A TOTAL LAGRANGIAN FORMULATION
FOR THE GEOMETRICALLY NONLINEAR ANALYSIS
OF STRUCTURES USINGFINITE ELEMENTS.
PART I. TWO-DIMENSIONAL PROBLEMS:
SHELL AND PLATE STRUCTURES

J. OLIVER AND E. OÑATE
E.T.S. Ingenieros de Caminos, Jorge Girona Salgado 31, Barcelona, Spain

SUMMARY
A total Lagrangian finite element formulation for the geometrically nonlinear analysis (large
displacement/large rotations) of shells is presented. Explicit expressions of all relevant finite element matrices
are obtained by means of the definition of a local co-ordinate system, based on the shell principal curvature
directions, for the evaluation of strains and stresses. A series of examples of nonlinear analysis of shell and
plate structures is given.

INTRODUCTION
The development of new and efficient formulations for nonlinear analysis of structures has
attracted the study of many researchers in the past few years, and different alternative formulations
have been presented recently. From the various structural types existing, especial
interest has been focused on the numerical study of shell-plate or arch-beam structures, due mainly
to the fact that most real engineering structural problems can be included into one of those two
categories.

The present work falls within such a context of research, and can be classified as another effort to
try to find a 'simple' and 'economical' formulation for the analysis of shell, plate, beam or arch-type
structures which allows for geometrical nonlinearities due to the existence of large
displacement/large rotations in the structure.

The formulation uses two-dimensional 'degenerated shell' finite elements for the study of three-
dimensional shells and plates, and one-dimensional elements for the analysis of arch, beam and
axisymmetric shell structures. A total Lagrangian approach has been chosen for the definition of
the deformation process of the structure.

Stress and strains are defined with respect to a local co-ordinate system intrinsic to the structure.
In the case of shells, the co-ordinate axes coincide with the principal curvature directions and the
normal vector at each point. Explicit forms of most finite element matrices can be obtained in a
straightforward manner, as will be detailed later.

Normals to the midsurface before deformation are assumed to remain straight, but not
necessarily normal to the midsurface after deformation, thus allowing for shear deformation effects.
Moreover, zero elongation of the normal during deformation is strictly considered. Finally, it is

0029-5981/84/122253-29$02.90
© 1984 by John Wiley & Sons, Ltd.

Received 23 May 1983
Revised 16 November 1983
also worth noting that no restrictions are made on the magnitude of the shell curvatures. This might be of special interest for the analysis of non-shallow shells using a relatively small number of elements.

In this paper, the two-dimensional formulation to deal with three-dimensional shell (plate) problems is presented. Part two of this work dealing with one-dimensional structural problems (axisymmetric shells, arches and beams) will be published shortly.

In the first part of the paper the general finite element formulation for geometrically nonlinear analysis of shells is presented in detail and explicit expressions for most finite element matrices are given. Then, a series of examples of nonlinear analysis of shell and plate problems is presented.

GEOMETRIC DESCRIPTION

The middle surface of a general shell structure, such as the one shown in Figure 1, can be expressed in parametric form\(^{20}\) as

\[
\mathbf{r}_0 = \begin{cases}
 x_0(\mu_1, \mu_2) \\
y_0(\mu_1, \mu_2) \\
z_0(\mu_1, \mu_2)
\end{cases}
\]

(1)

In equation (1) \(\mu_1, \mu_2\) = constant and \(\mu_2, \mu_3\) = constant are the principal curvature lines of the shell middle surface. These lines are orthogonal at each point.

At each point, \(O\) of the middle surface, unit vectors \(a\) and \(b\) tangents to curvature lines \(\mu_1\) and \(\mu_2\) in \(O\), respectively, and \(\mathbf{n}\) normal to the middle surface in \(O\), are defined. Also, parameters \(r, s\) and \(t\) will be defined as the lengths measured along lines \(\mu_1\) and \(\mu_2\) and along the normal direction, \(\mathbf{n}\), respectively.

A second set of orthogonal vectors \(l, m\) and \(n\) can be defined at each point, as shown in Figure 2. In Equation (2), \(\mathbf{n}^*\) is a vector tangent to the plane \(\mathbf{n}\) and tangent to the shell middle surface, \(\mathbf{n}\) is the normal vector, previously defined, and \(\mathbf{m}\) is orthogonal to the plane \(\mathbf{n}^*\), and also tangent to the shell middle surface at point \(O\). Note that, due to their definition, vectors \(l\) and \(m\) are not unit vectors, and their modulus is \(c = (1 - n_j^2)^{1/2}\).

\[
\begin{align*}
\mathbf{a} & = \frac{\delta \mathbf{n}}{\delta r} \\
\mathbf{b} & = \frac{\delta \mathbf{n}}{\delta s} \\
\mathbf{n} & = \mathbf{a} \times \mathbf{b}
\end{align*}
\]

\[
\begin{align*}
\|\mathbf{a}\| = \|\mathbf{b}\| = \|\mathbf{n}\| = 1 \\
\frac{\delta \mathbf{n}}{\delta r} = -\frac{1}{R_r} \mathbf{a} \\
\frac{\delta \mathbf{n}}{\delta s} = -\frac{1}{R_s} \mathbf{b}
\end{align*}
\]

\(R_r, R_s = \) principal curvature radius

Figure 1. Definition of vectors \(a, b\) and \(n\)
The components of vectors a, b, n, l and m in the global reference system x, y, z (with associated unit vectors i, j, k, respectively, see Figure 2) can be written in matrix form as

\[
\begin{align*}
\mathbf{a} &= \begin{pmatrix} a_x \\ a_y \\ a_z \end{pmatrix}, \\
\mathbf{b} &= \begin{pmatrix} b_x \\ b_y \\ b_z \end{pmatrix}, \\
\mathbf{n} &= \begin{pmatrix} n_x \\ n_y \\ n_z \end{pmatrix}, \\
\mathbf{l} &= \begin{pmatrix} l_x \\ l_y \\ l_z \end{pmatrix}, \\
\mathbf{m} &= \begin{pmatrix} m_x \\ m_y \\ m_z \end{pmatrix}
\end{align*}
\] (2)

where indices x, y and z refer to components associated to unit vectors i, j and k, respectively.

It can be seen in Figure 2 that vectors a, b and n define a set of local axes x', y' and z', associated with the shell principal curvature lines and their normal vector, respectively. On the other hand, vectors l, m and n define a second set of axes \bar{x}, \bar{y} and \bar{z}, which although it can also be considered as 'local', is more easily identified within the structure (\bar{x} is parallel to plane xz, etc.).

