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SUMMARY

A method for computing ship wave resistance from a momentum ¯ux balance is presented. It is based on
computing the momentum ¯ux carried by the gravity waves that exit the computational domain through the
outlet plane. It can be shown that this method ensures a non-negative wave-resistance, in contrast with
straightforward integration of the normal pressure forces. However, this calculation should be performed on
a transverse plane located far behind the ship. Traditional Dawson-like methods add a numerical viscosity
that dampens the wave pattern so that some amount of momentum ¯ux is lost, and resulting in an error in
the momentum balance. The ¯ow ®eld is computed, then, with a centred scheme with absorbing boundary
conditions. # 1998 John Wiley & Sons, Ltd.

KEY WORDS potential ¯ow; ®nite element method; wave resistance; absorbing boundary condition; free surface ¯ow;
partial discretization

1. INTRODUCTION

When a body moves near the free surface of a ¯uid, a pattern of trailing gravity waves is formed.
The energy spent in building this pattern comes from the work done by the body against the wave
resistance. Numerical modelling of this problem is a matter of high interest for ship design and
marine engineering.1±9 As a ®rst approximation, the wave resistance can be computed with a
potential model, whereas for the viscous drag it can be assumed that the position of the surface
is held ®xed at the reference hydrostatic position, i.e. a plane. This is, basically, the Froude
hypotheses.6

We concentrate in this paper on the computation of the ¯ow ®eld and wave resistance for a body
in steady motion, by means of a potential model for the ¯uid and a linearized free surface
boundary condition. This is the basis for most ship design codes in industry. The governing
equations are the Laplace equation with slip boundary conditions on the hull and channel walls,
inlet/outlet conditions at the corresponding planes and the free surface boundary condition. The
free surface bounbary condition amounts to a Neumann boundary condition with a source term
proportional to the streamlined second derivative of the potential. However, the problem as stated
so far is ill posed, in the sense that it is invariant under longitudinal co-ordinate inversion
(x!ÿ x), and it is clear, then, that it cannot capture the characteristic trailing waves propagating
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downstream. To do this, we can either add a dissipative numerical mechanism or impose some
kind of `absorbing boundary condition' at the outlet boundary.

Usually the wave resistance is computed from straightforward integration of the pressure
forces over the hull. However, it is well known that this can give negative wave resistance, which is
physically incorrect.3 Even for potential ¯ow without free surface, pressure integration yields
non-zero (either positive or negative) drag, whereas it is well known that in such situations the
drag should be null. This non-physical drag is caused by incorrect integration of the pressure
forces, especially in regions with strong variations as near the nose in aerofoils.

Alternatively, the wave resistance can be computed from the downstream wave pattern by
means of a momentum ¯ux balance. In order to ensure a correct evaluation, this computation
should be performed in a plane located far downstream from the ship. However, traditional
Dawson-like methods are dissipative and some amount of momentum is lost, introducing an
error in the computation. Notwithstanding the fact that upwind or numerical viscosity methods
are today well established techniques,10±12 it is evident that there is interest in ®nding a method
that does not depend on such additives. In another paper13 we presented a method which is based
on an absorbing boundary condition at the outlet plane so that no numerical viscosity is needed.
The discrete wave pattern has no damping, allowing the computation of force by means of the
proposed momentum ¯ux balance. In this paper we show this computation in detail.

2. GOVERNING EQUATIONS

Consider the ¯ow around a ship moving at constant speed in a channel of constant section which,
for simplicity, is assumed to be a rectangle of depth H and width Ly as shown in Figure 1. The
¯uid to be modelled occupies region O, which is bounded by the channel walls and bottom Sch ,
the inlet/outlet boundaries Sin/out , the wetted surface of the ship Sship and the free surface Sfree .
The governing equations are:

DF � 0 for x in O

F;n � 0 at Sfree � Sch � Sship

1
2 jHF j 2 � gZ � 1

2U
2
1 at Sfree

F � U1x at Sin

radiation BCs at Sout

�1a±e�

Figure 1. Geometrical description
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The Laplace equation (1(a)) comes from the assumption that the ¯ow is irrotational and
incompressible. The usual slip condition (1(b)) is imposed at the channel walls, the bottom and
the free surface. Equation (1(c)) is the `free surface boundary condition'. It comes from the
Bernoulli equation (including a hydrostatic term gz; Z stands for the surface elevation) and it is
usually linearized under certain assumptions, such as that the ship is either thin, slender, slow or
deeply submerged.3 The `radiation boundary conditions' should allow, roughly speaking, the
¯ow of energy in the form of radiating waves to propagate downstream and exit cleanly at Sout .
In contrast, no waves are allowed to propagate upstream to Sin so that we simply impose that
the potential should approach the undisturbed one there. Note that the di�erent treatment in Sin

and Sout is the only element that can break the symmetry x! 7 x and ensure a physically
correct wave pattern. Another means of doing this is the addition of some `upwind' or `numerical
dissipation' mechanism.

In slow ship theory, the ¯ow is decomposed in a base ¯ow F0 , also called `double body ¯ow',
and a `wave perturbation' ¯ow3 f:

F � F0 � f �2�

The great simpli®cation comes from the fact that the governing equations for both ¯ows are
restricted to the domain O0 , where the free surface Sfree has been replaced by the undisturbed
position of the free surface Sfree 0 , which in this case is simply the plane z� 0. The double body
¯ow satis®es the Laplace equation with slip boundary conditions on the undisturbed free surface.
As the undisturbed free surface is a plane, it acts as a mirror and the problem is equivalent to an
exterior ¯ow around a closed body formed by re¯ecting (`doubling') the hull about the
undisturbed free surface. In addition, far (downstream or upstream) from the ship the double
body ¯ow approaches uniform ¯ow F0�U1x. With all these assumptions, the linearized
governing equations for f are1,3,5,6

Df � 0; in O0

f;n � 0; at Sch

f � 0; at Sin

f;n � Kÿ1f;xx � 0; at Sfree

radiation BCs; at Sout

������������
�3a±e�

where K � g=U2
1 is the characteristic wave number of the ¯ow.

3. WAVE RESISTANCE FROM WAVE AMPLITUDE

Usually, the drag on the ship is obtained by integration of the normal pressure forces over the
ship:

Fx �
Z
Sship�Sship;upper

pnx dS �4�

Pressure comes from the Bernoulli equation,

p � 1
2r�Hf�2 � rgz � p1 � 1

2rU
2
1 �5�
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from which (1(c)) is simply the particularization at the free surface. We will start from these
expressions to ®nd an expression involving the state of the ¯uid at the outlet plane only. The
pressure is constant on the non-wetted part of the ship Sship,upper , and, as the ship is a closed
surface,

Fx �
Z
Sship�Sship;upper

pnx dS ÿ
Z
Sship�Sship;upper

p1nx dS

�
Z
Sship

� p ÿ p1�nx dS

�6�

Since the surface Sin/out � Sch � Sfree � Sship is closed (it is the boundary of domain O),Z
Sin=out�Sch�Sfree�Sship

�� p ÿ p1�êx� � n̂ dS �
Z
O
H � �� p ÿ p1�êx� dO �

Z
O

@p

@x
dO �7�

where eÃ x is a unit vector in the x direction and nÃ a normal unit vector exterior to O. But eÃ x . nÃ � 0
at Sch (since the channel has constant section) and p� p1 at Sfree , and then

Fx � ÿ
Z
Sin=out

� p ÿ p1�nx dS �
Z
O

@p

@x
dO �8�

From the Bernoulli equation and using the irrotationality of the velocity vector U� HF and the
continuity equation,

@p

@x
� @

@x
p1 �

1

2
r�U2

1 ÿ U
2� ÿ rgz

� �
� ÿrUi

@Ui

@x

� ÿrUi

@Ux

@xi

� ÿr @

@xi
�UiUx�

� ÿrH�UxU�

�9�

and Z
O

@p

@x
dO � ÿr

Z
O
H�UxU� dO

� ÿr
Z
Sin=out�Sch�Sfree�Sship

UxU � n̂ dS

� ÿr
Z
Sin=out

U
2
x dS

�10�
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Substituting in (8),

Fx � G�xin� ÿ G�xout� �11�

where G(x) is the momentum ¯ux through the surface at a plane x� const.:

G�x� �
Z
Sx

� p ÿ p1 � rU2
x� dz dy �12�

Note that (11) is valid for any xin as long as it is located before the hull, but, as the drag force must
not depend on xin , which means that G(x) must be of the form shown in Figure 2, it has some
variation in that part of the x axis occupied by the hull and is constant in the remaining part. The
wave resistance Fx amounts to the di�erence between these constant values.

