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Abstract. A recently proposed orthotropic hyperelastic material model for the geometri-
cally nonlinear simulation of woven textile membranes is extended to become the basis of
a new approach for structural simulations of improved accuracy. The model is polyconvex
and benefits from anisotropic metric tensors in the construction of structural tensors. The
proposed nonlinear model is a competitive replacement for the commonly used, however,
oversimplified linear elastic formulation. Solving an optimization problem, the nonlin-
ear model parameters are initially identified and fixed for general groups of fabrics, e.g.,
glass-PTFE or PES-PVC. For each particular material type, the remaining linear mate-
rial parameters will be adjusted for the given set of experimental data.
To improve the accuracy of the model response in structural simulations we propose a new
framework to identify and modify material parameters based on the stress ratio locally
varying within the structure. To this end, in the first step, the material parameters are
separately adjusted to rather classical biaxial tensile tests with load ratios e.g., 1:0.5, 1:1,
etc, and further rather uncommon load ratios 1:0.25, 1:0.125, etc. In the second step,
an iterative simulation procedure will be applied, where, according to the resulting, locally
distributed stress ratio, the corresponding parameter value will be updated at the integra-
tion points in the discretized structural problem. For this purpose, suitable interpolation
schemes will be applied to identify the parameters at load ratios in between the experimen-
tally considered ones. The iterative scheme will be repeated until the overall parameter
change on all points becomes negligible. The efficacy of the proposed method will be as-
sessed by comparing results using the new approach with the results obtained from fixed
parameters.
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1 INTRODUCTION

In general, woven textile membranes are composed of a network of interlaced yarns,
warp and fill, which are covered by a coating material. The two main groups of technical
fabrics extensively used in engineering applications are the PES-PVC and the glass-PTFE
fabrics. To characterize the material behavior of textile membranes the material response
of a cruciform fabric is studied under application of biaxial tensile loading in the warp-
and fill direction [1]. The commonly applied biaxial tensile tests are the ones with the
load ratios of 1:0.5, 1:1 and 0.5:1 (warp:fill), where e.g., in 1:0.5, 1 indicates that the
maximum load is applied in the warp direction and the fill direction is pulled by half
of the maximum load. It is also recommended to study the fabric behavior additionally
under uniaxial tensile tests [2]. Nonetheless, the obtained data of lateral strains are
usually neglected in the identification of elastic constants, see [1, 2, 3], and thus, uniaxial
tests are not considered in this work. However, the material response of the fabric will be
investigated instead using some uncommon load ratios, i.e. the 1:0.125, 1:0.25 and 1:0.75
as well as the 0.125:1, 0.25:1 and 0.75:1 ones. Such load ratios are more likely to appear
in real engineering structures and the relatively realistic large-scale experiments, see [4].

In this work, a new framework will be outlined which may improve the overall accu-
racy of the model response in the simulation of woven fabrics. It is well known that due
to the complex behavior of woven fabrics, fitting all load ratios together requires com-
plex material formulations [5]. The recently proposed orthotropic nonlinear model, as
a replacement for the simple linear elastic formulation, was able to improve the general
representation of woven fabric behavior by more than 40% [6]. However, using the new
framework, significant improvement in the structural simulation of technical fabrics can
be expected. The basic idea is to separately fit each stress ratio to obtain so-called stress-
ratio-dependent material parameters. By employing an interpolation system the material
parameters will be identified and modified according to the stress ratios appearing locally
in the structural problem using the previously identified ones. Subsequently, an iterative
simulation procedure can be employed, where, based on the resulting locally distributed
stress ratio, the corresponding parameter value will be updated at the integration points
in the discretized structural problem. To this end, appropriate interpolation schemes can
be utilized to modify the parameters at load ratios which were not considered in the ex-
periments. The iterative scheme shall be repeated until the overall parameter change on
all integration points becomes negligible. The effectiveness of the proposed framework
will be evaluated by comparing results using the new approach with the results obtained
from fixed parameters.

2 MATERIAL MODEL AND PARAMETER ADJUSTMENT

2.1 Nonlinear polyconvex orthotropic model

The orthotropic nonlinear material model was primarily proposed for the geometrically
nonlinear simulation of glass-PTFE textile membranes, see [7]. Nevertheless, the adequacy
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of the model in the representation of mechanical response of PES-PVC fabrics was also
demonstrated in [8, 6]. Owing to its polyconvex energy terms, the model is guaranteed
to be materially stable and robust in numerical simulations [9, 10, 11]. The advantages
of including the polyconvex orthotropic term was showcased and compared with other
competitive nonlinear models, see [12, 13, 7]. In [4], the model was validated by means of
the simulation of a recently designed large-scale pressure chamber test on a woven fabric.

