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RESUMEN 

Al estudiar el comportamiento del flujo de un fluido a través de un medio poroso se observa que 
para velocidades altas la ley de Darcy no es válida y requiere su sustitución por expresiones más gene- 
rales. En este trabajo adoptaremos una expresión del tipo exponencial para formular el problema 
de flujo en régimen no lineal. La dependencia de la permeabilidad del medio con el gradiente de 
la altura piezométrica sugiere el uso de los métodos de Lagrangiano aumentado. Aquí describimos 
un algoritmo de resolución basado en estos métodos y en una discretización mediante elementos 
finitos que adaptamos al problema que nos ocupa incluyendo los efectos debidos a la posible apari- 
ción de una frontera libre. Finalmente, presentamos varios ejemplos físicos resueltos con el método 
numérico descrito. 

SUMMARY 

While studying the behaviour from the flow of a fluid through a porous media we notice that 
in the case of high flow velocities, Darcy's law is not valid and it requires its replacement by more 
general expresions. In our work we adopt an expression of exponential type to formulate the 
nonlinear flow in porous media problem. The dependance of the media permeability with 
the gradient of the piezometric head suggest the use of the Lagrangien augmented methods. Here 
we present an algorithm of resolution of this problem based both in these methods and in a discreti- 
zation of the flow field by fmite elements. This algorithm includes the effects of the possible appari- 
tion of a free surface. Finally, we present the application of this method to various experimental 
flow problems. 

INTROD UCCION 

Para velocidades relativamente altas del flujo a través de un medio poroso se produ- 
cen desviaciones significativas de la ley de Darcy, por lo que resulta necesario utilizar 
otras expresiones matemáticas para representar la relación no lineal, existente en 
muchos casos, entre el gradiente hidráulico y la velocidad de flujo (Pérez ~ r a n c o ~ ,  
Nazeer6). Las expresiones de uso más generalizado son del tipo binómico, más realis- 
ta, y las de tipo exponencial, más sencillas desde el punto de vista matemático y que 
son las adoptadas en este trabajo. 
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Lxi ley exponencial de flujo consiste en sustituir la ley de Darcy v = -kV u, donde v 
es la velocidad, u la altura piezométrica y k la conductividad hidráulica por la siguiente 

v = -k, I ~ u l ~ - l  V u (1 

donde 1.1 designa el módulo de un vector en ~ ~ ( d = 1 , 2  ó 3) y k, es una constante 
dependiente de n, que a su vez depende del valor de Ivul. En régimen lineal n=l 
y en régimen turbulento puro n 3 . 5 .  Cuando las variaciones del gradiente hidráulico 
dentro del campo de flujo son relativamente pequeñas, es posible considerar que 
los valores de n y de k, se mantienen constantes. En el método de cálculo aquí desarro- 
llado se ha considerado que n y k, son constantes "a trozos". De hecho se puede 
demostrar7 que es prácticamente imposible tener en un mismo medio flujo turbulento 
puro y flujo lineal. Así pues en lo que sigue supondremos para simplificar el desarrollo 
que n y k, son constantes. 

Las ecuaciones que gobiernan el flujo estacionario en un medio isótropo serán: 

- ~ ( k ,  1 uln-') vu  = f  en si? (2 

U = u0 sobre rO (3 

-k, lvu 1"-l = g sobre rl 
an 

(4) 

siendo ~ ; c R ~  el dominio del espacio ocupado por el medio, r= FoUF1 el contorno 
de S2j y f, u. y g son funciones conocidas que representan respectivamente el caudal 
volumétrico aportado en cada punto de a ,  la altura piezométrica conocida en Po 
y el flujo conocido en Pl . 

