Revista internacional de métodos numeticos para cdlculo y disefio en ingenieria, Vol. 1, 3, 27-35 (1985)

-

»’
UN\MEI,ODO DE LAGRANGIANO AUMENTADO

PARA LA RESOLUCION DE PROBLEMAS DE FLUJO
NO LINEAL EN MEDIO POROSO

L.FERRAGUT

y

J.ELORZA
Departamento de Cdlculo Numérico e Informatica
de la Escuela Técnica Superior de Ingenieros de Minas de Madrid
Rios Rosas, 21 - 28003 Madrid

RESUMEN

Al estudiar el comportamiento del flujo de un fluido a través de un medio poroso se observa que
para velocidades altas la ley de Darcy no es vdlida y requiere su sustitucién por expresiones mas gene-
rales. En este trabajo adoptaremos una expresion del tipo exponencial para formular el problema
de flujo en régimen no lineal. La dependencia de la permeabilidad del medio con el gradiente de
la altura piezométrica sugiere el uso de los métodos de Lagrangiano aumentado. Aqui describimos
un algoritmo de resolucién basado en estos métodos y en una discretizacion mediante elementos
finitos que adaptamos al problema que nos ocupa incluyendo los efectos debidos a la posible apari-
cién de una frontera libre. Finalmente, presentamos varios ejemplos fisicos resueltos con el método
numérico descrito.

SUMMARY

While studying the behaviour from the flow of a fluid through a porous media we notice that
in the case of high flow velocities, Darcy’s law is not valid and it requires its replacement by more
general expresions. In our work we adopt an expression of exponential type to formulate the
nonlinear flow in porous media problem. The dependance of the media permeability with
the gradient of the piezometric head suggest the use of the Lagrangien augmented methods, Here
we present an algorithm of resolution of this problem based both in these methods and in a discreti-
zation of the flow field by finite elements. This algorithm includes the effects of the possible appari-
tion of a free surface. Finally, we present the application of this method to various experimental
flow problems.

INTRODUCCION

Para velocidades relativamente altas del flujo a través de un medio poroso se produ-
cen desviaciones significativas de la ley de Darcy, por lo que resulta necesario utilizar
otras expresiones matemadticas para representar la relacién no lineal, existente en .
muchos casos, entre el gradiente hidrdulico y la velocidad de flujo (Pérez Franco’,
Nazeer®). Las expresiones de uso mds generalizado son del tipo bindmico, mds realis-
ta, y las de tipo exponencial, més sencillas desde el punto de vista matemdtico y que
son las adoptadas en este trabajo. '
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La ley exponencial de flujo consiste en sustituir la ley de Darcy v= —kV u, donde v
es la velocidad, u la altura piezométrica y k la conductividad hidrdulica por la siguiente

v=—k, vul* ! vu (1

donde I+l designa el moédulo de un vector en R4(d=1,2 6 3) y k, es una constante
dependiente de n, que a su vez depende del valor de |[yvul. En régimen lineal n=l
y en régimen turbulento puro n=0.5. Cuando las variaciones del gradiente hidrdulico
dentro del campo de flujo son relativamente pequefias, es posible considerar que
los valores de n y de k, se mantienen constantes. En el método de cdlculo aqui desarro-
llado se ha considerado que n y k, son constantés “a trozos”. De hecho se puede
demostrar” que es practicamente imposible tener en un mismo medio flujo turbulento
puro y flujo lineal. Asi pues en lo que sigue supondremos para simplificar el desarrollo
que n y k,, son constantes.
Las ecuaciones que gobiernan el flujo estacionario en un medio isétropo serdn:

—vik, | uP™!) yu=fenQ )

u=ug, sobre Iy (3)

" —kn Ivul“—la—u =g sobre Iy @)
on

siendo 2 CR? el dominio del espacio ocupado por el medio, =T, UI'; el contorno
de !y f, ug y g son funciones conocidas que representan respectivamente el caudal
volumétrico aportado en cada punto de £, la altura piezométrica conocida en Iy
y el flujo conocidoen I'; .

FORMULACION VARIACIONAL

En sabido? que el problema -formulado mediante las expresiones (2), (3) y (4)
se puede expresar mediante un problema de optimizacién de la siguiente forma:
Consideremos para 1<s<oo el espacio funcional

whe(a)={vdLls(2); 2L eL* (@) I<i<d}
) &

que es un espacio de Banach reflexivo con la norma

d
Wl 0=} /Q i dx + 3 /Q %r dx}

Llamaremos W(l)'i-ao (2) al subespacio cerrado de W+ (@) dado por
Wik, (@) =fveWhs(a) vl =0}
y designaremos por K el conjunto convexo y cerrado
‘ — 1,s . - o
K-—gv e W(Q) ,V|F0 uoi
la solucién u de (2), (3) y (4) verifica

J(u) =Min J(v)
veK ®)
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donde J(.) viene dada por

=1 s : |
I(v) —?/ﬂknWVI dx —/nfv dx —Al gvdy (6)

y siendo el valor de s =n+1

Debido a la monotonfa del operador v - — ¥ (k,[VVv[*"2) Vv sabemos que el
problema (5) tiene solucién Unica.