These expressions have been derived for the non-linear system (1) and we have to ®nd the
appropriated expressions for the linearized form (3). Far from the ship, we can assume that
F0�U1x and then, using Bernoulli's equation and neglecting terms higher than quadratic in the
perturbation potential f,

G�x� �
Z
Sx

1

2
r�2U1�U1 � f;x� � f2

;x ÿ f2
;y ÿ f2

;z� ÿ rgz
� �

dS �13�

Now consider the contribution from the term

rU1

Z
Sx

Ux dS � U1 _M � cte �14�

Figure 2. Momentum ¯ux G as function of the longitudinal co-ordinate x
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which is constant for all x (M
.
is the mass ¯ow through Sx). But a constant is irrelevant in G(x)

since the wave resistance comes from a di�erence (see equation (11)). The same is true for the
contribution of the hydrostatic pressure from the non-perturbed channel section Sx,0 (see
Figure 3), and the contribution from the rest DS� Sx7Sx,0 can be calculated explicitly asZ �Ly=2

y�ÿLy=2

Z Z

z�0
z dz dy �

Z �Ly=2

y�ÿLy=2

1

2
Z2 dy �15�

Finally, as f and Z are of the same order, we can neglect the contribution from f2
;x ÿ f2

;y ÿ f2
;z

over DS in (13). The appropriated linearized expression is then

G�x� � 1
2r
Z
Sx;0

�u2x ÿ u
2
y ÿ u

2
z� dS ÿ

1

2
rg
Z �Ly=2

y�ÿLy=2

Z2 dy �16�

4. NUMERICAL IMPLEMENTATION

We recall how the linearized system is solved with the DNL (discrete non-local) absorbing
boundary conditions, and then we see how expression (16) is computed. Details on the DNL can
be found in a companion paper.13

4.1. Partial discretization

We assume an FEM partial discretization of this PDE in the transversal (y) and depth (z)
directions in the far downstream and upstream regions j x j 4L. This is done by de®ning an
FEM mesh on the channel typical section (see Figure 4) and replacing

f�x; y; z� � f̂�x; y; z� �
XNslab

k�1
fk�x�Nk�y; z� �17�

Figure 3. The actual section Sx is the sum of the non-perturbed section Sx,0 and the `section change' DS
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where Nslab is the number of nodes in the typical section and Nk(y, z) the two-dimensional
interpolation functions. Replacing this in the Laplace equation (3(a)), integrating by parts and
using the free surface boundary condition, the following system of ODEs is obtained:

~Mf;xx ÿ Kf � 0 �18�

where

f�x� �

f1�x�
f2�x�

..

.

fNslab
�x�

266666664

377777775
Kjk �

Z
Sx;0

HyzNj�y; z� � HyzNk�y; z� dy dz

~M � M ÿ K
ÿ1
Mfree

Mjk �
Z
Sx;0

Nj�y; z�Nk�y; z� dy dz

Mfree;jk �
Z
Sfree 0

Nj�y; z�Nk�y; z� dy

�19a±e�

f(x) is the vector of nodal potentials and M and K are the typical FEM matrices for the identity
(mass matrix) and Laplace operators. The modi®ed mass matrix MÄ includes the `free surface
mass matrix' Mfree . M and Mfree are positive de®nite mass matrices, K is positive semi-de®nite
and all of them are symmetric. Due to the negative sign in (19(c)) MÄ has no de®nite sign.

