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Abstract 

Standard cycles provide an easy way to evaluate the energy consumption of vehicles, but it is the energy 
consumption that occurs on real-world trips that really matters to the driver and, to a larger extent, 
society. This study shows how digital maps and vehicle simulation tools can be used to estimate energy 
consumption on a real-world trip. The user (1) selects a trip in the mapping service ADAS-RP (Advanced 
Driver Assistance Systems Research Platform), (2) defines a vehicle model in the vehicle powertrain 
simulation tool Autonomie, and (3) runs and analyzes the simulation in that same tool. For each section of 
the trip, ADAS-RP provides various information that can include speed limits, historic data on traffic 
pattern speeds, the slopes of the routes, and the positions of stop signs and traffic lights. The first stage of 
processing this information is to schedule the stops and to create an intermediate speed target that takes 
those stops into account. The final driver demand speed includes transitions – accelerations and 
decelerations – between sections with different intermediate speed targets, or around stops. The ADAS-
RP/Autonomie process is then used to compute the energy consumption of a hybrid electric vehicle and a 
conventional vehicle on 10 trips defined across the United States and Germany. The hybrid vehicle is more 
fuel efficient, especially on congested routes and routes with downhill slopes, the effect of which is 
analyzed in further detail.  
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1 Introduction 
Most research on vehicle energy efficiency relies 
on predefined drive cycles as benchmark tests. 
Although this approach provides repeatable 
results and allows for easy comparisons, it 
ignores the relationships between the driver, the 
vehicle controller, and the environment. 
This paper illustrates an approach that links the 
mapping and navigation service ADAS RP [1] 
and the advanced vehicle simulation tool 
Autonomie [2]. The goal is to predict the amount 
of energy consumed on a user-specified route. 
An added benefit is that the approach creates an 
innovative framework for various research topics 
that rely on real-world trips: “green” routing, 
hybrid control optimization, fleet management, 
etc. 

Applications of the approach could be especially 
significant in the case of hybrid electric vehicles 
(HEVs). The added degree of freedom from a 
second source of power allows for greater 
flexibility in the design of the controller. For 
example, several studies show that the reduction in 
fuel consumption by HEVs can be higher on roads 
with slopes if future road information is made 
available to the controller.  
The main challenge in this study is to create a 
speed and grade profile for a trip when those data 
are limited. The challenge is very similar to the 
online future-trip prediction problem.  
Future route prediction is a promising research 
topic because such data are essential input for 
optimal controllers for advanced powertrains like 
HEVs. Dynamic programming ([3], [4]) and the 
Pontryagin minimization principle ([5], [6]) are the 
two main control theory techniques used for 

World Electric Vehicle Journal Vol. 5 - ISSN 2032-6653 - © 2012 WEVA Page  1109



EVS26 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium  2 

advanced powertrains. Both require full 
knowledge of the trip profile ahead to compute 
the optimal control law. Some heuristically 
optimized controls also rely on trip prediction 
[7]. 
There have been several real-world 
implementations of road prediction with energy 
efficiency in mind ([8]–[11]). One example is an 
experiment by Nissan on a hybrid Tino [8]. Its 
controller uses a combination of road 
classification, grade, congestion level, and 
historic data to reduce the overall fuel 
consumption of the vehicle. Road prediction has 
also been explored for heavy-duty applications, 
mainly line-haul trucks ([10], [11]). Adaptive 
cruise control uses the knowledge of the slopes 
ahead to adapt the target speed and gear, thus 
leading to non-negligible fuel savings. The full 
long-term horizon, however, is not fully 
computed; for example, speed is predicted for a 
very short time-frame, if at all. 
Predicting future driving is possible and can be 
done in various ways. One is to predict a future 
trip based on past trips of the same driver ([12]–
[14]). After several trips are logged and their 
patterns analyzed, it is possible to find out which 
trip the user is going to make. This approach was 
developed by Krumm (Microsoft) and Froelich 
(University of Washington) ([13]–[14]).  
Another technique relies on digital maps and 
knowledge of the destination. A very simple 
approach can rely on known speed limits and 
topographic maps [15] to, for example, compute 
an electric car range. In a more complex 
approach, a navigation engine can compute the 
most probable path to the destination; then with 
the content-rich digital map, the speed on each 
subsection of the road can be estimated. In [16], 
Minett et al. used ADAS-RP, developed by 
NAVTEQ, to compute an estimated speed trace 
and fuel consumption by using a backward-
looking vehicle model. We use a similar 
approach in our study, but we added to the trip 
prediction details that have a major impact on 
energy consumption, such as stop signs, traffic 
lights, and grade. We also made it a process 
within Autonomie, a licensable, forward-looking 
simulation tool. The user can simulate any type 
of vehicle defined in Autonomie on any type of 
trip defined in ADAS-RP.  
This paper first presents the tools that we linked 
together: ADAS-RP and Autonomie. It then 
explains the two stages behind the final speed 
target computation. Finally, it illustrates how this 