Salvo en el caso s=2 (ley de Darcy) el problema anterior es no lineal debldo ala
dependencia de la conductividad hidrdulica de la solucidén u a través del gradiente.
Este tipo de dependencia sugiere la introducciéon de una nueva variable y una nueva
ecuacion p =V u que permita desacoplar las dificultades inherentes por un lado al ope-
rador gradiente y por otro a la dependencia no lineal. Las expresiones (5) y (6) se trans-
formardn en las siguientes:

Jup)=Min  J(va) (7
(v.9)eW

siendo W = 3(v,q)er(LS(n))" :q =VV$

Iva) =1?_ nk" Igi*dx —/Q fvdx —Al gvdY 8)

APROXIMACION POR ELEMENTOS FINITOS

En primer lugar introduzcamos la version discretizada de (7) y (8) mediante el méto-
do de elementos finitos'®. El an4lisis numérico de la aproximacién mediante elementos
finitos de (5) y (6) se puede encontrar por ejemplo en Ciarlet?. Consideremos el sub-
conjunto K, de K y el subespacio Ly, de (L (2))? siguientes:

Vi = 3Vh€ Co(ﬁ), Vh IT eP (T) VTe"G Vi, [Fo =0 z
Kn = §Vn€C°(®), Vilr €P(T) VT B vy Ip = o}
L, = 3Qh€ (Ls(ﬂ))d damlr e Py (T) 1G4 VT(:"G;

Hemos designado mediante B una triangulacién (divisién en tetraedros para d=3)
del dominio © en elementos T y por P, (T) el conjunto de polinomios de grado k
en el elemento T. Andlogamente procederiamos para una descomposicion del dominio
en elementos cuadrilaterales y los correspondientes polinomios incompletos Q.
El problema aproximado es ahora

Hallar (u,p) € Wh 3(v,q) € KpuxLy; q Vv$

tal que

Ju(u,p) =Min J,(v,q) 9)
' .(Y,q)eWh

y siendo J,(v,q) la restriccién de J(.,.) dada por (8) al conjunto Wy,.
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ALGORITMO DE RESOLUCION

Un método para resolver (7) consiste en evitar la restricciéon q = ¥v introduciendo
un multiplicador de Lagrange A € L, y sustituyendo J,(.) por la funcién Lagrangiana

L(v.q,u) 2%/91(“ lgl® dx —/ﬂfvdx */I‘ _gvd’7+A2 kp u(vv—q)dx (10)
28R y ~

definida sobre Wy, x L, y siendo kp la conductividad hidrdulica de Darcy cuya inclu-
sién aqui justificaremos mds adelante. Es fdcil comprobar que la solucién buscada
es un punto silla de la Lagrangiana £, es decir, (u, p, A) es solucién de:

Lup) < Lupd) < LVAN oan
Viva)eKyxL, vy Vue L, |

Desde el punto de vista numérico la resolucidn de (11) plantea ciertas dificultades
debido al condicionamiento de las matrices de los sistemas de ecuaciones que resultan;
por ello siguiendo una idea de Hestenes® modificaremos el anterior Lagrangiano de
la forma siguiente; parar >0

Lvaw = vaw +L [ ko1gv—al® ox (12)

y la solucion buscada es ahora un punto silla de L,.

Varios algoritmos de busqueda de punto silla basados en el método de Uzawa se
pueden encontrar en Fortin y Glowinski®. Describimos a continuacién el adoptado
aqui:

Elegimos los valores p°® y A° arbitrarios
1.2) Conocido p* y M calculamos u'*! resolviendo

LW pt ) < L (v,phA) (13)

Vve Kh y ui+16 Kh

22) Calculamos p'*? resolviendo
Lot pi* M) < Lt g\ (14)
Vgel,
3°) Calculamos N'*' mediante (p>0)
AL =2+ p(wultt — pitt (15)

si |gui*? —p'*1| >a|gul*?| hacemos i igual a i+1 y volvemos al paso 1°.
Los problemas (13), (14) y (15) son sencillos de resolver, en efecto:
El cdlculo (13) equivale a resolver el siguiente problema lineal:
Hallar u'**¢ K, tal que verifique

k i+1 =/ k L U +/ +/
rL p Yut ywvdx o pp' —A) vvdx vadx ,Plgydy (16)