Figure 4. Partial discretization of the problem in yz. FEM unstructured mesh on the typical channel section
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4.2. The DNL absorbing boundary condition

System (18) is decoupled in a series of scalar ODEs if we make the change of basis U� S71f,
where S solves the following eigenvalue problem:

KS � ~MSL �20�

with L a diagonal matrix. We denote by fffffk the kth column of L, i.e. the kth eigenvector and by
lk� Lkk the corresponding eigenvalue. Due to the properties ofMÄ andK (K is symmetric positive
de®nite andMÄ is symmetric) it can be shown that such decomposition is possible and S and L are
real. We assume that the eigenvalues are sorted in ascending order. L has in general a certain
number of negative eigenvalues that, as we see later, are responsible for the wave resistance:

lk 5 0; for 14 k4N inv �inviscid modes�
lk 4 0; for N inv � 14 k4Nslab �pure viscous modes�

�
�21�

In addition, as is usual for this kind of eigenvalue problem, the eigenvectors are orthogonal with
respect to both MÄ and K, i.e.

fffffT
k � ~Mfffffj � 0; fffffT

k � Kfffffj � 0; if j 6� k �22�

The equation for each component Uk of U is

Uk;xx ÿ lkUk � 0 �23�

and its general solution is

Uk�x� �
b�k e

�imkx � bÿk e
ÿimkx for 14 k4N inv

a�k e
�mkx � aÿk e

ÿmkx for N inv � 14 k4Nslab

(
�24�

where mk � j lk j
p

. In order to have a bounded solution we must have a�k � 0 for x4L and
aÿk � 0 for x5 7L for the pure viscous modes, and then

Uk;x � mkUk � 0; at x � xout
Uk;x ÿ mkUk � 0; at x � xin

)
k � N inv � 1; . . . ;Nslab �25�

These are the appropriated absorbing boundary conditions for the pure viscous modes. The same
criteria cannot be applied to the inviscid modes, since they do not grow or decay for x! +1.
However, a detailed physical analysis shows that viscous dissipation tends to shift the pure
imaginary eigenvalues towards the Re{z}5 0 semiplane. This means that b+k � 0 for x5 0, and
the appropriated boundary condition is

Uk � Uk;x � 0 at x � xin; k � N inv � 1; . . . ;Nslab �26�
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Equations (25),(26) represent a set of 2Nslab boundary conditions that close the system of
governing equations (18). Absorbing boundary conditions are well known in the context of other
wave-like phenomena like the Helmholtz equations,14±21 but are seldom used in the ship wave
resistance problem due to inherent di�culties in developing such conditions. Lenoir and Tounsi17

addressed the problem of absorbing boundary conditions for the sea-keeping problem, which is
more closely related to the Helmholtz problem than to the wave-resistance problem. The
boundary conditions presented here for the wave resistance problem are completely absorbent, in
the sense that the solution is independent of the position of the boundary where it is imposed.
They are non-local in the sense that, in the f basis, they represent full matrices connecting all the
unknowns at two consecutive layers at the inlet and outlet planes.

For a rectangular cross-section channel, the eigenvalue decomposition for the continuum
problem may be solved in closed form, as described in the work of Patlashenko and Givoli21 (see
also Givoli et al.20). However, for several reasons, we consider that it is preferable to solve the
eigenvalue problem at the discrete level. First, if the eigenvalue problem is solved at the
continuum level, then there are an in®nite number of eigenvalues, and the series must be
truncated somewhere. If not enough terms are added, then the boundary condition would have
some amount of re¯ection. In contrast, the discrete eigenvalue problem alternative is `parameter-
free' in this sense, and gives absolutely no re¯ection. In addition, the discrete version may easily
include an arbitrary cross-channel section (this may be useful for certain experimental
con®gurations) and boundary conditions at the walls and bottom.

The extension to the full discrete problem (i.e. also discretized in the x direction) is
straightforward. A detailed discussion is found in a companion paper.13

The far-®eld expressions are

fffff�x� �

XNslab

k�N inv�1
a
�
k e

mkxfffffk for x5 ÿ L

XN inv

k�1
bk sin�mkx � gk�fffffk �

XNslab

k�N inv�1
a
ÿ
k e
ÿmkxfffffk for x4L

8>>>>><>>>>>:
�27�

where the imaginary exponentials have been brought, by convenience, to trigonometric form.