FORMULACION VARIACIONAL 

En sabido2 que el problema .formulado mediante las expresiones (2), (3) y (4) 
se puede expresar mediante un problema de optimización de la siguiente forma: 

Consideremos para l<s<m el espacio funcional 

que es un espacio de Banach reflexivo con la norma 

Llamaremos Wi:bo ( s i ? )  al subespacio cerrado de W1lS ( a )  dado por 

y designaremos por K el conjunto convexo y cerrado 

la solución u de (2), (3) y (4) verifica 

J(u) = Min J (v) 
veK 
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donde J(.) viene dada por 

y siendo el valor de S = n+l 
Debido a la monotonía del operador v -+ - v ( k , l ~ v l ~ - ~ )  Vv sabemos que el 

problema ( 5 )  tiene solución única. 
Salvo en el caso s=2 (ley de Darcy) el problema anterior es no lineal debido a la 

dependencia de la conductividad hidráulica de la solución u a través del gradiente. 
Este tipo de dependencia sugiere la introducción de una nueva variable y una nueva 
ecuación p = V  u que permita desacoplar las dificultades inherentes por un lado al ope- 
rador gradiente y por otro a la dependencia no lineal. Las expresiones (5) y (6) se trans- 
formarán en las siguientes: 

siendo W = 1 ( v , q ) e ~ x ( ~ s ( n ) ) d  ; q = p~ 1 

J(v,q) =L/ S 51 kn iqlsdx - /a fvdx -h 1 g v d , ~  

APROXIMACION POR ELEMENTOS FINITOS 

En primer lugar introduzcamos la versión discretizada de (7) y (8) mediante el méto- 
do de elementos finitos1'. El análisis numérico de la aproximación mediante elementos 
finitos de (5) y (6) se puede encontrar por ejemplo en Ciarlet2. Consideremos el sub- 
conjunto Kh de K y el subespacio Lh de (LS siguientes: 

Hemos designado mediante 75 una triangulación (división en tetraedros para d=3) 
del dominio ~2 en elementos T y por Pk(T) el conjunto de polinomios de grado k 
en el elemento T. Análogamente procederíamos para una descomposición del dominio 
en elementos cuadrilaterales y los correspondientes polinomios incompletos Qk . 
El problema aproximado es ahora 

Hallar (u,p) e Wh = ) (v,q) E Kh xLh ; q =VV 

tal que 

y siendo Jh(v,q) la restricción de J(.,.) dada por (8) al conjunto Wh. 
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ALGORITMO DE RESOLUCION 

Un método para resolver (7) consiste en evitar la restricción q = Vv introduciendo 
un multiplicador de Lagrange A E Lh y sustituyendo Jh( . )  por la función Lagrangiana 

l(v,qii) =L/ k. Iqls dx - /nfvdx -kl, gvd l+  /n k, ri(Vv-q)dx ( l o )  
s__fi  

definida sobre Wh x L, y siendo kD la conductividad hidráulica de Darcy cuya inclu- 
sión aquí justificaremos más adelante. Es fácil comprobar que la solución buscada 
es un punto silla de la Lagrangiana L, es decir, (u, p, h) es solución de: 

J(~,P,&) G J(u,p,X) G L(v,q ,h) (1 1) 

V(v,q)e Kh x Lh y VP - e Lh 

Desde el punto de vista numérico la resolución de (1 1) plantea ciertas dificultades 
debido al condicionamiento de las matrices de los sistemas de ecuaciones que resultan; 
por ello siguiendo una idea de Hestenes5 modificaremos el anterior Lagrangiano de 
la forma siguiente ; para r > O 

&(v,q,P) =L(v,q,ll) 4-r k~ 1 ~ v - 9 1 ~  dx 
2 / a (12) 

y la solución buscada es ahora un punto silla de e,. 
Varios algoritmos de búsqueda de punto silla basados en el método de Uzawa se 

pueden encontrar en Fortin y Glowinski3. Describimos a continuación el adoptado 
aquí: 

Elegimos los valores pO y arbitrarios 
1 ." ) Conocido pi y 8 calculamos u'+' resolviendo 

CCr (ui+l ,pi , 2 )  < Lr(v,pi,?) (13) 

V € Kh Y ui+' € Kh 

2 .O ) Calculamos pi+' resolviendo 

&(ui+' ,pi+l ,g) < &(ui+' ,q,E) 