Taking into account the elements of a woven coated fabric, the heterogeneous body can
be idealized as a continuum membrane with two orthogonal tensile reinforced directions;
i.e. warp- and fill directions. For hyperelastic modeling, the existence of a strain energy
function ψ is postulated and therefore, the model may be formulated as an additive
decomposition of separate energy terms. In the model it is assumed that each independent
nonlinear term ψi represents a specific response. The intensity of the desired response
may simply be regulated via only one linear coefficient αi available per energy term; i.e.
αiψi. This is the decisive feature of the proposed nonlinear formulation, since at the end,
only 3 material parameters αi remain which are to be adjusted for each individual fabric,
i.e. ψ(α,C,γ) =

∑3
i=1 αiψi(C,γ). The included nonlinear term ψi(C,γ) is a function

of the right Cauchy-Green deformation tensor C = F TF , with F being the deformation
gradient, and γ are the nonlinear model parameters. The internal model parameters γ
control the nonlinearity of each deformation mode. For each group of fabrics; i.e. glass-
PTFE or PES-PVC, the model parameters can be initially identified and remain fixed,
see e.g. [4, 8, 6], following the basic idea in a biomechanics context proposed by [14]. For
the fixed γ, the orthotropic model for glass-PTFE fabrics becomes linear in the material
parameters αi while remaining nonlinear in the deformation modes ψi(C) and is built as
the following

ψ(α,C) = αintψint(C) + αti
wψ

ti
w(C) + αti

f ψ
ti
f (C) + εψvol. (1)

In the above, the orthotropic term is denoted as ψint mainly controls the crosswise inter-
yarns interactions. The two transversely isotropic terms act as tensile reinforcement in the
fill- and warp directions which are denoted as ψti

f and ψti
w. In addition, one volumetric term

is included to assure a nearly incompressible material response and thus, the coefficient
is chosen as ε = 1E6 kN/m.

In the formulation of the implemented interaction term, the notion of anisotropic metric
tensor G is used as the so-called structural tensor which may solve the typical issues of
the multiplicative non-polyconvex ones, see [12, 15, 16]. In general, a full component
metric tensor enhances the description of generic classes of anisotropy and thereby, a
great solution which enables various couplings and interactions between principal material
directions [10]. The anisotropic metric tensors G are basically the more generalized form
of the classical structural tensors M i = âi ⊗ âi, see [17]. In the classical form, also used
in the transversely isotropic terms ψti

i , âi is a unit vector showing the yarn direction,
where the properties |âi| = 1, tr [M i] = 1 and i = w/f hold. The metric tensor is
formulated as G := HHT with tensor H being a linear tangent map of a fictitious
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Cartesian basis êi into the material principal directions; i.e. H : êi → āi and āi = Hêi
where i ∈ {1, 2, 3}. If the material basis coincides with the global Cartesian basis, the
orthotropic metric tensor becomes G = diag [a2, b2, c2] with 3 non-zero components a, b, c.
These coefficients are assumed to be the length of material basis in the warp, fill and
thickness directions, thereby, they are able to scale a material property in the associated
direction. For textile membranes, the thickness component can be set to zero c = 0.
The metric tensor components belong to the model parameters and thus, a and b are
respectively denoted as γ1 and γ2. The final form of the metric tensor is obtained as
G = diag[γ2

1 , γ
2
2 , 0]. The individual nonlinear term/mode are given as

ψint =
1

(γ3 + 1)gγ3

[
Jγ3+1

4 + Jγ3+1
5 − lnI

(γ3+1)gγ3

3 − 2gγ3+1
]
, (2)

ψti
w = 〈J̄4w − 1〉γ4 , ψti

f = 〈J̄4f − 1〉γ5 , ψvol = (I3
2 + I3

−2 − 2).

The principal invariants of tensor C are I1 = tr[C], I2 = tr[Cof[C]] and I3 = det[C]. The
mixed invariants in the transverse isotropic terms are defined as J4w = tr[CMw] and J4f =
tr[CM f ]. Acting only as tensile reinforcements, the Macaulay brackets are used to cancel
out the transverse isotropic terms under compression; i.e. 〈(•)〉 = [| • |+ (•)]/2. The bar

above the quantities implies the volume-preserving part of in invariant, e.g. J̄4i = J4i/I
1/3
3 .

The invariants in interaction term are defined as J4 = tr[CG] and J4 = tr[Cof[C]G] using
the metric tensor. The trace of metric tensor is denoted as g = tr[G] = γ2

1 + γ2
2 .