A point over the shell middle surface can be defined by a vector r (see Figure 1) such that

\[
r = r_p = r_0 + t \cdot n
\] (3)

or

\[
r = \begin{pmatrix} x \\ y \\ z \end{pmatrix} = r_0(r, s) + t \cdot n(r, s)
\] (4)

Using equation (4) and the relationships shown in Figure 1, the Jacobian matrix of the transformation $xyz \rightarrow rst$ can be written as

\[
\frac{\partial (x, y, z)}{\partial (r, s, t)} = \begin{bmatrix} \frac{\partial x}{\partial r} & \frac{\partial x}{\partial s} & \frac{\partial x}{\partial t} \\ \frac{\partial y}{\partial r} & \frac{\partial y}{\partial s} & \frac{\partial y}{\partial t} \\ \frac{\partial z}{\partial r} & \frac{\partial z}{\partial s} & \frac{\partial z}{\partial t} \end{bmatrix} = T^T \cdot R
\] (5)
where \mathbf{T} is the orthogonal Jacobian matrix of the transformation $x'y'z' \rightarrow xyz$ given by

$$
\mathbf{T} = \begin{bmatrix}
\frac{\partial(x', y', z')}{\partial(x, y, z)} \\
\frac{\partial(x', y', z')}{\partial(r, s, t)}
\end{bmatrix}
= \begin{bmatrix}
a_x & a_y & a_z \\
b_x & b_y & b_z \\
n_x & n_y & n_z
\end{bmatrix}
$$

(6)

and

$$
\mathbf{R} = \begin{bmatrix}
\frac{\partial(x', y', z')}{\partial(r, s, t)} \\
\frac{\partial(x', y', z')}{\partial(r, s, t)}
\end{bmatrix}
= \begin{bmatrix}
1 - \frac{t}{R_z} & 0 & 0 \\
0 & 1 - \frac{t}{R_y} & 0 \\
0 & 0 & 1
\end{bmatrix}
$$

(7)

is the Jacobian matrix of the transformation $x', y', z' \rightarrow r, s, t$.

Another matrix of special interest is that defining the components of vectors l, m and n in the system \mathbf{a}, \mathbf{b} and \mathbf{n}. From the definition of these vectors (see Figure 2) it is easy to obtain

$$
[l, m, n] = [l, b, n] \mathbf{T}
$$

(8)

Figure 3. Typical eight-node isoparametric element. Normalized co-ordinate system and associated normalized volume.
with

\[
\mathbf{T} = \begin{bmatrix}
 b_y & a_y & 0 \\
 -a_y & b_y & 0 \\
 0 & 0 & 1
\end{bmatrix}
\]

(9)

It is now possible to define the shell geometry in an approximate isoparametric form \(^{24}\) as

\[
\mathbf{r} = \sum_i N_i(\xi, \eta) \mathbf{r}_i + \tau \frac{h}{2} \mathbf{m}(\xi, \eta)
\]

(10)

where \(\mathbf{r}_i\) is the position vector of each node of a mesh of finite elements discretizing the shell middle surface (Figure 3), \(n\) the number of nodes of each element, \(N_i\) the shape function of node \(i\), \(\xi\) and \(\eta\) the normalized isoparametric co-ordinates over the shell midsurface, and \(\tau\) the third normalized co-ordinate. This \(\tau\) co-ordinate is defined as

\[
\tau = 2t/h
\]

(11)

where \(h\) is the thickness of the element. Finally, the normal vector \(\mathbf{m}(\xi, \eta)\) of equation (10) can be obtained from the approximate isoparametric middle surface and the expressions shown in Figure 1.

Equation (10) transforms the element volume into a cube of unit side defined in the co-ordinate system \(\xi, \eta, \tau\) (see Figure 3).

KINEMATIC DESCRIPTION

The deformation of the shell is based on the following two main assumptions:

1. Normal to the shell middle surface before deformation remain straight, but not necessarily normal to the middle surface after deformation. This assumption has been frequently used in the context of linear and nonlinear analysis of "thick" shells and plates by many authors.\(^ {3,6,10,15,19}\)

2. The length of the normal vector to the shell middle surface does not change during the deformation. This assumption, already suggested in alternative nonlinear shell formulations,\(^ 6\) is strictly satisfied here by imposing that the unit length of the normal to the shell middle surface before deformation remains constant during the deformation process.

The first assumption allows to express the displacement vector \(\mathbf{u}\) of a point \(P\) laying over the normal \(n\) at a distance \(t\) from the corresponding point \(O\) over the middle surface (see Figure 4), in terms of the displacement vector of point \(O\), \(\mathbf{u}_o\), and the relative displacement of the end of the normal vector in \(O\), with respect to point \(P\), \(\mathbf{u}\), as

\[
\mathbf{u} = \mathbf{u}_o + \mathbf{a} \mathbf{u}_1
\]

(12)

The vector of ‘fundamental displacements’ \(\mathbf{p}\) is defined now as

\[
\mathbf{p} = \{u_{\alpha}, v_{\alpha}, w_{\alpha}, \bar{u}_1, \bar{v}_1, \bar{w}_1\}^T
\]

(13)

where \(u_{\alpha}, v_{\alpha}, w_{\alpha}\) are the components of \(\mathbf{u}_o\) in the global system \(i, j, k\), and \(\bar{u}_1, \bar{v}_1, \bar{w}_1\) are the components of \(\mathbf{u}_1\), in the system \(l, m, n\), previously defined (see Figure 4).

Vector \(\mathbf{p}\) defines generically the displacement of any point of the shell and it can be interpolated, within each element of the finite element mesh, in terms of its nodal values \(p_i\) as

\[
\mathbf{p}(\xi, \eta) = \sum_i N_i(\xi, \eta) \mathbf{p}_i \quad N_i = N_i^i_1 1_6
\]

(14)
\[p_i = \begin{pmatrix} u_{0}, v_{0}, w_{0}, u_{1}, v_{1}, w_{1} \end{pmatrix}^T \]

is the value of \(p \) at node \(i \).