4.3. Discrete expression for the momentum ¯ux

We now apply (16) to the partially discrete solution of (18),(25),(26). From (17):

ux �
@f
@x
�
XNslab

k�1
_fkNk�y; z�

uy �
@f
@y
�
XNslab

k�1
fk

@

@y
Nk�y; z�

uz �
@f
@z
�
XNslab

k�1
fk

@

@z
Nk�y; z�

�28�
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Here the dots mean partial di�erentiation with respect to x. We can compute each of the terms in
(16): Z

Sx;0

u
2
x dy dz �

Z
Sx;0

@f
@x

@f
@x

dy dz �
Z
Sx;0

XNslab

j�1
_fjNj�y; z�

" # XNslab

k�1
_fkNk�y; z�

" #
dy dz

�
XNslab

j;k�1
_fj

_fk

Z
Sx;0

�Nj�y; z�Nky; z� dy dz�

�
XNslab

j;k�1
Mjk

_fj
_fk

� _fffffT �M _fffff

�29�

Z
Sx;0

�u2y � u
2
z� dy dz �

Z
Sx;0

�Hyzf� � �Hyzf� dy dz

�
Z
Sx;0

XNslab

j�1
fjHyzNj�y; z�

" #
�
XNslab

k�1
fkHyzNk�y; z�

" #
dy dz

�
XNslab

j;k�1
fjfk

Z
Sx;0

�HyzNj�y; z�� � �HyzNk�y; z�� dy dz

� fffffT � Kfffff

�30�

Z �Ly=2

y�ÿLy=2

Z2 dy � �U1=g�2
Z �Ly=2

y�ÿLy=2

@f
@x

����
z�0

� �2
dy

� �U1=g�2 _fffffT �Mfree
_fffff

�31�

Replacing this expression in (16),

G�x� � 1
2r� _fffffT � ~M _fffff ÿ f � Kfffff� �32�

Now we compute G(xout) by replacing f for the downstream far-®eld expansion in (32). Taking
account of the orthogonality between the eigenvectors (22), we arrive at

fffffT � Kfffff � ÿ
XN inv

k�1
j lk j b2k sin

2�mkx � gk��fffffT
k

~Mfffffk� �
XNslab

k�N inv�1
lk�aÿk �2eÿ2mkx�fffffT

k � ~Mfffffk�

_fffffT � ~M _fffff �
XN inv

k�1
j lk j b2k cos

2�mkx � gk��fffffT
k

~Mfffffk� �
XNslab

k�N inv�1
lk�aÿk �2eÿ2mkx�fffffT

k � ~Mfffffk�
�33�
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and then

G�x� � 1

2
r
XN inv

k�1
j lk j b2k�fffffT

k � ~Mfffffk�

� ÿ1
2
r
XN inv

k�1
b
2
k�fffffT

k � Kfffffk�; para x4L

�34a; b�

As expected, this quantity is independent of x. The same procedure can be applied to x5 7L
and, as the amplitude of the inviscid modes is null there,

G�x� � 0; for x5 ÿ L �35�
Substituting in (11),

Fx �
1

2
r
XN inv

k�1
b
2
k�fffffT

k � Kfffffk� �36�

Note that this expression always guarantees a non-negative wave resistance.
Practical implementation of (36) involves transforming the potential vector for several layers

(two are enough) near the outlet plane to the U basis. The transformation matrix S has already
been computed in order to compute the DNL absorbing boundary condition. For each inviscid
mode k the amplitude is computed at both layers Uk(xj71) and Uk(xj) and the amplitude and
phase bk , gk can be obtained easily. Of course, the phase is irrelevant to the calculation of drag.

5. NUMERICAL EXAMPLES

Several numerical examples will show that the proposed strategy always gives positive resistances
and very well de®ned peaks in the drag curve. We present two 2D examples with analytical
solutions and two 3D examples. Three of the examples do not include ship forms, and are based on
a related problemwhere thewave pattern is produced by a local change in atmospheric pressure by
a device like a hovercraft. The advantage of this kind of problem is that it has an analytical
solution.