V q e L h  

3 P ) Calculamos g+' mediante (p>O) 

X i + l  = hi + p(Vui+l - pi+l ) - w 

si l ~ u ' "  -pi+' I >al vui+' l hacemos i igual a i+l y volvemos al paso 1 P. 
Los problemas (13), (14) y (1 5) son sencillos de resolver, en efecto: 
El cálculo (1 3) equivale a resolver el siguiente problema lineal: 
Hallar u'+' E Kh tal que verifique 

r kD vui+' vv dx =k kD (r pi - Xi) B vdx + fvdx + /pl g7dy (1 6) 

v V E  vh 
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Observemos que la matriz de este sistema es fija y bastará factorizarla una sóla vez. 
El cálculo (14) equivale a hallar pi+',e Lh tal que 

como las funciones de Lh son discontínuas y no guardan relación de un elemento 
a otro (17) equivale a un problema local en cada elemento, es decir (17) se puede 
resolver en cada punto de integración resultando 

que es un sistema no lineal de d ecuaciones; de hecho la no linealidad se resuelve en 
una sóla ecuación, en efecto, conocido Ipi+l 1 el cálculo es explícito y para calcular 
Ipi+l 1 obtenemos la ecuación no lineal en la variable Ipi+.l 1 siguiente 

que es fácilmente resoluble por el método de Newton. 
Finalmente (1 5) es también un cálculo explícito en cada punto de integración. 
La inclusión de la conductividad de Darcy kD en los términos .fa kD p( ~ v - q ) d x  

de (10) y s l , k D  Jvv-q12dx de (12) puede venir justificada intuitivamente por 
la idea de acercarse al problema lineal correspondiente y de manera especial en 
la expresión (16); concretamente, si resolvemos un problema lineal (k, =kD y S = 2 )  
con el algoritmo anterior obtenemos la convergencia de u en una sola iteración (no así 
de v u) si elegimos p = r  = l .  Este hecho fue observado y estudiado por Glowinski 
y Marroco4 para un problema parecido. 

Cuando los valores de k, y s no sean constantes sino variables y dependientes del 
valor de vu ,  modificamos el 2P paso del algoritmo anterior de la siguiente forma: 
a) Calculamos vui+l 
b) Calculamos k, = k,( vui+' ),S = S( vui+l ) 
c) Resolvemos (1 8) 

TRATAMIENTO DE ACUIFEROS CON SUPERFICIE LIBRE 

En el estudio de acuiferos no confinados o acuíferos libres, el agua presenta una 
superficie libre, sujeta a la presión atmosférica, como límite superior de la zona de satu- 
ración. La posición de esta superficie es desconocida a priori por lo que incluso en 
el caso lineal de la ley de Darcy hay que recurrir a un procedimiento iterativo para 
clacular la solución. Aquí adaptamos una idea que ~ a t h e  y Khoshgoftaarl utilizan 
en el cáso lineal para el tratamiento de este tipo de problemas y que consiste en consi- 
derar la conductividad hidráulica dependiente de la altura piezométrica u de la siguien- 
te manera. 

siendo y la altura geométrica del punto considerado; se procede entonces por un méto- 
do de Newton-modificado es decir : 
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Partiendo de un valor u° inicial y conocido calculamos u i+1 resolviendo

f ia lcD VS Vv dx =in fvdx + fri gvd-y — ink(ui )vui pv dx	 (19)

ui+1 = .+ 5

lntroduciendo el mismo termino corrector en el caso no lineal, se mbdifica la expre-
siOn (16) una vez puesta en forma incremental de la siguiente forma:

r f lcD VS Vv dx = f k ip (rpi — V) v v dx + f fvdx +	 gv —
S2i	

Jr

— f k(ui ) vui vv dx

y tomamos s = 2 en (18) si u y lo que equivale a considerar como lineal el flujo
ficticio en la zona no saturada.