On the other hand, the second assumption allows to express the displacements \(\tilde{u}_{1}, \tilde{v}_{1}, \) and \(\tilde{w}_{1}, \) due to the rotation of the normal \(n \) at node \(i \), in terms of the angles \(\alpha \) and \(\beta \) defined in Figure 5, as

\[\tilde{u}_{1} = \begin{pmatrix} \tilde{u}_{1}, \tilde{v}_{1}, \tilde{w}_{1} \end{pmatrix}^T = \begin{pmatrix} -\sin \alpha \cos \beta, -\sin \alpha \sin \beta, \cos \alpha - 1 \end{pmatrix}^T. \]

Figure 6(a) shows the relationship between angles \(\alpha \) and \(\beta \) with the two components \(\theta_{x} \) and \(\theta_{y} \) of the rotation vector, \(\theta_{i} \), of point \(i \), tangent to the middle surface at point \(i \). Vector \(\theta_{i} \) expresses the anticlockwise rotation of the normal.

It is worth noting that equation (16) leads to the equality \(\| n_{1} \| = \| n_{1} + u_{1} \| = 1 \). This is consistent with the second assumption of zero elongation of the unit normal independently of the magnitude of the rotations (large rotations formulation). Also, equation (16) and the relationships shown in Figure 6, allow us to reduce to five the number of nodal displacement unknowns. Therefore, the vector of displacements for node \(i \) is simply

\[a_{i} = \begin{pmatrix} u_{0}, v_{0}, w_{0}, \theta_{x}, \theta_{y} \end{pmatrix}^T \]

Finally, it is worth pointing out that the definition of rotations (and their associated bending moments), shown in Figure 6 (b), is consistent with the definition of the work of the bending moments obtained as a scalar product of vectors \(M_{i} \) and \(\theta_{i} \), i.e.

\[M_{i} \cdot \theta_{i} = M_{x}, \theta_{x} + M_{y}, \theta_{y} \]
Let us define $u' = [u', v', w']^T$ as the vector containing the components of the displacement vector u at any point of the shell measured in the co-ordinate system defined by vectors a, b and n, corresponding at a particular point, O, laying over the shell middle surface, i.e.

$$u = u'a + v'b + w'n$$ \hspace{1cm} (19)
The vector of displacement gradients at a point, \(P \), laying over the normal vector in \(O \) (see Figure 4) can be defined now as

\[
g = \begin{bmatrix} g_1 \\ g_2 \\ g_3 \end{bmatrix}
\]

with

\[
g_1 = \begin{bmatrix} \frac{\partial u'}{\partial x'} \\ \frac{\partial u'}{\partial y'} \\ \frac{\partial w'}{\partial x'} \end{bmatrix}, \quad g_2 = \begin{bmatrix} \frac{\partial u'}{\partial y'} \\ \frac{\partial u'}{\partial z'} \\ \frac{\partial w'}{\partial y'} \end{bmatrix}, \quad g_3 = \begin{bmatrix} \frac{\partial u'}{\partial z'} \\ \frac{\partial u'}{\partial x'} \\ \frac{\partial w'}{\partial z'} \end{bmatrix}
\]

where subscript \(P \) denotes values in point \(P \).

Thus, the Green strain vector at point \(P \) (associated with the local directions \(x', y', z' \) of Figure 2) can be written using equation (21) as (see Appendix I).

\[
g = \begin{bmatrix} \varepsilon_{xx} \\ \varepsilon_{yy} \\ \varepsilon_{zz} \varepsilon_{xy} \\ \varepsilon_{xz} \\ \varepsilon_{yz} \end{bmatrix} = \begin{bmatrix} g_1 + \frac{1}{2}(g_1^2 + g_2^2 + g_3^2) \\ g_2 + \frac{1}{2}(g_2^2 + g_3^2 + g_1^2) \\ g_3 + \frac{1}{2}(g_3^2 + g_1^2 + g_2^2) \\ g_1 + g_2 + g_3 + g_{12} + g_{13} + g_{23} + g_{123} + g_{1234} \\ g_2 + g_3 + g_1 + g_{12} + g_{13} + g_{23} + g_{123} + g_{1234} \end{bmatrix}
\]

On the other hand, vector \(g \) can be obtained in terms of the fundamental displacement vector, \(p \), of equation (13) as (see Appendix I).

\[
g = \begin{bmatrix} g_1 \\ g_2 \\ g_3 \end{bmatrix} = \mathbf{L} \cdot \mathbf{p} = \begin{bmatrix} C_r \frac{\partial}{\partial r} & \frac{1}{2}C_r \left(\Lambda_1 + \frac{\partial}{\partial r} \right) \\ C_s \frac{\partial}{\partial z} & \frac{1}{2}C_s \left(\Lambda_2 + \frac{\partial}{\partial z} \right) \\ 0 & T \mathbf{I} \end{bmatrix} \begin{bmatrix} u_0 \\ u_1 \end{bmatrix}
\]

with

\[
C_r = \frac{1}{1 - t/R_r}
\]

\[
C_s = \frac{1}{1 - t/R_s}
\]

\[
\Lambda_1 = \frac{1}{R_r} \begin{bmatrix} 0 & -n_x & 0 \\ -n_x & 0 & 0 \\ b_y & a_y & 0 \end{bmatrix}
\]

\[
\Lambda_2 = \frac{1}{R_s} \begin{bmatrix} n_x & 0 & 0 \\ 0 & n_x & -1 \\ -a_x & b_x & 0 \end{bmatrix}
\]
Substituting equation (14) in equation (23) it can be finally written
\[g = L \cdot \sum_t^p N_t \cdot p_t = \sum_t^p M_t \cdot p_t \]
(28) where
\[M_t = \begin{bmatrix} C_t \cdot \frac{\partial N_t}{\partial r} & t C_t \left(N_s \Delta_s + \frac{\partial N_t}{\partial \tau} \right) \\ C_t \cdot \frac{\partial N_t}{\partial s} & t C_t \left(N_s \Delta_s + \frac{\partial N_t}{\partial \tau} \right) \\ 0 & N_s \Delta_s \end{bmatrix} \]
(29)

Computation of the strain increment vector

Taking into account the linearity of \(M_t \), we can write from equation (28) that
\[\delta g = \sum_t^p M_t \delta p_t \]
(30)