process can be used to benchmark a hybrid vehicle 
against a conventional one. 

2 User Interfaces 

2.1 Autonomie 
The vehicles are simulated in Autonomie, which 
was developed by Argonne National Laboratory 
(Figure 1) [2]. It is the main vehicle simulation 
tool used in the U.S. Department of Energy’s 
FreedomCAR and Vehicle Technologies Program. 
It has been used in numerous studies to give the 
U.S. government guidance for future research. 
More than 140 companies and research entities, 
including major automotive companies and 
suppliers, also use Autonomie to support advanced 
vehicle development programs.  
Autonomie is a software package with a user-
friendly interface that allows fast selection of 
powertrain configurations and component models, 
initialization data and processing files. It includes a 
wide range of pre-defined vehicles, both light and 
heavy-duty. All models and calculations are based 
on Matlab and Simulink: a vehicle is built in 
Simulink based on the selections made in the 
interface, and it is similarly initialized. 
 

 
Figure 1: Autonomie GUI 

 
The resulting vehicle model is a forward-looking 
model: a driver model sends a pedal signal to the 
supervisory control of the vehicle, which in turn 
sends a torque demand to the engine and other 
power sources. The components use an effort/flow 
topology, inspired by the Bond graph theory: an 
effort (e.g. torque) is propagated forward until it is 
integrated to compute a flow (e.g. speed) which is 
itself propagated backwards. 
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The plant models (engine, transmission, etc.) are 
generally map-based, combining accuracy and 
short execution time. Vehicles and individual 
components were validated based on test data. 

2.2 ADAS RP  
ADAS RP (Advanced Driver Assistance Systems 
Research Platform) is a software framework 
developed by NAVTEQ [1]. It is used to develop 
prototypes of applications that use positioning 
and maps for a wide range of applications, from 
eco-routing to headlamp orientation in turns. 
 

 
Figure 2: ADAS RP 

 
ADAS RP give the developer the access to the 
road geographical data collected by NAVTEQ. 
Thanks to the multiple plug-ins, these data can be 
used for the specific needs of the application.  
NAVTEQ maps provide a highly accurate 
representation of the detailed road network. 
Numerous attributes are recorded by geographic 
analysts who continuously drive on the road 
network, ensuring a verified and up-to-date 
database. The road network is segmented in 
small sections, or links, which can have up to 

260 attributes, including vehicle speed limits, 
slopes, and number of lanes. NAVTEQ maps also 
include the positions and types of road signs, 
particularly stop signs and traffic lights. 
NAVTEQ is also a major provider of traffic 
information, thanks to its extensive network of 
proprietary probes and data processing capabilities. 
ADAS RP leverages this expertise by including 
traffic patterns on major roads. 
In a typical utilization, the user can select a starting 
point and destination on a map integrated in the 
graphical user interface (GUI). The internal map 
engine then computes the most likely route, and it 
is possible to see the attributes of each link.  
 
 

2.3 Trip definition to vehicle simulation 
From a user point of view, simulating a vehicle in 
Autonomie on a trip defined in ADAS RP is done 
in four steps (Figure 3). The user first defines the 
trip by selecting the origin and destination. This is 
done by using a visual map that is easy to navigate 
and zoom in and out on. 
An Autonomie plug-in for ADAS RP was created 
and is displayed as a tab in the ADAS RP GUI. 
From that tab, the user can export the cycle, which 
saves relevant data in a Comma-Separated file 
(CSV). 
The user then switches to the Autonomie GUI. 
After defining the vehicle to simulate, he chooses 
an “ADAS RP” process, and selects the CSV file 
corresponding to the trip he wants to simulate.  
As with any other cycle, the user can launch the 
simulation and then analyze the results. 
When the CSV file containing the road data is 
being selected in Autonomie, several algorithms 
process the raw ADAS data into a usable form. 
First, the processing of the road information per se 
occurs: the Road Data Processing (RDP). This is 
followed by running the off-line part of the 
distance-based driver model, in which the vehicle 
speed target is computed. Both processes are 
described in Sections 3 and 4, respectively. 
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Figure 3: Work flow for user simulating a vehicle in Autonomie over a trip defined in ADAS RP  