VveV,
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Observemos que la matriz de este sistema es fija y bastard factorizarla una séla vez.
El cilculo (14) equivale a hallar pi*1e Ly, tal que

.Az(kn lp*** F72 p*! +rkp P q dx=A2 kp tvu?* + M)qdx (17)
d [ 4
Vqe Ly

como las funciones de L, son discontinuas y no guardan relaciéon de un elemento .
a otro (17) equivale a un problema local en cada elemento, es decir (17) se puede
resolver en cada punto de integracién resultando

kn Ipi-l-l Is—-2 pi+1 +7 kD px-i-1 _(I‘ Vui+1 + )\i) kD (18)

que-es un sistema no lineal de d ecuaciones; de hecho la no linealidad se resuelve en
una sbla ecuacidn, en efecto, conocido Ip”ll el cdlculo es explicito y para calcular
lp'*1 | obtenemos la ecuacién no lineal en la variable |pi*?| siguiente

kn |pi+1 |s—1 +r kD |pi+1| =kD |I‘_Vh“1 + Z\,l!

que es facilmente resoluble por el método de Newton.

Finalmente (15) es también un cdlculo explicito en cada punto de integracién.

La mclusmn de la conductividad de Darcy kp en los términos fo kp u( yv—a)dx
de (10) y % kaD lyv—ql2dx de (12) puede venir justificada intuitivamente por
la idea de acercarse al problema lineal correspondiente y de manera especial en
la expresion (16); concretamente, si resolvemos un problema lineal (k, =kp y s=2)
con el algoritmo anterior obtenemos la convergencia de u en una sola iteraciéon (no asi
de wu) si elegimos p =r=1. Este hecho fue observado y estudiado por Glowinski
y Marroco* para un problema parecido. '

Cuando los valores de k, y s no sean constantes sino variables y dependientes del
valor de wu, modificamos el 2.° paso del algoritmo anterior de la siguiente forma:

a) Calculamos wui*!
b) Calculamos k, =k, (vul*l),s =s(yui*?)
¢) Resolvemos (18) :

TRATAMIENTO DE ACUIFEROS CON SUPERFICIE LIBRE

En el estudio de acuiferos no confinados o acuiferos libres, el agua presenta una
superficie libre, sujeta a la presion atmosférica, como limite superior de la zona de satu-
racion. La posicidon de esta superficie es desconocida a priori por lo que incluso en
el caso lineal de la ley de Darcy hay que recurrir a un procedimiento iterativo para
clacular la solucién. Aqui adaptamos una idea que Bathe y Khoshgoftaar® utilizan
en el caso lineal para el tratamiento de este tipo de problemas y que consiste en consi-
derar la conductividad hidrdulica dependiente de la altura piezométrica u de la siguien-
te manera.

kp si u>y

k =
) 0 siu<y

siendo y la altura geométrica del punto considerado;se procede entonces por un méto-
do de Newton-modificado es decir:
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Partiendo de un valor u® inicial y conocido u* calculamos u'*? resolviendo

/g#(D V6 Vv dx:/sz. fvdx + /I‘i gvdy —/Qk(ui)vu'i vvdx (19)

ui*t =yl 4§

Introduciendo el mismo término corrector en el caso no lineal, se modifica la expre-
sién (16) una vez puesta en forma incremental de la siguiente forma:

r/Q'kD v Vvdx=/ﬂikr,(rpi -\ wv dx-i-/ﬁfvdx+/r1 gvdy —

—Amk(u)vu vvdx

y tomamos s=2 en (18) si u<<y lo que equivale a considerar como lineal el flujo
ficticio en la zona no saturada.

EJEMPLOS NUMERICOS

Se consideran a continuacién tres ejemplos resueltos con el algoritmo descrito.
El primero de ellos se refiere a un acuifero confinado con régimen de flujo no lineal
y los otros dos a una situacion también con régimen de flujo no lineal pero con la
presencia de una superficie libre.