Using the expressions of Figure 6 and differentiating equation (16) a relationship between fundamental displacement and nodal displacement increments at a node can be found in the form
\[\delta p_t = C_t \delta a_t \]
(31)

where
\[C_t = \begin{bmatrix} I_3 & 0 \\ 0 & V_t \end{bmatrix}, \quad V_t = \begin{bmatrix} V_{1t} & V_{2t} \\ V_{3t} & V_{4t} \end{bmatrix} \]
(32)

\[V_{1t} = -\frac{1}{e_t} \left(\cos \alpha_t \cos^2 \beta_t + \frac{\sin \alpha_t}{\alpha_t} \sin^2 \beta_t \right) \]
\[V_{2t} = -\frac{1}{e_t} \sin \beta_t \cos \beta_t \left(\cos \alpha_t - \frac{\sin \alpha_t}{\alpha_t} \right) \]
\[V_{3t} = -\frac{1}{e_t} \left(\cos \alpha_t \sin^2 \beta_t + \frac{\sin \alpha_t}{\alpha_t} \cos^2 \beta_t \right) \]
\[V_{4t} = -\sin \alpha_t \cos \beta_t \]
\[V_{5t} = -\sin \alpha_t \sin \beta_t \]
(33)

Thus, after substituting equation (31) in equation (30), we have
\[\delta g = \sum_t^p M_t \cdot C_t \delta a_t = \sum_t^p G_t \delta a_t \]
(34)

with
\[G_t = M_t \cdot C_t = \begin{bmatrix} C_t \cdot \frac{\partial N_t}{\partial r} & t C_t \left(N_s \Delta_s + \frac{\partial N_t}{\partial \tau} \right) \\ C_t \cdot \frac{\partial N_t}{\partial s} & t C_t \left(N_s \Delta_s + \frac{\partial N_t}{\partial \tau} \right) \\ 0 & N_s \Delta_s \end{bmatrix} \]
(35)
Equation (35) shows the nonlinearity of matrix G_i due to matrix V_i of equation (32), whose terms are functions of the nodal rotations. A more explicit form of matrix G_i is given in Table I. Additionally, details of the computation of the curvature radius and derivatives of shape functions, which appear in the expression of G_i of Table I, are given in Appendix II.

The relationship between Green strains and nodal displacement increments is obtained from equation (22). As

$$
\delta \varepsilon = A \cdot \delta g
$$

(36)

with

$$
A = \begin{bmatrix}
1 + g_1 & g_2 & g_3 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & g_4 & 1 + g_5 & g_6 & 0 & 0 \\
g_7 & g_8 & 1 + g_9 & 0 & 0 & 0 & 1 + g_1 & g_2 & g_3 \\
0 & 0 & 0 & g_7 & g_8 & 1 + g_9 & g_4 & 1 + g_5 & g_6 \\
\end{bmatrix}
$$

(37)

and after substitution of equation (30) in (36) it can be finally written

$$
\delta \varepsilon = A \cdot \sum_i G_i \cdot \delta a_i = \sum_i B_i \delta a_i
$$

(38)

$$
B_i = A \cdot G_i
$$

(39)

CONSTITUTIVE EQUATIONS

The second Piola–Kirchhoff stress vector, corresponding to the Green strain vector of equation (22), is defined now as

$$
\sigma = [\sigma_x, \sigma_y, \tau_{xy}, \tau_{xz}, \tau_{yz}, \tau_{zz}]^T
$$

(40)

where x', y' and z' are the local axes defined in Figure 2.

The constitutive relationship must be incorporated to the general formulation in an incremental, or rate form, of the type

$$
\delta \sigma = D^* \delta \varepsilon
$$

(41)

We will not go into details of the different forms of matrix D^* for the various types of material behaviour. A comprehensive study of the usually accepted constitutive equations for nonlinear structural analysis can be found in Reference 8.

DISCRETIZED EQUILIBRIUM EQUATIONS

The discretized equilibrium equations for the structure are derived via the virtual work expression which, in its finite element total Lagrangian form, can be written as

$$
\Psi(a) = P(a) - R(a) = 0
$$

(42)

which for the ith node gives

$$
\Psi_i(a) = \int_Y B_i^T \cdot \sigma \, dV - R_i(a) = 0
$$

(43)

In equations (42), $\Psi(a)$ is the residual force vector and $R(a)$ is the equivalent nodal force vector due to exterior loads.

In this work the external loads have been assumed to be conservative. Therefore, vector R in
equation (42) can be taken as independent of the nodal displacements and equation (43) can be written as

$$\Psi_i(a) = \int_V \mathbf{B}_i^T \mathbf{d}V - \mathbf{R}_i$$ \hspace{1cm} (44)

Typical cases of external loads are as follows:

Point loads. For which vector \mathbf{R}_i has the form

$$\mathbf{R}_i = [f_{x_i}, f_{y_i}, f_{z_i}, M_{x_i}, M_{y_i}]^T$$ \hspace{1cm} (45)

in which $f_{x_i}, f_{y_i}, f_{z_i}$ are the point loads acting at node i along the global directions x, y, z, respectively, and M_{x_i} and M_{y_i} are the bending moments at node i of local axes \bar{x} and \bar{y}, respectively.

Surface loads

$$\mathbf{R}_i = \int_{\partial S_i} \begin{bmatrix} N_{x} t_{n}, N_{y} t_{n}, N_{z} t_{n}, 0, 0 \end{bmatrix}^T \mathbf{d}t$$ \hspace{1cm} (46)

where t_{n}, t_{e}, t_{t} are the intensities of a uniform load acting over the element middle surface along the global directions x, y, z, respectively.

Self weight

$$\mathbf{R}_i = -\int_{\partial S_i} \begin{bmatrix} 0, 0, N_{x}, 0, 0 \end{bmatrix}^T \rho g h \mathbf{d}t \mathbf{d}s$$ \hspace{1cm} (47)

where ρ is the element density, g the value of gravity (assumed to act along the vertical global axis z) and h the element thickness.

EQUATIONS SOLUTION METHOD—COMPUTATION OF THE TANGENT MATRIX

The solution of systems of equations like that of equation (42) for geometrically nonlinear structural problems, in which snap-through, snap-back, bifurcation, etc., phenomena might take place, has been the objective of numerous studies, and many solution strategies are available in the literature (i.e. standard or modified Newton–Raphson, quasi-Newton, BFGS, arc-length, conjugate gradient, creep-type methods, etc.).13,26 In this work, one of the simplest procedures—the standard Newton–Raphson solution combined with a load incremental method—has been chosen. However, the formulation presented in the paper allows us to use any other solution strategy based on the knowledge of the residual force vector of equation (42) and the tangent matrix $\mathbf{K}_F = \partial \Psi(a) / \partial a$.