2.2 Material parameter adjustment, stress-ratio-dependent parameters

The basis of the parameter adjustment is the stress-strain data of the first load cycle
(LC) of 9 biaxial tensile tests. The tests are applied on 9 separate virgin glass-PTFE
fabrics of the same material and same production. It is known to the authors that the
material response of woven fabrics in the first load cycles is elasto-plastic and highly
nonlinear [18]. However, for the current work, the first LC data was taken into account to
demonstrate only the efficacy of the proposed method. Furthermore, the typical uniaxial
tensile tests were dropped from the applied experiments due to the following reasons. (a)
Such loading case rarely happens and actually should not appear in any realistic structural
behavior. (b) The challenging strong lateral contraction data is usually canceled in the
parameter adjustment procedure, see [1, 2, 3]. Thus, the uniaxial tests were replaced by
some uncommon, however, more realistic biaxial cases; i.e. 1:0.125, 1:0.25, 0.125:1 and
0.25:1. For the purpose of parameter interpolation in the next section, two other stress
ratios were also added to the experiments; i.e. 1:0.75 and 0.75:1. These new experiments,
to a great extent, provide decent information on the evolution of stiffness parameters and
the structural response of tensile fabrics on every practical stress ratios. As shown in [8],
the model parameters γi are identified initially as a part of the nonlinear model and kept
fixed. To this end, by fitting to all 9 load ratios at each individual stress-strain point, the
deviation of the material parameters αi from their average value ᾱi becomes minimized,
see [14]. Once this deviation becomes minimized, the model parameters are identified.
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Table 1: The identified model parameters for glass-PTFE fabric using first LC data.

model parameters γ1[-] γ2[-] γ3[-] γ4[-] γ5[-]
glass-PTFE 1.25 0.85 7 3 5

The application of this method has the following advantages for the nonlinear model.
(a) The total number of remaining material parameters to be identified is reduced to
maximum 3 parameters, which is very similar to the linear elastic formulation, however
it is more accurate [4]. (b) As it will be shown, the fixed model parameters will be
used for identification of all stress-ratio-dependent material parameters. (c) Following the
method in [14], a unique identification of material parameters can become feasible since the
remaining parameters appear only linearly in the formulation and the least-square error
functional in terms of the stress deviation becomes convex in the material properties αi.
In addition, as the material parameters mainly act as scaling factors on each deformation
mode ψi, thus, a fairly small sensitivity on the model response will be naturally included.
The obtained values of model parameters are listed in Table 1. Despite the mentioned
advantages, the last step of unique identification of material parameters, point (c), will
not be employed here since the results obtained by this method will not guarantee the
actual stress ratio applied during each load driven biaxial tests. Therefore, to obtain the
desired stress-ratio-dependent material parameters a proper least-square error functional
in terms of the strain deviation is introduced as

Lε(α) =
∑
k

Lε,k(α) with Lε,k(α) =

√√√√ 1

nmp

nmp∑
i

(
(•)comp

i − (•)exp
i

max(•)exp
k

)2

. (3)

In the above, Lε(α) denotes the overall error of relative strain differences summed over all
measure points of all experiments. The Lε,k(α) is the strain deviation of each stress ratio
k. The quantities in (•) are the computed and measured engineering strains in the warp
and fill directions. The number of total measure points is denoted as nmp. In general, it is
assumed that the material behavior of woven coated fabrics is incompressible, therefore,
during optimization the volume change is preserved by enforcing det(F ) = 1. Herein, the
components of deformation gradient in the thickness direction becomes a function of the
other two in-plane coefficients λ3 = 1/λ1/λ2. Moreover, the penalty term ψvol = p(I3− 1)
is added to the strain energy function. The quantity p is interpreted as a pressure-like
Lagrange multiplier [19, 20]. Now, by minimizing the least-square error functional, i.e.
α̃ = argmin (Lε(α)), the 3 linear material parameters will be identified in two separate
procedures. In the first optimization procedure, the parameters are adjusted fitting all 9

Table 2: Comparison of obtained errors using two optimization procedures.

Total error Lε(α) L∗
ε(α) Improvement [%]

Nonlinear model 3.35 1.99 40[%]
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Table 3: Stress-ratio-dependent material parameters obtained for the nonlinear model.