EJEMPLOS NUMERICOS

Se consideran a continuaciOn tres ejemplos resueltos con el algoritmo descrito.
El primero de ellos se refiere a un acuifero confinado con regimen de flujo no lineal
y los otros dos a una situaciOn tambien con regimen de flujo no lineal pero con la
presencia de una superficie libre.

Acuffero confinado: Resolvemos aqui bajo hipOtesis de regimen no lineal un ejem-
plo similar al propuesto por Segerline y tratado alli segUn el modelo de la ley lineal
de Darcy. Un acuifero ocupa una region rectangular de 1500 m x 3000 m y esta
rodeado por un material impermeable en dos de sus lados opuestos conociendose
el valor de la altura piezometrica en los otros dos lados; una corriente divide la region
como se indica en la Figura 1, siendo la infiltraciOn de - agua debida a ella de 0.24 m 3 /
dia/m., ademas existen dos pozos en la situaciOn (2000.,830.) y (1100.,600.) que
retiran agua con un caudal de 1200 m 3 /dia y 2400 m 3 /dia respectivamente. Se ha
resuelto el problema considerando un regimen no lineal tomando como valores cons-
tantes para lcx, y n de la expresiOn (1) iguales a 10. y 0.8 respectivamente. En el algorit-

Figura 1.— Acuffero confinado.
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mo (1 3)-(14)-(15) se ha tomado p = r  y estudiado la con~ergencia para diversos valores 
obteniendo los resultados de la Tabla 1. El valor de cx en el test de convergencia es igual 
n En la Figura 2 se muestran las líneas de igual altura piezométrica obtenidas 
y finalmente en la Figura 3 se representa el resultado correspondiente al caso de 
un cálculo en régimen lineal de Darcy obtenido tomando como valor de la permeabili- 
dad un valor promedio igual a 17 -8 8. 

Figura 2.-  Líneas de igual altura piezométnca. 

Figlira 3.- Líneas de igual altura piezométrica en el caso lineal. 

En todos los casos se ha utilizado una discretización mediante ,64 triángulos de tres 
nodos y polinomios de primer grado; el número de nodos de la triangulación es de 45 
y el número de grados de libertad 35. 

p = r n P iteraciones p = r n .O iteraciones 

O .S 16 1.  1 1  
O .6 14 12 12 
O .7 13 15 13 
O .8 12 2 .  15 
O .9 12 3 .  19 

S 

Tabla 1 .- Convergencia del algoritmo. 
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Se ha estudiado este ejemplo con el fin de comprobar la convergencia del algoritmo, 
siendo necesario para cálculos más precisos afinar el mallado, en particular cerca 
de los pozos y de la corriente que atraviesa el acuífero. 

E;lujo no confinado: Hemos considerado en este segundo ejemplo el flujo a través 
de una presa de forma aproximadamente trapezoidal como se indica en la Figura 4. 
Este caso ha sido resuelto por Volkerg, mediante el método clásico del punto fijo 
en lo que concierne a la no linealidad de la ley de flujo y efectuando un ajuste de 
la posición de la superficie libre resolviendo reiteradas veces el problema. 

Figura 4.- Mallado y superficie libre en el ejemplo 2. 

El valor de la altura piezométrica aguas arriba es igual a 1.215 pies. El valor de k, 
es igual a 9.286 y el valor del exponente n es 1.573. La discretización utilizada ha sido 
realizada mediante triángulos lineales de tres nodos y según el mallado representado 
en Pa Figura 4. Los resultados obtenidos han sido verificados con los. resultados experi- 
mentales dados por volkerg observándose una discrepancia menor del 1% en promedio. 
La posición de la superficie libre se muestra en la Figura 4 y en la Figura 5 se presentan 
las líneas de igual altura piezométrica donde sólo tiene significado físico la parte que 
aparece por debajo de la superficie libre. 

Figura 5 .- Líneas de igual altura piezométrica en el ejemplo 2. 