 

3 Road Data Processing (RDP) 

3.1 Relevant road attributes 
The data produced by ADAS RP contain a lot of 
useful information about the road travelled. The 
most important is speed, which comes from 
various signals, depending on the level of details 
contained in the map. The list below ranks them 
by increasing level of fidelity (i.e., how well they 
compare to the actual real-world speed on the 
link): 

- Expected speed: typical speed on links of 
the same category; 

- Speed limit: self-explanatory; 
- Special speed limit: applies only at 

particular times (e.g., school days); and  
- Traffic pattern speed: average traffic speed 

that is based on historical data and depends 
on the time and day of the week.  

The approximate speed is computed from 
aggregating the speed signals and keeping the 
value from the most accurate available attribute. 
NAVTEQ maps also contain a spline 
representation of the road, so the high-fidelity 
slope value is generally available at a higher 
space resolution than are most attributes. 
To accurately model real-world driving, it is 
necessary to include stops. There are several 
reasons a vehicle stops, but we identified two 
major ones: stop signs and traffic lights. The raw 
data from ADAS RP include the positions of 
these two types of road signs. 
 

3.2 Rationale for processing raw data 
There are several limitations to the raw data that 
makes it not directly usable for a realistic vehicle 
simulation.  
First of all, attributes of interest are not available 
on all links. Secondly, there is no information on 
the stopping time, but simply location of road 
signs. Finally the traffic pattern speed, when 
available, is an average traffic speed, and as such 
already takes into account any stops along the way. 
The goal of the processing is to create a target 
speed for each of the links as well as the location 
and duration of stops. This information will then 
be processed to generate the driver demand speed, 
which is described in Section 4. 
To create this information, some basic assumptions 
about how the vehicle is actually driven are made. 
In a first approximation, it is assumed that the trip 
is composed of a continuous succession of 
constant accelerations, constant speeds, and 
constant decelerations (Figure 4). 
 

 
Figure 4: Example of assumed speed profile 

 

Trip Definition 
in ADAS RP 

File Export to 
CSV file 

Vehicle Definition 
and Selection of CSV 

file w/ road data  

Vehicle Simulation 
and Analysis  

ADAS RP Autonomie plug-
in for ADAS RP 

Autonomie  Autonomie  

Time 

Vehicle  
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The output of the RDP, the target speed, will 
actually be simpler than the profile shown in 
Figure 4. The acceleration and deceleration parts, 
while taken into account for average speed 
adjustments, will not be part of the output. The 
target speed will be composed of constant speed 
sections (“stairs”), while the transitions will be 
added when generating the driver demand speed. 
The RDP has several steps: 

- Data normalization/formatting, 
- Stop scheduling, 
- Division into subsections, and 
- Target speed computation. 

3.3 Stop schedule 
Two types of traffic signals lead to stopping: stop 
signs and traffic lights. The total stopping time 
depends on the signal (green/red time for lights, 
4-way or 2-way stops, etc.) and also on the level 
of congestion, or level of service (LOS). In this 
study, we use a simple model, in which the total 
stopping time depends on LOS (Table 1). To do 
so we identify three levels of service – free flow, 
congestion, and heavy-congestion – based on the 
difference between the speed limit and the traffic 
pattern speed. For stops signs, there is a longer 
stopping time with higher congestion.  
 

Table 1: Stopping time for various levels of service 

LOS Stop 
sign time 

Red light 
time 

Green 
light time 

Free-flow 1 2 s 30 s 30 s 
Congested 2 4 s 35 s 25 s 
Heavy-
congested 

3 7 s 40 s 20 s 

 
For traffic lights, we assume all traffic lights 
have the same period (60 s). However, the 
stopping time is longer when congestion levels 
are higher. We use the approximate speed to 
estimate the time at which the vehicle will arrive 
at the traffic light. Meanwhile, each traffic light 
is randomly initialized, and the alternation of red 
and green is computed. The vehicle will either 
wait for the red light to turn green or not stop at 
all, depending on the state of the light at the 
estimated time of arrival. 
We can therefore create a stop schedule 
(i.e., establish where the vehicle needs to stop, 
and for how long). 