0.125:1 0.25:1 0.5:1 0.75:1 1:1 1:0.75 1:0.5 1:0.25 1:0.125 all

αintkN/m 8.4 8.5 9.9 12.6 13.7 8.9 8.0 7.6 7.4 12

αti
w kN/m 0.0 0.0 0.0 0.0 0.0 25000 17506 4394 4390 10527

αti
f kN/m 707 756 1052 1201 1522 4105 10974 1e+6 100 1205

experiments together; i.e. directly minimizing Lε. In the second procedure, the material
parameters are identified fitting each load ratio separately; i.e. minimizing separately
each Lε,k term. Therefore, the obtained parameters are called the stress-ratio-dependent
material parameters and the total error by summing all terms is denoted as L∗

ε. The
stress-ratio-dependent parameters are listed in Table 3. To better understand the impact
of separately fitting each load ratio in the overall representation of experimental data,
the obtained errors by two optimization procedures are reported in Table 2. The relative
difference listed in the last column of Table 2 proves that fitting each stress ratio separately
will improve the general model response by almost 40[%]. Figure 1 shows the obtained
model response using the stress-ratio-dependent parameters for the nonlinear orthotropic
model.

3 ITERATIVE SCHEME IN IMPROVED NUMERICAL SIMULATION

In the following, we present a convenient iterative scheme which facilitates the imple-
mentation of stress-ratio-dependent parameters in the structural simulation.

3.1 Interpolation scheme based on stress ratio

The basic idea is to iteratively update and assign stress-ratio-dependent material pa-
rameters to the locally varying stress ratio at the integration points within the structure
during numerical simulation. Therefore, an interpolation system should be designed which
is able to practically identify/estimate the parameters for the stress ratios which were not
included in the experiments. Taking into account the variation of material parameters in
Table 3, a simple power function can be a reasonable choice:

fαi(x) = axb + c (4)

In the above function, x is assumed to be the computed stress ratio and fαi(x) is the
interpolated value of parameter αi at ratio x. The constants a, b, c are identified sep-
arately for each parameter at different intervals of x. Figure 2 shows the adequacy of
the interpolation function in fitting of αint and αti

f at different stress ratios. It should be
noted that the stress ratios are replaced by their computed values in Figure 2, e.g. 1:0.125
corresponds to 8 and 0.5:1 becomes 0.5. (The stress ratios are computed as the ratio of
nominal stress in the warp to the stress in the fill directions Pw/Pf .) Note that the re-
sponse of the interpolation function is in agreement with the restrictions of the nonlinear
model, e.g. if the ratio goes beyond 8, due to contraction in the fill direction the αti

f tends
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Figure 1: Representation of experiments using the stress-ratio-dependent material parameters.

to zero. Thus, for the values out of the range of the applied stress ratios the function can
still fairly estimate the parameters. As it is apparent from Figure 2, for each parameter
at least 2 independent interpolation functions with different constants were used to fit all
ratios.

3.2 Impact of iterative parameter modification on the structural response

In this section, the impact of the stress-ratio-dependent material parameters in the
simulation of a simple boundary value problem (BVP) is investigated. The boundary
value problem is a flat membrane which is fixed on all edges in all displacement directions.
The membrane is square with the length of 1400mm and thickness of 1mm. The surface
is loaded with pressure load of 7kN/m2. The BVP was chosen so that it resembles
the boundary condition of the large-scale experiment in [4]. The applied pressure was
opted such that the maximum generated stress within the surface would be in accordance
with the maximum applied load in the biaxial tests. Hence, it is expected that the
locally distributed stress ratios at any point will not notably exceed the upper or lower
bounds of the experimentally considered stress ratios. For the structural simulations, the
nonlinear material model was implemented as a user material subroutine (UMAT) into the
commercial software Abaqus. The surface is discretized using quadrilateral shell elements
S4R of Abaqus with 1225 elements. Note that by exerting an initial mesh convergence
study the proper number of elements were chosen such that the results would not be
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Figure 2: Interpolation over stress-ratio-dependent material parameters.

affected by the number of elements.
In the first step, using the material parameters fitted to all stress ratios, the BVP is

simulated, i.e. in the simulation material parameters are fixed/identical on all integration
points within the discretized structure (level 0). The obtained displacement distribution
using the fixed parameters is plotted in Figure 3a. At the end of the simulation, the stress
ratio in the principal material directions Pw/Pf at each integration point is computed and
saved. Subsequently, the stored stress ratio will be inserted into the interpolation func-
tions to compute/identify the stress-ratio-dependent parameters for the next simulation.
The computed stress ratio distribution of the fixed parameters is plotted in Figure 3b.
In the next step, the same BVP is re-executed with the major difference being that the
material parameters are the interpolated ones based on the computed stress ratio of the
previous step. That also means that the value of each material parameter may vary
locally at each integration point over the discretized surface. Note that since the mod-
ification in the parameters was carried out through the interpolation scheme,no sudden
change/jump in the model response would be expected. After finishing level 1 simulation,
again the stress ratios are computed on each integration point. Subsequently, the stress-
ratio-dependent parameters are updated for the next simulation similarly to the previous
procedure. The parameter update will be repeated until the overall parameter change on
all points becomes negligible. This can be achieved by formulating a proper error function
to compute the L2-norm of all parameter change at each integration point