Valores variables de los coeficientes: En este tercer ejemplo se ha supuesto que 
los valores de k, y n en la ecuación (1 ) dependen del valor del gradiente y corresponde 
a u.n talud de una mina a cielo abierto con altura piezométrica aguas arriba igual 
a 16 m. El cálculo de la solución de (1)-(2)-(3) permitirá estimar el caudal de flujo 
que habrá que evacuar de la mina si no queremos que ésta se inunde. L.os valores de k, 
y n en función del gradiente se dan en la tabla 2. 

Tabla 2.- Valores de n y kn. 



Figura 6.- Mallado y superficie libre en el ejemplo 3. 

La discretización se ha realizado mediante elementos triangulares de 3 nodos y 
según el mallado de la Figura 6. La discontinuidad de flujo que aparece en la frontera 
que representa el talud aconseja afinar el mallado en los alrededores de la misma. 
En la Figura 6 se representa la superficie freática en el acuífero una vez abierta la mina. 
En la Figura 7 aparecen dibujadas las líneas de igual altura piezométrica. 

Figura 7 .- Líneas de igual altura piezométrica en el ejemplo 3. 
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UNIVERSIDAD POLITECNICA DE CATALUÑA 
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CANALES Y PUERTOS DE BARCELONA 
CURSO DE POSTGRADO 

METODOS NUMERICOS PARA CALCULO Y DISEFJO EN INGENIERIA 

ENERO - JUNIO 1986 

El objetivo de este Curso de Postgrado es proporcionar al ingeniero información actualizada sobre 
la rnetodología y utilización de procedimientos de cálculo y diseño por ordenador para la solución 
de toda una variedad de problemas de ingeniería. 

El curso se ha estructurado en dos fases. La primera fase, general e introductoria, comprende 
una serie de asignaturas de carácter básico, con temas tan importantes, dentro del campo del Diseño 
y el Análisis numérico en Ingeniería, como la Teoría General del Método de los Elementos Finitos, 
las técnicas más usuales del cálculo numérico y diversos conceptos esenciales sobre ordenadores, 
las leyes de comportamiento de los materiales y la introducción al planteamiento matemático 
de los problemas de ingeniería. 

En la segunda fase del curso se han escogido una serie de asignaturas específicas que abarcan 
la mayor parte de los problemas de ingeniería más usuales que permiten su resolución por métodos 
numéricos. 

1 FASE Todas las asignaturas de esta fase son obligatorias DURACION: 8 SEMANAS 

ASIGNATURAS BASICAS 
1 

I 1 I 1 

Teoría General del 
Método de los 

Elementos Finitos 

Introducción al 
planteamiento 
matemático de 

los problemas de 
Ingeniería 

Ordenadores Técnicas de Cálculo 
Numérico 

3 horas/semana 3 horaslsemana 2 horaslsemana 2 horaslsemana 1 horalsemana 
Total: 24 horas Total : 24 horas Total: 16 horas Total: 16 horas Total: 8 horas 

2 ?  FASE Deberán cursarse como mínimo DURACION: 7 SEMANAS 
cinco asignaturas de esta fase 

ASIGNATURAS ESPECIFICAS 

Leyes de 
Comportamiento 

de Materiales 

Análisis de 
estructuras c l 
3 h./sem. 

Total: 21 h. 

I 
Problemas de 

Dinámica 

2 h./sem. 
Total: 14 h. 

1 
Técnicas de 

Diseño Gráfico 

2 h ./sem. 
Total: 14 h .  

I 
Mecánica de 

Fracturas 

2 h./sem. 
Total: 14 h .  

Hidrología 
Subterránea 

2.h.Isem. 
Total: 14 h. Total. 14 h .  2 h./sem. Total: 14 h. 

Total: 14 h .  
Para mayor información escribir a: 

Secretaría del Curso sobre Métodos Avanzados de Diseño y Análisis Numérico en Ingeniería 
E .T .S. Ingenieros de Caminos, Canales y Puertos 

Jordi Girona Salgado, 31 - 08034 Barcelona - España - Teléfono (93) 204 82 52 

Transmisión del 
calor y 

problemas 
análogos 

Problemas 
Geotécnicos 

Problemas de : 
Fluidos 

2 h ./sem. 2 h./sem. 


