝑛𝑖 for
the population considered) and discuss the standard results on their asymptotic normality.

Theil index The population Theil index is defined by

ℒ𝐼
𝑇ℎ𝑒𝑖𝑙 =

𝐸[𝐼 log 𝐼]

𝜇𝐼
− log(𝜇𝐼).

The Theil index is the limiting case of the Generalized Entropy measures. Its sample analogue - sample
Theil index - is given by

ℒ̂𝐼
𝑇ℎ𝑒𝑖𝑙,𝑁 =

1
𝑁

∑︀𝑁
𝑖=1 𝐼𝑖 log(𝐼𝑖)

𝐼𝑁
− log(𝐼𝑁 ).

Under i.i.d. observations 𝐼1, 𝐼2, ..., 𝐼𝑁 , the Theil index is asymptotically normal if 𝐸[𝐼2] < ∞, 𝐸[𝐼2 log 𝐼] <

∞ and 𝐸[𝐼2 log2(𝐼)] < ∞. It is easy to see that these conditions are satisfied in the case of r.v.’s with power
law distributions (1) (e.g., Singh-Maddala distributions 𝑆𝑀(𝑎, 𝑏, 𝑐) in (5) with 𝜁 = 𝑎𝑐) if the tail index 𝜁 is
greater than 2: 𝜁 > 2.

Under the above conditions, one has

√
𝑁(ℒ̂𝐼

𝑇ℎ𝑒𝑖𝑙,𝑁 − ℒ𝐼
𝑇ℎ𝑒𝑖𝑙) →𝑤 𝑁(0, 𝑣2𝑇ℎ𝑒𝑖𝑙,𝐼),

where

𝑣2𝑇ℎ𝑒𝑖𝑙,𝐼 =
𝐸[𝐼2 log2 𝐼]

𝜇2
𝐼

+
𝐸[𝐼2]

𝜇2
𝐼

(︁𝐸[𝐼 log 𝐼]

𝜇𝐼
+ 1

)︁2
− 2𝐸[𝐼2 log 𝐼]

𝜇2
𝐼

(︁𝐸[𝐼 log 𝐼]

𝜇𝐼
+ 1

)︁
− 1

(see, among others, Mills and Zandvakili (1997), Cowell (1989, 2000), Cowell and Flachaire (2007) and Mer-
gane et al. (2018) for the review of the results on asymptotic normality and the formulas for the liming and
sampling variance of different estimators of inequality measures).

Gini coefficient The population Gini coefficient is defined by

ℒ𝐼
𝐺𝑖𝑛𝑖 = 0.5

𝐸|𝐼 ′ − 𝐼 ′′|
𝜇𝐼

,

where 𝐼 ′ and 𝐼 ′′ are independent copies of the r.v. 𝐼.
The most commonly used (nonparametric) estimator of the Gini coefficient ℒ𝐼

𝐺𝑖𝑛𝑖 is given by its sample
analogue (the sample Gini coefficient)

ℒ̂𝐼
𝐺𝑖𝑛𝑖,𝑁 =

∑︀
1≤𝑖<𝑗≤𝑁 |𝐼𝑖 − 𝐼𝑗 |
(𝑁 − 1)

∑︀𝑁
𝑖=1 𝐼𝑖

= 𝑈𝑁/𝐼𝑁 ,
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where 𝑈𝑁 is the 𝑈−statistic 𝑈𝑁 = 2
𝑁(𝑁−1)

∑︀
1≤𝑖<𝑗≤𝑁 |𝐼𝑖 − 𝐼𝑗 | (we refer to, among others, Hoeffding (1948),

Ch. 5 in Serfling (1980) and Ch. 4 in Koroljuk and Borovskich (1994) for the asymptotic theory for general
𝑈−statistics).

From the results in the above references, it follows that asymptotic normality for the 𝑈−statistic 𝑈𝑁 and
the sample Gini coefficient holds if 𝐼1, 𝐼2, ..., 𝐼𝑁 are i.i.d. observations with finite second moment 𝐸[𝐼2] < ∞.

This holds under power-law distributions (1) (e.g., for Singh-Maddala distributions 𝑆𝑀(𝑎, 𝑏, 𝑐) in (5) with
𝜁 = 𝑎𝑐) if the tail index 𝜁 is greater than 2: 𝜁 > 2. More precisely, under the above conditions (see Hoeffding
(1948)) √

𝑁(ℒ̂𝐼
𝐺𝑖𝑛𝑖,𝑁 − ℒ𝐼

𝐺𝑖𝑛𝑖) →𝑤 𝑁(0, 𝑣2𝐺𝑖𝑛𝑖,𝐼),

where 𝑣2𝐺𝑖𝑛𝑖,𝐼 = (ℒ𝐼
𝐺𝑖𝑛𝑖)

2𝜎2
𝐼 − 2ℒ𝐼

𝐺𝑖𝑛𝑖𝐸{𝐼 ′|𝐼 ′ − 𝐼 ′′|}/𝜇2
𝐼 + 𝐸(𝐸𝐼′{|𝐼 ′ − 𝐼 ′′|})/𝜇2

𝐼 , and 𝐸𝐼′(·) = 𝐸𝐼′(·) = 𝐸{·|𝐼 ′}
denotes the expectation conditional on 𝐼 ′.

Naturally, the asymptotic normality of the sample Theil and Gini coefficients is lost under infinite second
moments and variances: 𝐸[𝐼2] = ∞. For instance, from the results in Fontanari et al. (2018) it follows that
under i.i.d. observations 𝐼1, 𝐼2, ..., 𝐼𝑁 that follow a power-law distribution (1) with the tail index 𝜁 ∈ (1, 2)

(e.g., the Singh-Maddala distribution 𝑆𝑀(𝑎, 𝑏, 𝑐) in (5) with 1 < 𝜁 = 𝑎𝑐 < 2) and have finite first and infinite
second moments, the sample Gini coefficient ℒ̂𝐺𝑖𝑛𝑖,𝑁 has an asymptotic right-skewed stable distribution with
the index of stability 𝜁. Using the standard generalized CLT and the delta-method, it is also not difficult
to show that in the case of distributions exhibiting (double) power law behavior in both the lower and the
upper (with the tail index 𝜁), similar to Singh-Maddala distributions 𝑆𝑀(𝑎, 𝑏, 𝑐) with 𝜁 = 𝑎𝑐, the sample
Theil index ℒ̂𝑇ℎ𝑒𝑖𝑙,𝑁 weakly converges to a function of stable r.v.’s with indices of stability that depend on 𝜁.

The rate of convergence in the above asymptotic results is slower than
√
𝑁 and depends on 𝜁. The fact that

the tail index 𝜁 is unknown in practice makes the results useless for (direct) asymptotic inference.16

16The situation is somewhat similar to the properties of autocorrelation functions of GARCH-type processes and
their squares, where asymptotic normality is lost under tail indices smaller than 4 and infinite fourth moments, as is
typically the case for financial returns and foreign exchange rates in real-world markets (see Davis and Mikosch (1998),
Mikosch and Stărică (2000) and also Ibragimov et al. (2001) for asymptotically valid robust 𝑡−statistic approaches
to inference on measures of market (non-)efficiency and volatility clustering based on powers of absolute values of
GARCH-type processes, e.g., financial returns).
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