L̃ =
3∑
i=1

L̃αi = L̃αint + L̃αti
w

+ L̃αti
f
, (5)

L̃αi =

(
nel∑
j=1

(
αn+1
i,j − αn

i,j

)2 · (dA)j

)
· 1∑nel

j=1(dA)j
· 1

max(αni )2
.

The L2-norm of each parameter change at the integration points of all elements is denoted
as L̃αi . The dA is the area element. The indices i, j and n show the material parameter,
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(a) fixed material parameters, displacement U (b) fixed material parameters, stress ratio Pw/Pf

(c) varying parameters, level 7, displacement U (d) varying parameters, level 7, stress ratio Pw/Pf
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Figure 3: Mechanical response of the nonlinear model. (a,b) Displacement and stress ratio
distribution obtained for the fixed material parameters.(c,d) Displacement and stress ratio dis-
tribution obtained for the varying stress-ratio-dependent material parameters, level 7.

element index and the level of iterative updates, respectively. To establish the effectiveness
of the iterative scheme, the L2-norm of parameter change during 7 levels of updates is
illustrated in Figure 4a. The displacement change of all nodes is also computed using
a similar error function in Eq.(5) and the result is shown in Figure 4a. Although, after
7 iterations the L2-norm of parameters change becomes basically zero, however, even
after the first level of update, the total structural response becomes almost constant.
Thus, the update of parameters after level 1 in principle only marginally changes the
global material response. The convergence in the maximum displacement appearing at
the middle element of membrane is illustrated in Figure 4b. The maximum displacement
using the fixed parameters, i.e. level 0, is about 75mm which alters by 18% after one level
of update and remains almost constants during the next iterations. The same trend was
also observed for the stress quantities, i.e. almost 17% decrease in the maximum in-plane
stresses. Furthermore, the attained results of displacement and stress ratio distribution
after 7 levels of update are illustrated in Figures 3c and 3d. Taking into account the
obtained results in Figures 3 and 4, although the qualitative response does not vary much
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Figure 4: Convergence study of structural response by updating material parameters.

in the surface, however, the computed differences indicate remarkable improvement in the
overall material response by almost 18%. Note that the stress-ratio-dependent material
parameters were 40% more accurate in representation of the tensile behavior of the tested
fabric. It is worth to mention that the numerical time during these simulations was not
at all influenced by using varying parameters in the structural problem.

4 CONCLUSION

In this work, we established a new method which effectively improved the model re-
sponse of the nonlinear material model in structural simulation of woven fabrics. To
this end, a new framework was proposed to identify and modify the material parame-
ters according to the locally resulting stress ratios within the structure. The material
parameters were separately identified for the experimentally considered stress ratios, the
so-called stress-ratio-dependent parameters. Using a suitable interpolation scheme, the
material parameters were identified even at the stress ratios which were not considered
in the controlled standard tensile tests. Using the iterative simulation approach, the cor-
responding parameter values were updated at the integration points in the discretized
structural problem. That is, the utilized parameter would have be the most suitable
value for the appearing stress ratio. The iterative scheme was repeated until the overall
parameter change on all integration points became negligible.

Using the stress-ratio-dependent material parameters, the overall representation of ten-
sile experiments was 40% improved. In the structural simulation, the iterative scheme,
even only after one parameter update, could improve the overall mechanical response
by almost 18%. During the next updates, the global material response remained almost
unchanged indicating a highly efficient convergence behavior of the stress-ratio iteration.
Although within the structure the parameter values vary at every integration point, this
change in neighboring points did not significantly influence the numerical cost of simula-
tion. In the future studies, the new iterative scheme shall be assessed by considering a
more complex geometry.
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[10] Schröder, J., Neff, P., and Ebbing, V., “Anisotropic polyconvex energies on the
basis of crystallographic motivated structural tensors.,” Journal of the Mechanics
and Physics of Solid, vol. 56, pp. 3486–3506, 2008.

[11] Motevalli, M., Balzani, D., Uhlemann, J., and Stranghöner, N., “Orthotropic hypere-
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