In the Newton Raphson algorithm the incremental displacement vector, corresponding to the nth iteration, is calculated as

$$\Delta \mathbf{a} = -\mathbf{K}_F(a^*) \Psi(a^*)$$ \hspace{1cm} (48)

from which the updated displacement field can be computed as $a_{n+1} = a_n + \Delta a$. A convergence criterion based on the comparison of the quadratic norm of the residual force vector $\Psi(a)$, with that of the vector of external forces $\mathbf{R}(a)$, has been chosen. The iterative process stops when the relation value between both norms is less than a prescribed value ε. (In the examples presented in this paper, the value of $\varepsilon = 1$ per cent has been taken.)
A typical sub-matrix of \(K_{ij} \), linking nodes \(i \) and \(j \), can be obtained by

\[
K_{ij} = \frac{\partial \Psi_i(a)}{\partial a_j}
\]

(49)

Taking the first variation of equation (43), we obtain

\[
\delta \Psi_i(a) = \sum_{j=1}^{n} K_{ij} \delta a_i = \int_{V} \delta \mathbf{B}_i^T \cdot \sigma \, dV + \int_{V} \mathbf{B}_i^T \delta \sigma \, dV
\]

(50)

The second of the above integrals can be expressed, by making use of equations (38) and (41), as

\[
\int_{V} \mathbf{B}_i^T \cdot \delta \sigma \, dV = \sum_{j=1}^{n} \int_{V} \mathbf{B}_i^T \mathbf{D}^* \mathbf{B}_j \, dV \delta a_j = \sum_{j=1}^{n} K_{ij}^* \delta a_j
\]

(51)

with

\[
K_{ij}^* = \int_{V} \mathbf{B}_i^T \mathbf{D}^* \mathbf{B}_j \, dV
\]

(52)

On the other hand, the first integral of the right-hand side of equation (50) can be written, using equation (39), as

\[
\int_{V} \delta \mathbf{B}_i^T \sigma \, dV = \int_{V} \mathbf{G}_i^T \delta \mathbf{A}^T \cdot \sigma \, dV + \int_{V} \delta \mathbf{G}_i^T \cdot \mathbf{A}^T \cdot \sigma \, dV
\]

(53)

The above integrals can be transformed as follows. Using equations (37), (40) and (34) it can be written

\[
\int_{V} \mathbf{G}_i^T \delta \mathbf{A}^T \cdot \sigma \, dV = \int_{V} \mathbf{G}_i^T \cdot S \cdot \delta \sigma \, dV = \sum_{j=1}^{n} \int_{V} \mathbf{G}_i^T \cdot S \cdot \mathbf{G}_j \, dV \delta a_j = \sum_{j=1}^{n} K_{ij}^{**} \delta a_j
\]

(54)

with

\[
K_{ij}^{**} = \int_{V} \mathbf{G}_i^T \mathbf{S} \mathbf{G}_j \, dV
\]

(55)

where

\[
S = \begin{bmatrix}
\sigma_x I_3 & \tau_{xy} I_3 & \tau_{xz} I_3 \\
\tau_{xy} I_3 & \sigma_y I_3 & \tau_{yz} I_3 \\
\tau_{xz} I_3 & \tau_{yz} I_3 & 0
\end{bmatrix}
\]

(56)

The second integral of the right-hand side of equation (56) can be written as

\[
\int_{V} \delta \mathbf{G}_i^T \cdot \mathbf{A}^T \cdot \sigma \, dV = \sum_{j=1}^{n} K_{ij}^{**} \delta a_j
\]

(57)

Matrix \(K^{**} \) of equation (57) can be simply obtained using the fact that \(\mathbf{M}_i \) is independent of the nodal unknowns. Thus, it can be written, making use of equations (35), (32) and (29).

\[
\delta \mathbf{G}_i = \delta \mathbf{C}_i^T \cdot \mathbf{M}_i = \begin{bmatrix}
0 & 0 \\
0 & \delta \mathbf{V}_i^T
\end{bmatrix} \begin{bmatrix}
\mathbf{M}_i^T \\
\delta \mathbf{V}_i^T \cdot \mathbf{M}_i^T
\end{bmatrix}
\]

(58)

Now, since matrix \(\mathbf{V}_i \) is a function of the nodal rotations \(\theta_{x_i} \) and \(\theta_{y_i} \), only, it can be finally obtained

\[
K_{ij}^{**} = 0 \text{ for } i \neq j
\]

(59)
\[
K^\alpha_{ii} = \begin{bmatrix}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & H_{11} & H_{12} \\
0 & 0 & 0 & H_{21} & H_{22}
\end{bmatrix}
\]
(60)

where

\[
\begin{bmatrix}
H_{11} \\
H_{21}
\end{bmatrix} = \int \frac{\partial V^I}{\partial \theta_i} \bar{M}_I^T A^T \sigma dV, \\
\begin{bmatrix}
H_{12} \\
H_{22}
\end{bmatrix} = \int \frac{\partial V^I}{\partial \theta_i} \bar{M}_I^T A^T \sigma dV
\]
(61)

An explicit form of \(\partial V_i / \partial \theta_i\) and \(\partial V_i / \partial \theta_i\) matrices is presented in Appendix III. There it can be seen that \(H_{12} = H_{21}\) and, therefore, \(K^\alpha_{ii}\) is a symmetric matrix.

From equations (51), (54) and (57) we can finally write the full tangent matrix as

\[
K_{T,i} = K_{T,ij} + K_{T,ii} + K_{T,ij}^{ji}
\]
(62)

where \(K_{T,ij}, K_{T,ii}\) and \(K_{T,ij}^{ji}\) are obtained by equations (52), (55) and (59)–(60) respectively.

EXTENSIONS FOR KINKED SHELLS

The shell formulation presented in previous sections is valid only for smooth shells. However, extensions to allow for kinks (folded plate structures) are simple. They only imply the adequate transformation of the two local rotations \(\theta_i, \theta_j\) into the global co-ordinate system, so that at a common node all the nodal forces contributed by the different elements meeting at the node are assembled in the same global system. The number of nodal unknowns then increases from five to six due to appearance of an extra nodal rotation after the transformation process. Such transformation can be easily done by using, in the first place, matrix \(T\) of equation (9) to transform the two local rotations from the \(I, m, n\) axes, where they are originally defined, to the \(a, b, n\) axes. Then, matrix \(T\) (see equation (6)) can be used for the final transformation into the global axes. It can be easily shown that

\[
\bar{\theta}_i = T_\theta \begin{bmatrix}
\theta_{e_i} \\
\theta_{e_j}
\end{bmatrix} = T_\theta \begin{bmatrix}
\theta_{e_i} \\
\theta_{e_j}
\end{bmatrix}
\]
(63)

with

\[
T_\theta = \begin{bmatrix}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{bmatrix} T_\theta^T \begin{bmatrix}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 1
\end{bmatrix}
\]
(64)

where \(e_i\) is the scaling factor defined in Figure 5.