5.1. Submerged dipole

A submerged dipole can be thought as the limit of a cylinder of vanishing radius. The problem
was solved by replacing the dipole by a perturbation in the atmospheric pressure, i.e. as an
`equivalent hovercraft problem'. The drag coe�cient can be computed in closed form, and is

Cw �
Fx

rU2
1b
� 4p2�b=f �3Frÿ6eÿ2=Fr2 �37�

where f� 1 is the depth, b the radius of the cylinder (we assume b/f � 1) and Fr�U1/ �
p

gf �,
the Froude number based on depth (see Figure 5). The FEM mesh was structured, with
2� 240(x)� 20(z) triangular elements covering the rectangle jx j 5 6, ÿ35 z5 0. The mesh
was re®ned near the surface in such a way that Dzbottom/Dzsurface� 10. Note that b enters only
through the intensity of the equivalent dipole, so that we plot (b/f)3Cw, which is a quantity
depending only on the Froude number.
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5.2. Parabolic pressure distribution

This is another 2D example, with a prescribed pressure distribution of the form

DP � 1 ÿ �x=a�2; para jx j 5 a
0; para jx j 4 a

�
�38�

The analytical drag coe�cient is

Cw �
Fx

rU2
1a
� 16

�Ka cos Ka ÿ sin Ka�2
�Ka�3 �39�

where Ka� 1/Fr2� ga/U2
1, and the Fr number is taken based on a (see Figure 6). The mesh had

2� 80� 10 triangular elements with Dx� cte and Dzbottom/Dzsurface� 10, covering the region
ÿ65 x5 2, ÿ35 z5 0.

5.3. Wigley hull

The drag curve for the Wigley model 1805 A is shown in Figure 7. The hull shape for this model
is de®ned by y�+ (17 x2/64)(17 0.6x2/64)(17 z2) for j x j 5 8, z4 7 1. The `circular
Froude coe�cient'6 is de®ned as

Cw �
250

p
Fx

O2=3
shiprU

2
1

�40�

x

b

f
z

P∆

analytic

FEM, 240x20
elements

0.2 0.4 0.6 0.8 1.0 1.2 1.4

0

1

2

3

4

5

6

7

Figure 5. Drag curve for the submerged dipole (cylinder with diameter b � f). The drag coe�cient is normalized to b/f� 1
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Figure 6. Drag curve for the parabolic pressure distribution

where Oship� 45275 is the volume of the ship. The FEM mesh had 50(x)� 13(y)� 13(z)� 8450
elements, and the results are in good agreement with those found in the literature.1,6 No
analytical solutions are available in this case (the continuous curve in the inset at low Froude
numbers simply ®ts the FEM results). Note that a whole set of secondary maxima is captured
cleanly, extending to a Froude number as low as 0.1. In the other extreme, Froude numbers as
high as 1.2 are computed without problems, whereas standard methods like those derived from
Dawson su�er from re¯ections, especially at high Froude numbers.

5.4. Rectangular pressure distribution

We consider a uniform rectangular pressure distribution of width B and length L, such that
L/B� 3

2, for which experimental and analytical results are reported in Wehausen's review (see
Figure 8). No analytical solutions are shown in this case (the continuous curve simply ®ts the
FEM results). This case is interesting, since it is purely 3D and large oscillations in the drag curve
at small Froude numbers are expected, due to the discontinuity in the pressure distribution. The
mesh had 30x� 15y� 10z� 4500 elements. Coincidence with results reported in Wehausen's
review are very good. Whereas only the maximum around Fr� 0.33 is shown in those results, we
arrive here to capture two additional maxima at Fr ' 0�215 and 0.255.
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Figure 8. Drag curve for the rectangular pressure distribution

Figure 7. Drag curve for the Wigley hull. Continuous curve inset ®ts FEM results
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6. CONCLUSIONS

We presented a method that allows computation of the wave resistance by integration of the
momentum ¯ux at the outlet plane instead of the traditional pressure integration over the hull. A
key point in this development is the use of a centred method (i.e. without numerical viscosities)
for the discretization of the free surface operator, since this would represent a loss of momentum.
Computed drag curves show very clean peaks, notably at low Froude numbers, and drags are
always non-negative.
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