 

3.4 Division in sections and subsections 
Not all road links have the same number of 
attributes. In particular, the traffic pattern speed is 
available only on the major roads. The processing 
of a section with or without a traffic pattern speed 
is different, so the first task is to separate the 
sections depending on whether they have that 
attribute or not. This is shown in Figure 5. Each 
section with traffic (which can be made up of 
several links) is itself divided into constant speed 
sections; each of these sections and subsections 
has a defined set of attributes; they are defined by 
using structure arrays in Matlab. 

 
Figure 5: Division of the trip in sections with and 

without traffic pattern speed 

3.5 Computation of intermediate speed 
target 

Traffic pattern speed is an average speed, in which 
any stops are already incorporated. To reconstruct 
the real-world pattern, we assume a simple speed 
profile. In the simple case of a section with a 
constant speed, a constant deceleration, and a stop 
period, it is possible to compute the target speed 
𝑣𝑇. 

 
Figure 6: Example of a simple speed profile  

In the example road section of Figure 6, T is the 
section’s duration, ts is the stop’s duration, and L is 
the section’s length. By using kinematic equations, 
the intermediate target speed 𝑣𝑇 can be found 
through Equation 1: 
 
 𝑣𝑇2

2𝑑
− (𝑇 − 𝑡𝑠)𝑣𝑇 + 𝐿 = 0 (1) 

 

Distance 

Speed Limit Traffic Pattern Speed 

2 1 3 4 

Vehicle  
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Time 

𝑣𝑇  
ts 

T 
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Equation 2 is a generalized case where there are 
𝑛𝑎 accelerations, 𝑛𝑑 decelerations, and 𝑁𝑠 stops, 
each of duration 𝑡𝑠,𝑘, within the same section: 
 

𝑣𝑇2(
𝑛𝑎
2𝑎

+
𝑛𝑑
2𝑑

)− �𝑇 −�𝑡𝑠,𝑘

𝑁𝑠

𝑘=1

�𝑣𝑇 + 𝐿 = 0 (2) 

 
Equation 2 does not always have a solution. 
When this is the case, the section with no 
solution is combined with an adjacent one; the 
lengths and times are respectively added 
together; and equation (2) is applied to that 
bigger section. That process is continued until a 
section is big enough to have solutions to the 
problem. 
Figure 7 shows RDP inputs (traffic pattern speed, 
stop positions) and outputs (target speed, stop 
durations) for a trip defined in ADAS RP. 
 
 

 
Figure 7: Traffic speed (from ADAS RP), target speed 

and stop durations for a sample trip 

 

4 Computation of driver demand 
speed 

The next step in the process is to transform the 
target speed that was computed previously into a 
usable form for the Autonomie driver, the 
demand speed. The Autonomie driver model 
computes a torque demand from three terms:  

- Baseline torque demand corresponding 
to the rolling and aerodynamic losses, 

- Acceleration/deceleration torque using 
the derivative of the demand speed, and 

- Corrective torque from the comparison of 
demand speed and current speed in a 
proportional-integral control. 

If a major discontinuity occurs, the corrective 
torque will jump suddenly, akin to sudden full 
throttle acceleration or full braking. In most real-
world situations, the human driver anticipates such 
increases and decreases in speed target and uses 
his experience to apply accelerator or brake 
commands moderately. The “stairs” coming from 
the previous step therefore need to smoothed out 
and incorporate the transition between the various 
speed levels. 

4.1 Division in sections 
The trip is again divided into sections, so that stops 
and major discontinuities in speed are located at 
their extremities (Figure 8). In other words, there is 
no stop or sudden speed difference in the middle of 
a section. 
 