The tangent matrix after the transformation \(K_T\), can be computed as

\[
K_{T,ij} = \bar{T}_i K_{T,ij} \bar{T}_j
\]

where

\[
\bar{T}_i = \begin{bmatrix}
I_3 & 0 \\
0 & T_\sigma^*
\end{bmatrix}, \quad K_{T,ij}^* = \begin{bmatrix}
K_{T,ij} & 0 \\
0 & 0
\end{bmatrix}
\]
(65)

Some precautions must be taken if the above transformations are performed for nodes which lay on smooth zones of the shell, since singularity of matrix \(K_T\) will arise in those cases. This can be avoided by a selective transformation of rotations in the adequate nodes only, or by inserting an arbitrary number in the zero pivot coefficient at the equation solution stage.
NUMERICAL INTEGRATION AND CHOSEN FINITE ELEMENT

All the different integrals have been evaluated using a Gauss–Legendre numerical integration quadrature.

It is worth noting from (7) that for the volume integrals

\[
dV = dx'dy'dz' = \left| \frac{\partial(x'y'z')}{\partial(r,s,t)} \right| drdsdt = \det |R| drdsdt \\
= (1 - t/R_x)(1 - t/R_y) drdsdt
\]

(66)

On the other hand, from equation (10) and (15),

\[
drd\zeta = \left| \frac{\partial(r,s)}{\partial(\zeta,\eta)} \right| d\zeta d\eta = \left| \frac{\partial(x_\theta,y_\theta)}{\partial(\zeta,\eta)} \right| \left| \frac{\partial(x_\theta,y_\theta)}{\partial(r,s)} \right| d\zeta d\eta
\]

(67)

\[
d\tau = \frac{h}{2} d\tau
\]

\[
z = m(1 - \frac{x^2}{a^2})(1 - \frac{y^2}{b^2})
\]

Figure 7. Parabolic shell under central point load. Geometry, material properties and finite element mesh used in the analysis.
Thus, from (66) and (67),

$$\frac{\partial x_0}{\partial \xi} \frac{\partial y_0}{\partial \eta} \frac{\partial x_0}{\partial \xi} \frac{\partial y_0}{\partial \eta} = \left(1 - \frac{t}{R_s}\right) \left(1 - \frac{t}{R_e}\right) \frac{h}{2} \frac{\partial x_0}{\partial \xi} \frac{\partial y_0}{\partial \eta} \frac{\partial x_0}{\partial \xi} \frac{\partial y_0}{\partial \eta} \frac{d\xi}{d\eta} \frac{d\eta}{d\xi} \frac{d\tau}{d\xi}$$

Equation (68) allows the use of the normalized domain of Figure 3 for the numerical integration of all volume integrals.

With respect to the type of element chosen for the examples analysed, we have to note that the formulation presented here can, in fact, be classified within the range of 'thick shell formulations' and, therefore, any of the reduced integration family of elements recently developed to deal with thick/thin shells could be used. For the examples presented in this paper, the eight-noded isoparametric element with the following integrating rule has been chosen:

1. Reduced integration (2×2 Gauss–Legendre rule) along directions ξ and η over the middle surface of the shell
2. A two-point integration rule over the thickness (t direction) for the elastic solutions and 4–8 points for the elastoplastic solutions.

We are fully aware of some deficiencies found for this element in the range of very thin shells. However, this element has been chosen here with the only objective of testing the formulation presented. Thus, all examples have been restricted to moderately thin shells. The numerical results obtained have been very accurate, as will be shown in later sections.

![Figure 8. Parabolic shell. Normalized plot of the elastic central displacement versus for three different types of boundary conditions](image-url)
All the examples presented below have been solved in a VAX/VMS 11/780 computer using single precision.

Example 1. Parabolic shell–elastic analysis

The geometry of the shell and finite element mesh used can be seen in Figure 7. The problem has been analysed by a process of incrementing the central deflection from a zero initial value to a value of 50 in.

Numerical results obtained for the central displacement load elastic curve obtained for different types of boundary conditions at the shell edges are presented in Figure 8. Numerical results obtained by Wood with paralinear three-dimensional shell elements are also shown for comparison. Note the differences between the boundary conditions imposed by Wood and those used in the present analysis.

![Diagram of shell and finite element mesh](image)

Figure 9. Simply-supported square plate. Uniform loading. Geometry, material properties and finite element mesh used in the analysis.
Example 2. Simply-supported square plate—elastic analysis

In this example a simply-supported square plate under an increasing uniform vertical load has been analysed. The geometry of the plate, material properties and finite element mesh used can be seen in Figure 9. Note that only a quarter of the plate has been analysed due to symmetry. Numerical results obtained for the load intensity—central deflection elastic curve are plotted in

Figure 10. Simply-supported square plate. Normalized plot of the elastic central deflection versus load intensity for two different values of the Poisson ratio

Figure 11. Simply-supported square plate. Normalized plot of the central deflection versus load intensity for three different thickness—width ratios.
Figure 10, where results obtained by Levy⁹ are also presented for comparison. Excellent agreement between the two solutions is obtained. Finally, the same problem has been analysed for different thickness–width ratios and numerical results for the load–deflection curve can be seen in Figure 11. It can be seen in these figures that the behaviour of the reduced integration eight-noded element used for the thick and moderately thin situations is good. Further research in this context for other different types of elements is actually on course.