Acuifero confinado: Resolvemos aqui bajo hipdtesis de régimen no lineal un ejem-
plo similar al propuesto por Segerlind® y tratado alli segiin el modelo de la ley lineal
de Darcy. Un acuifero ocupa una regién rectangular de 1500 m x 3000 m y estd
rodeado por un material impermeable en dos de sus lados opuestos conociéndose
el valor de la altura piezométrica en los otros dos lados; una corriente divide la regién
como se indica en la Figura 1, siendo la infiltracién de agua debida a ella de 0.24 m3/
dia/m., ademds existen dos pozos en la situaciéon (2000.,830.) y (1100.,600.) que
retiran agua con un caudal de 1200 m®/dfa y 2400 m®/dia respectivamente. Se ha
resuelto el problema considerando un régimen no lineal tomando como valores cons-
tantes para k, y n de la expresion (1) iguales a 10. y 0.8 respectivamente. En el algorit-

L L . ) 2 L AL ok y : Lot fodod L od

-+

T VAR A A A e a 4 7 7 7 II/\II 7 7 777 777

Figura 1.— Acuifero confinado.
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mo (13)-(14)-(15) se ha tomado p =r y estudiado la convergencia para diversos valores
obteniendo los resultados de la Tabla 1. El valor de « en el test de convergencia es igual
a 1073, En la Figura 2 se muestran las lineas de igual altura piezométrica obtenidas
y finalmente en la Figura 3 se representa el resultado correspondiente al caso de
un cdlculo en régimen lineal de Darcy obtenido tomando como valor de la permeabili-
dad un valor promedio igual a 17.88.

i

140

20.99

AVAVANILY

Figura 2.— Lineas de igual altura piezométrica.

20.00

\WAVAVA VIV

Figira 3.— Lineas de igual altura piezométrica en el caso lineal.

‘En todos los casos se ha utilizado una discretizacién mediante ‘64 tridngulos de tres
nodos y polinomios de primer grado; el ntimero de nodos de la triangulacidon es de 45
y el niimero de grados de libertad 35.

p=r n? iteraciones p=rt n? iteraciones
0.5 16 1. 11
0.6 14 12 12
07 13 15 13
08 12 -2, 15
-09 12 3. 19

Tabla 1.— Convergencia del algoritmo.
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Se ha estudiado este ejemplo con el fin de comprobar la convergencia del algoritmo,
siendo necesario para cidlculos mds precisos afinar el mallado, en particular cerca
.de los pozos y de la corriente que atraviesa el acuifero.

Flujo no confinado: Hemos considerado en este segundo ejemplo el flujo a través
de una presa de forma aproximadamente trapezoidal como se indica en la Figura 4.
Este caso ha sido resuelto por Volker®, mediante el método cldsico del punto fijo
en lo que concierne a la no linealidad de la ley de flujo y efectuando un ajuste de
la posicién de la superficie libre resolviendo reiteradas veces el problema.

Figura 4.— Mallado y superficie libre en el ejemplo 2.

El valor de la altura piezométrica aguas arriba es igual a 1.215 pies. El valor de k,
es igual a 0.286 y el valor del exponente n es 1.573. La discretizacion utilizada ha sido
realizada mediante tridngulos lineales de tres nodos y segin ¢l mallado representado
en la Figura 4. Los resultados obtenidos han sido verificados con los resultados experi-
mentales dados por Volker® observandose una discrepancia menor del 1% en promedio.
La posicién de la superficie libre se muestra en la Figura 4 y en la Figura 5 se presentan
las lineas de igual altura piezométrica donde sélo tiene significado fisico la parte que
aparece por debajo de la superficie libre. '

Figura 5.— Lineas de igual altura piezométrica en el ejemplo 2.

Valores variables de los coeficientes: En este tercer ejemplo se ha supuesto que
los valores de k, y nen la ecuacién (1) dependen del valor del gradiente y corresponde
a un talud de una mina a cielo abierto con altura piezométrica aguas arriba igual
a 16 m. El cdlculo de la solucién de (1)-(2)-(3) permitird estimar el caudal de flujo
que habrd que evacuar de la mina si no queremos que ésta se inunde. Los valores de kj,
y n en funcién del gradiente se dan en la tabla 2.

lvul n K,
0. -1072 1. 1.
10—2 —102 0.90 06
101 1. 0.70 0.3
1. -10. 057 027
10. —100. 052 0.1

Tabla 2.— Valores de n y k,,.
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Figura 6.— Mallado y superficie libre en el ejemplo 3.

La discretizacidon se ha realizado mediante elementos triangulares de 3 nodos y

segtin el mallado de la Figura 6. La discontinuidad de flujo que aparece en la frontera
que representa el talud aconseja afinar el mallado en los alrededores de la misma.
En la Figura 6 se representa la superficie fredtica en el acuifero una vez abierta la mina.
En la Figura 7 aparecen dibujadas las 1ineas de igual altura piezométrica.

10

5.00 8 03 2.80

Figura 7.— Lineas de igual altura piezométrica en el ejemplo 3.
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