 
Figure 8: Example of division of the 

target speed 

 

4.2 Computation of speed profiles for 
each section 

 
Figure 9 illustrates intermediate target speed 𝑣𝑇 
and final demand speed 𝑣𝐷 after inclusion of 
transitions. The schematic trip is divided into four 
sections, 𝑆1–𝑆4. If there is a sudden increase in 
target speed (here at d1), demand and target speeds 
will be the same in the section (𝑆1) before the 
increase: 𝑣𝐷(𝑑1) = 𝑣𝑇(𝑆1). In the section (𝑆2) 
after the target speed increase, 𝑣𝐷 will 
continuously increase from 𝑣𝑇(𝑆1) to 𝑣𝑇(𝑆2), until 
the target speed of 𝑆2, 𝑣𝑇(𝑆2),  is reached. 
If there is a sudden target speed decrease (here at 
d2), the demand speed after the decrease, in section 
𝑆3, will already be at the new lower target speed: 
𝑣𝐷(𝑑2) = 𝑣𝑇(𝑆3).  In 𝑆2, before 𝑑2, the demand 
speed will start to continuously decrease from 
𝑣𝑇(𝑆2) so that it reaches 𝑣𝑇(𝑆3)  at the end of 𝑆2.  
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Another example of transition is around 𝑑3: a 
deceleration is added just before the stop at 𝑑3 
and an acceleration occurs right after it. 
After such processing, the demand speed, the 
grade, and the stop schedule can be fed into the 
Autonomie distance-based driver. In that driver 
model, the speed demand is updated on the basis 
of the actual distance achieved and not the time. 
Also there is a stop schedule that gives the 
positions and durations of stops as a function of 
distance. Whenever the vehicle reaches the 
position of a stop, the speed demand zeroes out, 
and the vehicle has to wait for the duration of the 
stop before a positive target speed is requested 
again. 

 
Figure 9: Computation of demand speed from target 

speed (schematic) 

5 Simulation Results 

5.1 Definition of sample trips 
Table 2 – Presentation of trips 

Trip Distance 
(km) Description Composition* 

U UH EH ER 
Boston 28.1 MIT to Salem 50 35 0 15 

LA 14.8 Staples 
Center to 
Beverly Hills 

100 0 0 0 

SF 26.5 Fort Mason to 
San Rafael 

10 90 0 0 

Chicago1 40.1 Argonne to 
Navteq 

20 80 0 0 

Chicago2 3.3 Wicker Park 
to Gold Coast 

100 0 0 0 

Chicago3 6.7 Bucktown to 
Loop 

60 40 0 0 

WashDC1 11.7 DOE to 
Alexandria 

20 80 0 0 

WashDC2 3.8 DOE to 
GWU 

100 0 0 0 

Detroit 21.3 GM HQ to 
Ford museum 

35 65 0 0 

Munich 35.7 BMW HQ to 
Possenhofen 

10 40 30 20 

* Decomposition of the trip in four types of roads: 
U (urban), UH (Urban Highway), EH (Extra-Urban 
Highway), and ER (Other Extra-Urban Roads). 
Qualitative information only. 

To evaluate the process, 10 sample cycles were 
defined in ADAS-RP and used in the following 
studies. They are within or around major urban 
centers in the United States and Germany: Boston, 
San Francisco, Los Angeles, Chicago, Washington 
D.C., Detroit, and Munich. Those cycles are 
described in Table 2. 

5.2 Trip model 
An example of simulated trip is shown in Figure 
10. The “Traffic” signal is the traffic pattern speed 
directly extracted from ADAS RP. The “Target” 
signal is the result of the RDP: it does not include 
any stops, but it does into account for the extra 
time needed for accelerations and decelerations 
and stops; hence, its value is higher than that of the 
target speed. The “Simulated” signal is the actual 
vehicle speed from Autonomie simulation. 
Simulated and target speeds differ by the 
numerous stops in the simulated speed. 

 
Figure 10: Simulated trip Chicago2 

Figure 11 is a close-up of that same trip, and it 
highlights the way transitions occur. One example 
of transition, at t = 65 s, is a speed reduction. The 
target speed decreases ahead of the change, so that 
it is never higher than the target speed. The 
simulated speed follows it closely. At t = 73 s, 
there is a stop that lasts for 15 s. It is anticipated 
with a deceleration from the target speed to zero. 
After the stop time has elapsed, the target speed 
rises back to a strictly positive value (4 km/h). The 
discontinuity is necessary to make the vehicle start 
moving. During the acceleration, the vehicle 
follows the target speed, and the discrepancies are 
due to the natural lag of the controller (reaction 
time) as well as powertrain dynamics, such as gear 
shifts.  
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Figure 11: Speed changes, decelerations, 

accelerations, and stops in simulation 

Figure 12 compares the travel time for each trip, 
computed directly from raw ADAS-RP signals 
and actual travel time from simulation. The two 
durations are generally close but not the same. 
 