Example 3. Cylindrical shell—elastic analysis

The cylindrical shell studied can be seen in Figure 12. Note that only four elements have been used to discretize one quarter of the structure (due to symmetry). The shell is assumed to be simply supported on its straight edges and free on the curved ones. In the analysis presented, an increasing

![Diagram of cylindrical shell](image)

\[R = 2540 \text{ mm} \]
\[t = 254 \text{ mm} \]
\[h = \text{thickness} = 12.7 - 6.35 \text{ mm} \]
\[\theta = 0.1 \text{ radians} \]
\[E = 3.0275 \text{ kN/mm}^2 \]
\[J = 0.3 \]

Figure 12. Cylindrical shell under central point load. Geometry, material properties and finite element mesh used in the analysis.
displacement, w, is prescribed in point A and the corresponding vertical reaction force, F, obtained. In Figure 13, the load–deflection paths for points A (central) and B (mid-point of the free edge) for a shell thickness of 12.7 mm are presented. It can be seen that there is a snap-through point for a value of the force $F = 2.2$ kN. The control of the vertical displacement of point A allows us to obtain all the load values along the deflection path. Numerical results agree well with those obtained by Sabir and Lock17 and Surana.19 When the shell thickness is reduced to half its value (6.35 mm) the load–deflection curve presents a snap-through point for $F \approx 0.6$ kN, together with a snap-back one (vertical tangent) for a value of the deflection $w_p \approx 17$ mm (see Figure 14). Numerical results show good agreement with those obtained by Sabir and Lock.17 However, we have to note that the method of controlling the displacement of point A has a drawback for this particular case, since no results can be obtained in the region between the two vertical tangents. Results in that particular region can be obtained by using more sophisticated solution procedures,25,26 as mentioned in the earlier section 'Equations solution method' which can be easily implemented in the shell formulation presented in this paper.
Example 4. Spherical shell—elastic and elasto-plastic analysis

The last example is the analysis of a spherical shell with fully-clamped edges under an increasing vertical point load acting in the centre of the shell, as can be seen in Figure 15. Again, due to symmetry, only a quarter of the structure has been considered. A mesh of 7 eight noded elements has been used (see Figure 15). Results for the load–deflection at the centre have been plotted in Figure 16 for the elastic case and good agreement with results obtained by Wood with a two-dimensional axisymmetric formulation is obtained.

An elasto-plastic solution has also been attempted for the same problem. A Von Mises yield criteria with no strain hardening and an initial yield stress of 5×10^6 psi has been chosen. Numerical results for the elasto-plastic load–displacement curve for different integrating rules across the shell thickness are plotted in Figure 17. Finally, a drawing of the plastic zones for a central deflection of 0.16 in. is shown in Figure 18.
CONCLUSIONS

A total Lagrangian finite element formulation for the geometrically nonlinear analysis (large displacements/large rotations) of shells has been developed.

The formulation allows for large curvatures in the shell surface and shear deformation effects. Explicit forms of the relevant finite element matrices have been given. The formulation presented here is the basis for obtaining simpler formulations for the geometrical nonlinear analysis of different structural types, i.e., plates, axisymmetric shells, arches or beams. The accuracy of the formulation has been checked in a series of examples of nonlinear analysis of shell and plate structures. Details of the simplification of the shell formulation presented here, for the nonlinear analysis of 'one-dimensional' structures, together with further examples which will test the efficiency of the formulation, will be published shortly.

Figure 15. Spherical shell under point load. Geometry, material properties and finite element mesh used in the analysis.
APPENDIX I: COMPUTATION OF THE L OPERATOR

Let \(P \) be the shell point in which the \(L \) operator is to be calculated and \(O \) the corresponding point over the shell middle surface in which vectors \(a_0, b_0 \) and \(a_0 \) and the local system of co-ordinates \(x'y'z' \) are defined (see Figure 19).

Let \(Q \) be another point laying over the shell normal at a distance \(r \) from its corresponding point \(M \) over the shell midsurface (see Figure 19) and let \(l, m \) and \(n \) be the vectors defined in point \(M \), as explained in the second section. Let finally

\[
\mathbf{u}_Q = \mathbf{u}_M + r^* \mathbf{u}_{1M}
\]

be the displacement vector of point \(Q \) in the system \(x'y'z' \).

On the other hand, from equations (21) and (17) it can be deduced that

\[
\mathbf{g}_1 = \left(\frac{\partial \mathbf{u}}{\partial r} \right)_p ; \quad \mathbf{g}_2 = \left(\frac{\partial \mathbf{u}}{\partial s} \right)_p ; \quad \mathbf{g}_3 = \left(\frac{\partial \mathbf{u}}{\partial t} \right)_p
\]
Figure 17. Spherical shell. Elastoplastic analysis. Plot of the central deflection versus load. Numerical results obtained with different integrating points through the shell thickness.

Figure 18. Spherical shell. Plastic zones for the maximum deflection of 0.16 in.
where C_r and C_s are defined in equations (24) and (25), and subscript p refers to values in point P. It can also be found that

$$ u'_M = T_0 \cdot u_M \quad \text{and} \quad u'_1 = T_0 \cdot [I, m, n] \cdot \dot{u}_M $$

(71)

where u_M and \dot{u}_M denote components in the global system xyz and local vector system lmn (in point M), respectively. Matrix T has been defined in equation (6) and subscript zero denotes values in point O.

Substituting equations (71) in (69) it is finally obtained that

$$ u'_0 = T_0 \cdot [u_M + t^* [I, m, n] \cdot \dot{u}_M] $$

(72)

Differentiation of equation (72) and substitution in equation (70) (making $Q \rightarrow P, M \rightarrow O$ and $t^* \rightarrow t$), yields

$$ g_1 = C_r T \frac{\partial u_0}{\partial r} + C_s t \left[T \frac{\partial \dot{u}_l}{\partial r} + \Delta_2 \dot{u}_l \right] $$

$$ g_2 = C_s T \frac{\partial u_0}{\partial s} + C_s t \left[T \frac{\partial \dot{u}_l}{\partial s} + \Delta_2 \dot{u}_l \right] $$

(73)

$$ g_3 = T \cdot \dot{u}_l $$

where matrices T, Δ_1 and Δ_2 are defined in equations (9), (26) and (27). From equation (73) the operator L of equation (23) can be directly obtained.
APPENDIX II: COMPUTATION OF THE PRINCIPAL CURVATURE DIRECTIONS, RADIUS OF CURVATURE AND SHAPE FUNCTION DERIVATIVES

The isoparametric expression

\[r_0 = \sum_{i=1}^{n} N_i(\xi, \eta) r_{0i} \] \hspace{1cm} (74)

defines a parametric form of the shell middle surface within each element for which the curvature directions and curvature radius can be calculated by simple application of formulae of differential calculus.\[18\]