 
Figure 12: Comparison of trip time from ADAS RP 
approximate speed and from Autonomie simulation 

 
When the traffic pattern speed is available, the 
target speed is derived from it by adjusting it 
upward in order to account for the stops 
generated by the algorithm. Doing so ensures that 
the time needed to cover the sections is constant. 
For example, traffic pattern speed is available on 
the whole extent of the Chicago2 and Chicago3 
trips; as a result, the ADAS RP trip time and 
simulation time are almost equal.  
 

Table 3 – Simulated trips characteristics 

Trip 
Distance 

(km) 

Avg. 
Speed 
(km/h) 

Elevation 
Change (m) Stops 

per 
km 

Stop 
Time 
(%) 

Up 
(+) 

Down 
(–) 

Boston 28.1 24.4 89.4 90.3 0.9 12.5 

LA 14.8 25.6 0.0 0.0 2.8 60.2 

SF 26.5 38.0 320.1 339.6 0.5 9.1 

Chicago1 40.1 41.2 154.7 170.9 0.1 0.9 

Chicago2 3.3 13.4 2.0 2.4 3.9 26.9 

Chicago3 6.7 20.2 14.5 15.3 1.2 8.9 

WashDC1 11.7 25.8 14.7 12.8 2.2 26.6 

WashDC2 3.8 17.7 0.0 0.0 3.7 39.5 

Detroit 21.3 36.3 45.2 44.3 0.8 16.5 

Munich 35.7 54.5 174.1 91.5 0.3 6.1 
 
On the other hand, when no traffic pattern data are 
available, the target speed is simply the raw ADAS 
RP speed – either the speed limit or “expected” 
speed. The assumptions are that the driving 
condition is close to free-flow and that the driver 
will target the speed limit outside of stop signs and 
traffic lights. Since the stop time can still be added, 
there may be a significant discrepancy between the 
“raw” estimated time and actual simulation time. 
In particular, this is the case for the LA trip, for 
which the traffic pattern speed was not available. 
Due to the numerous stop signs and traffic lights 
along the way, travel time almost doubles. 
Table 3 compiles other quantities of interest for 
each trip. 

5.3 Energy consumption prediction 
One of the key applications of this newly 
developed process is to predict the energy 
consumption of vehicles driven along a real-world 
trip. To illustrate this capability, we chose to use 
the process to compare two vehicles with different 
powertrain architectures. The two vehicles 
evaluated on those cycles are: 

- A conventional midsize car powered by an 
internal combustion engine (ICE) with a 
five-speed manual transmission and 

- A 2004 Toyota Prius (a power-split HEV). 
The mass of both vehicles is set to 1400 kg. The 
electric accessory load is set to 600 W. Both 
vehicles are available in the public version of 
Autonomie. The Prius model was validated by 
using Argonne chassis dynamometer tests [17]. 
The control of the HEV is also the default one (no 
future road prediction). Fuel consumption reported 
for the HEV is “charge-balanced” (i.e., the net 
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battery energy is less than 1% of the fuel energy 
used).  
Figure 13 shows the fuel consumption (F.C.) of 
both vehicles on the real-world trips defined 
previously. The cycles were sorted by ascending 
average speed. For comparison purposes, Figure 
13 also shows F.C. on selected certification 
cycles, the European ECE and NEDC, as well as 
U.S. EPA urban (UDDS) and highway cycles 
(HWFET). The conventional car has a much 
higher F.C. than the HEV, ranging from almost 
14 to 5.1 L/100 km; these seem like reasonable 
values for that type of car, and are comparable to 
F.C. on standard cycles. On the other hand, there 
is less variance in the HEV F.C., which stays 
between 2.8 L/100 km and 4.7 L/100 km. 
 

 
Figure 13: Fuel consumption of conventional vehicle 

and HEV; real-world trips sorted by ascending 
average speed  

 
The F.C. for both vehicles tend to decrease with 
higher average speeds. This is true to real-world 
observations: as the average speed increases, the 
engine operates more efficiently, but at very high 
speeds, those gains are overcome by prevailing 
aerodynamic losses. The HEV gets the best F.C. 
reduction on trips where there are numerous 
opportunities to recuperate kinetic energy or with 
long idling periods. Chicago2, WashDC2 and LA 
are routes in which there are a large number of 
stops (more than 2.8 stops per km) and stop time, 
(up to 60% for the LA trip). The conventional 
gets its worst F.C. and the HEV achieves the 
highest decrease in F.C. on those cycles. The 
HEV also gets a very low F.C. on SF, which 

combines moderate speed highway driving with 
grades. 
 