Thus, let \(E, F, G \) and \(e, f, g \) be the coefficients of the fundamental expressions defining the shell surface, where

\[
E = \frac{\partial r_0}{\partial \xi} \frac{\partial r_0}{\partial \eta}, \quad F = \frac{\partial r_0}{\partial \xi} \frac{\partial r_0}{\partial \eta}, \quad G = \frac{\partial r_0}{\partial \xi} \frac{\partial r_0}{\partial \eta}
\]

\[
e = \frac{1}{\sqrt{(EG - F^2)}} \frac{\partial^2 r_0}{\partial \xi^2} \left(\frac{\partial r_0}{\partial \eta} \times \frac{\partial r_0}{\partial \eta} \right)
\]

\[
f = \frac{1}{\sqrt{(EG - F^2)}} \frac{\partial^2 r_0}{\partial \xi \partial \eta} \left(\frac{\partial r_0}{\partial \xi} \times \frac{\partial r_0}{\partial \eta} \right)
\]

\[
g = \frac{1}{\sqrt{(EG - F^2)}} \frac{\partial^2 r_0}{\partial \eta^2} \left(\frac{\partial r_0}{\partial \xi} \times \frac{\partial r_0}{\partial \eta} \right)
\] \hspace{1cm} (75)

The equation

\[(Fg - Gg)\lambda^2 + (Eg - Ge)\lambda + (Ef - Fe) = 0\] \hspace{1cm} (76)

where \(\lambda = \delta \xi / \delta \eta \) yields values of \(\lambda_1 \) and \(\lambda_2 \), which define two orthogonal directions in which the curvature has a maximum and a minimum, respectively. Such curvatures can be obtained by

\[
\frac{1}{R_1} = \frac{f + g \lambda_1}{F + G \lambda_1} = \frac{e + f \lambda_1}{E + F \lambda_1}
\]

\[
\frac{1}{R_2} = \frac{f + g \lambda_2}{F + G \lambda_2} = \frac{e + f \lambda_2}{E + F \lambda_2}
\] \hspace{1cm} (77)

The radius of curvature \(R_1 \) and \(R_2 \) are obtained as \(R_1 \) and \(R_2 \), respectively. The angles which the principal curvature directions form with the co-ordinate line \(\xi \) (which is easy to identify for each element, see Figure 20) are given by

\[
\gamma = \arccos \frac{E + \lambda_1 E}{\sqrt{E + 2\lambda_1 F + \lambda_1^2 G}}
\]

\[
\delta = \gamma + \frac{\pi}{2}
\] \hspace{1cm} (78)

It is well known that there might exist points on the shell surface in which all curvature directions are principal and they have the same radius of curvature (umbilical points). In such points, the angles \(\gamma \) and \(\delta \) have no particular meaning and they can be defined arbitrarily (in such cases, as happens with the problem of spherical shell, the curvature direction 'r' has been taken to coincide with local axis \(\xi \)).
\[\delta = y + \frac{\pi}{2} \]

Figure 20.

It can be proved\(^1,2\) that the derivatives of the shape functions with respect to the principal curvature directions are given by

\[
\begin{align*}
\frac{\partial N_i}{\partial r} &= \frac{\partial N_i}{\partial \zeta} + \lambda \frac{\partial N_i}{\partial \eta} \\
\frac{\partial N_i}{\partial s} &= \frac{\partial N_i}{\partial \zeta} + \lambda \frac{\partial N_i}{\partial \eta}
\end{align*}
\]

\[(79) \]

Finally, vectors \(\mathbf{a}, \mathbf{b} \) and \(\mathbf{n} \) can be evaluated from their definition shown in Figure 1 and equations (74) and (79).

APPENDIX III

Differentiation of the expressions of the components of vector \(\mathbf{V}_i \) of equations (32) and (33) leads to

\[
\begin{align*}
\frac{\partial \mathbf{V}_i}{\partial \theta_{x_i}} &= \begin{bmatrix} A_1 & A_2 & A_3 \\ A_2 & A_4 & A_5 \end{bmatrix}, \quad \frac{\partial \mathbf{V}_i}{\partial \theta_{y_i}} &= \begin{bmatrix} A_2 & A_4 & A_7 \end{bmatrix}
\end{align*}
\]

where

\[
\begin{align*}
A_1 &= \frac{\partial V_{1i}}{\partial \theta_{x_i}} = -\frac{1}{e_i} \left(\frac{\cos \alpha_i}{\sigma_i} - \frac{\sin \alpha_i}{\sigma_i^2} \right) \sin^2 \beta_i \cos \beta_i - \sin \alpha_i \cos^3 \beta_i \\
A_2 &= \frac{\partial V_{2i}}{\partial \theta_{x_i}} = \frac{\partial V_{1i}}{\partial \theta_{y_i}} = -\frac{1}{e_i} \left(\frac{\cos \alpha_i}{\sigma_i} - \frac{\sin \alpha_i}{\sigma_i^2} \right) \sin^3 \beta_i - 2 \sin \beta_i \cos^2 \beta_i \\
&\quad - \sin \alpha_i \sin \beta_i \cos^2 \beta_i
\end{align*}
\]
\begin{align*}
A_3 &= \frac{\partial V_3}{\partial \theta_1} = -\cos \alpha_i \cos^2 \beta_i - \frac{\sin \alpha_i \sin^2 \beta_i}{\alpha_i} \\
A_4 &= \frac{\partial V_4}{\partial \theta_1} = \frac{\partial V_4}{\partial \theta_1} = \frac{1}{\alpha_i} \left(\frac{\cos \alpha_i}{\alpha_i} - \frac{\sin \alpha_i}{\alpha_i^2} \right) (\cos^3 \beta_i - 2 \sin^2 \beta_i \cos \beta_i) \\
&\quad - \sin \alpha_i \sin^2 \beta_i \cos \beta_i \\
A_5 &= \frac{\partial V_5}{\partial \theta_1} = \frac{\partial V_5}{\partial \theta_1} = \frac{\sin \alpha_i}{\alpha_i} - \cos \alpha_i \sin \beta_i \cos \beta_i \\
A_6 &= \frac{\partial V_6}{\partial \theta_1} = \frac{\partial V_6}{\partial \theta_1} = \frac{1}{\alpha_i} \left[3 \left(\frac{\cos \alpha_i}{\alpha_i} - \frac{\sin \alpha_i}{\alpha_i^2} \right) \sin \beta_i \cos^2 \beta_i - \sin \alpha_i \sin^3 \beta_i \right] \\
A_7 &= \frac{\partial V_7}{\partial \theta_1} = \frac{\partial V_7}{\partial \theta_1} = -\cos \alpha_i \sin^2 \beta_i - \frac{\sin \alpha_i}{\alpha_i} \cos^2 \beta_i
\end{align*}

REFERENCES

GEOMETRICALLY NONLINEAR ANALYSIS OF STRUCTURES PART I