5.4 Analysis of HEV operations in a 
hilly terrain  

Grades often pose a different set of challenges for 
powertrain and controller designers, especially 
when it comes to hybrid vehicles. A long ascent is 
a challenge because the limited battery energy 
cannot overcome the engine power lost to engine 
downsizing. A descent, on the other hand, is 
beneficial, as regenerative braking can be used to 
recharge the battery. All standard cycles used for 
certification are “flat” (i.e., they do not include any 
grades). Real-world driving routes need to be used 
instead. One of the powerful features this new 
process offers is the prediction of grade for any 
trip on main roads. In this study, we can use that 
feature for a short analysis of hybrid operations. 
The SF trip between San Francisco’s northern 
shore and San Rafael, 26 km to the north, in the 
northwest Bay area, includes several ascents and 
descents. It starts in urban San Francisco, crosses 
the Golden Gate Bridge, and turns into a three-lane 
highway. As shown in Figure 14, there is one 
major hill, between D = 2.2 km and D = 13 km and 
two smaller ones at 17.5 km and 22.5 km.  

 
Figure 14: Elevation* and speed on the SF trip in the 

San Francisco Bay area 
*Reference: WGS84 Ellipsoid 

The battery operations are shown in Figure 15 and 
Figure 16. In Figure 15, the battery ΔSOC (which 
is the state-of-charge minus the initial SOC) 
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evolution is shown over the entire trip. The first 
part of the trip is in an urban environment and 
generally at low speed. That type of driving is 
often associated with electric-only mode. At 
t = 800 s, a combination of positive grade and 
acceleration further depletes the battery. The 
long downhill grade that starts at t = 1200 s is the 
opportunity to fully recharge the battery.  
 

 
Figure 15: Battery SOC* and grade on the SF trip 

*ΔSOC = SOC – SOC(t = 0) 
 

As shown in Figure 16, the battery gets about 
9 kW of electricity recharging it during the whole 
grade, leading the SOC to increase by almost 30 
percentage points. That energy is then used 
throughout the cycle to displace fuel energy, 
leading to very good fuel consumption. 
 

 
Figure 16: Battery power and grade on a hilly section 

of the SF trip 

6 Conclusion 

6.1 Future Work 
Some key improvements to this method will be 
made in the future. More road information will be 
factored in the computation of the speed target 
(e.g., slower speed targets when a turning 
manoeuvre is identified).  
Another major improvement will be the 
introduction of more variance to currently constant 
speed sections, in order to more accurately mimic 
stop-and-go traffic, natural speed oscillations, 
obstacles, etc. We will also emphasize validating 
the modeled speed profiles with real-world driving 
data. 

6.2 Summary 
A process was created to easily predict the energy 
consumption of a vehicle on a user-specified real-
world trip. The user can define a trip by its starting 
and end points, in ADAS RP through a map 
interface. The saved trip is processed to create 
speed, stop, and grade profiles when it is loaded in 
Autonomie. The user-defined vehicle is then 
simulated over those profiles, and energy 
consumption is computed. 
The processing algorithm is robust enough to deal 
with road links having varying levels of detail in 
the digital map. For example, the algorithm 
accounts for traffic pattern speed when it is 
available and on other information otherwise. The 
inclusion of stops in the target speed generation 
also creates realistic speed profiles, essential for 
estimating energy consumption. 
We demonstrated that this process can be used not 
only to predict energy consumption but also to 
analyze the operation of any vehicle on a user-
defined, real-world trip. We compared the fuel 
consumption of a Toyota Prius to that of a 
conventional car of the same class on 10 real-
world trips and showed a significant benefit of the 
hybrid car. We also analyzed how the battery 
energy is managed on a trip with long grades. 
This process opens new horizons, combining 
intelligent transportation systems (ITS) and 
transportation energy efficiency research. In 
particular, this tool is critical for intelligent trip-
based control of electrified powertrains, battery 
EVs, HEVs, and plug-in HEVs. It provides a 
“proving ground” to test new smart controls. All 
the theories and methods of trip prediction can also 
be applied to an online, in-vehicle energy 
consumption horizon, which is indispensable for 
intelligent energy management. 
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