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Abstract. This study focuses on investigating numerically the dynamics of thin disks freely
falling inside viscous and incompressible fluids. We solve the model by using the finite element
method and the main falling modes are identified using the Reynolds number and dimensionless
inertia moment. The results are mapped in a phase diagram for comparison with existing
literature and validation of the simulations. The effect of introducing a hole in the disk geometry
is investigated, analyzing variations in trajectories and Strouhal numbers. Furthermore, falling
styles are quantified by examining the fluctuations of the orientation of the axis of the disks
over time. Additionally, a quantitative analysis of the solid body velocities for the fluttering
and tumbling modes highlights the significant differences between them. The study successfully
characterizes the main falling modes through qualitative and quantitative analyses.

1 INTRODUCTION

The phenomenon of bodies with different densities moving in a surrounding fluid presents
complex behaviors, which can be observed in everyday examples such as falling leaves from trees
or air bubbles rising in water. Predicting the trajectories of these bodies is highly challenging
since we can retrieve chaotic behavior. In the literature, various types of trajectories have been
reported, including steady falling, periodic oscillation, tumbling, and seemingly chaotic motion
[7],[8]. Even bodies with simple geometries can exhibit a wide range of behaviors, further adding
to the complexity of understanding and predicting their motions. The study of such dynamical
systems requires coupling the motion equations for the solid body with those of the surrounding
fluid. Due to the complexity and non-linearity of these equations, exact solutions are generally
unattainable without simplified assumptions about solid geometry and fluid regimes. There-
fore, numerical simulations provide a valuable tool for a better understanding of those complex
systems [3] and consequently, they find extensive application in various engineering fields, rang-
ing from aeronautics to geophysics. Direct Numerical Simulations (DNS) have the potential
to fully resolve the equations governing fluid dynamics across all temporal and spatial scales
without the need for turbulence models, thus providing a higher degree of accuracy. However,
this approach incurs a significant computational cost, and the utilization of supercomputers
is required. We had the advantage of utilizing the high-performance computing facilities at
CINECA, which provided us with efficient computational resources and capabilities. In this
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study, we focused on the dynamics of thin disks freely falling inside viscous and incompressible
fluids. To facilitate our research we studied geometries which possess axial symmetry along
the vertical axis represented by the unit vector ez fixed in the body frame, meaning that their
appearance remains unchanged when rotated around this axis. This symmetry simplifies the
study of the solid body dynamics, as the moments of inertia along the horizontal axes (x and
y) are equal and the inertia tensor becomes diagonal under these geometric assumptions. We
opted for corrugated board as the solid material, which has an approximate density of 100 kg

m3 .
This choice allows us to explore a wide range of non-dimensional moment of inertia. An estima-
tion of the descent velocity of the disks is analytically determined based on the balance between
the drag force, gravity, and buoyancy. This velocity is then utilized a-priori to calculate the
fluid dynamics regime using the Galileo number, which directly influences the viscosity of the
fluid. Subsequently, the fluid regimes are identified a-posteriori using the Reynolds number,
employing the descent velocity obtained from simulation data, ranging from 18 to 800 and
compared with that a-priori. We mapped out our results in a phase diagram using fluid dy-
namics regime and geometric information, this has allowed us to compare the different falling
modes with those already documented in the literature e.g. [4] and will serve in the future to
validate the simulations with real experiments. The stabilizing effect of a hole is defined as
the transition from a mode where predicting the object’s landing point is highly difficult to
one where it becomes more predictable, [6]. We have investigated the effect of introducing a
hole in the geometry observing variations in the trajectories and in the Strouhal numbers for
a qualitative and quantitative analysis. Finally we show the fluctuations of the ez unit vector
over time and the velocities profiles for tumbling and fluttering, to quantify the falling styles
and confirm the qualitative results on the trajectories.

2 MODEL

In our simulations, particular attention was given to the following parameters:

ρ =
ρs
ρf

χ =
do
h

Ut =
√
|ρ− 1|hg(do − di)

G =
Utdo
ν

ν =
Ut(dout − din)

G

I∗ = ρ
π

64χ

(
1−

(di
do

)4)
Re = Um

do − di
ν

(1)

Here, ρs,f represents the densities of the solid and fluid phases, respectively. The parameter χ
quantifies the aspect ratio of the body, with di,o denoting the inner/outer diameter of the disc
and h representing its height. The terminal velocity Ut is determined using an a-priori formula
which enters in the Galileo number G, while ν denotes the fluid viscosity. The dimensionless
inertia moment is denoted by I∗, which depends on ρ and the ratio of di to do. The Reynolds
number Re is defined in terms of the mean simulated terminal velocity Um and the difference
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in diameters (do − di), normalized by the fluid viscosity ν. The simulation model couples two
distinct physical phenomena: the fluid dynamics surrounding the object and the dynamics of
the solid body B. This enables the simulation of a fluid-structure interaction problem within a
volume Vf occupied by a viscous and incompressible fluid. If we consider the motion of a solid
body inside an inviscid fluid we can write the Kirchhoff’s equations describing the linear and
angular momentum balance as follows:

(mI+ A)
dU

dt
+Ω× ((mI+ A)U) = 0 on B

(J+ B)
dΩ

dt
+Ω× ((J+ B)Ω) +U× (AU) = 0 on B

(2)

Where the inertia tensor of the body is denoted as J, while tensors A and B represent the added
mass and inertia contributions to the solid body, respectively.
In the present study, we denote the fluid fields using v and p, while the linear and angular veloc-
ities of the solid body are represented by U = [u1, u2, u3]

T and Ω = [ω1, ω2, ω3]
T , respectively.

The position vector r is defined with respect to the center of mass of the body.

mI
dU

dt
+Ω× (mIU) = Ffl(v, p) + (m− ρfVs)g on B

J
dΩ

dt
+Ω× (JΩ) = Mfl(v, p) on B

∂
∂t
ρf +∇ · (ρfv) = 0 in Vf/B

∂
∂t
ρfv +Ω× v + ρf ([v − (U +Ω× r)] · ∇)v = −∇p+ µ∆v + Fvol in Vf/B

(3)

The first two equations describe the linear and angular conservation of the momentum for B
considering the effect of viscosity and vorticity in the first right-hand terms, while the second
two are the Navier-Stokes written with respect to a reference system that is integral with the
body and projected into a fixed one whose axes rotate like the principal axes of inertia of the
solid. This allows to avoid the remeshing of the fluid zone saving on the computational time.
The coupling is achieved through two mechanisms. First, terms derived from the stress tensor
generated by the fluid velocity field are inserted into the equations governing the motion of the
solid body. Second, boundary conditions are imposed on the surface of the object to account
for the interaction with the fluid. Terms Ffl, Mfl account for the contributions from the fluid
stresses acting on the body computed through:

Ffl =

∫
∂B

µDn+ pI dΣ

Mfl =

∫
∂B

(µDn+ pI)(r× n) dΣ

(4)

where D is the strain rate tensor. The calculation of the added mass components, which are
used to model the inertial response of the fluid to the accelerations of a body, i.e. during the
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time variation of U, Ω, considering only the pressure contributions modelled using potential
flow theory, is done starting from the relationship:

Fi = Mijaj (5)

where Mij is the diagonal added mass tensor and aij are the instantaneous solid acceleration
components, indeed due to above hypothesis we can say that the induced velocity vi in the fluid
is linear with solid velocity components Uj = [u1, u2, u3, ω1, ω2, ω3]

T . Indexes i, j = 1, 2, . . . , 6
refer to a unitary translation (rotation) of the body in the x, y, z directions:

vi = uijUj (6)

where

uij =
∂ϕj

∂xi

(7)

and ϕ is the potential of the steady flow. Then to assemble the mass matrix one has to consider
the following integrals over the body surface:

Mij = −ρf
∫
∂B

ϕi
∂ϕj

∂n
dΣ. (8)

we solve this at the beginning of each simulation by using potential flow approximation with
uj = 1 for j = 1, . . . , 6 and ui ̸=j = 0. The calculated fluid fields will be reused to compute the
correction to the fluid solution at each time step due to changes in the boundary conditions on
the surface of the body corresponding to instantaneous solid accelerations. These fields and the
added mass matrix will be instrumental in our procedure to solve the coupling in (3), which
is based on the approach described in [1]. A finite element algorithm was carried out using
the FEniCS library [11] to solve the Navier-Stokes equations, imposing the following boundary
conditions at the contact region between the fluid and the solid, as well as at the computational
walls: {

v · n = (U+Ω× r) · n on ∂B
v = 0 on ∂Vf

. (9)

As documented in [5], the fractional step method employed in this study is described by the
following set of equations:

vI − vn−1

∆t
+Bn−1/2 = ν∇2

(
vI − vn−1

i

2

)
−∇p∗ + fn−1/2 (10)

∇2φ = − 1

∆t
∇ · vI (11)

vn − vI

∆t
= −∇φ (12)

In the above equations, φ represents the corrected pressure, and p∗ corresponds to the tenta-
tive pressure. The unknown tentative velocity, vI , is solved for in the first equation, and the
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non-linear convective term is linearized using the matrix B, computed at the midpoint between
two consecutive time instances employing a second-order accurate scheme. For the numerical
solution of the ODEs related to the solid body dynamics, the Radau method is utilized. This
is achieved through the use of the integrate.solve ivp function. The following pseudo algorithm
outlines the workflow of the developed code:

Algorithm 1 FSI falling disks pseudo-algorithm

Set t=0
Set U(t) = [0,0,0,0,0,0]T

Mij ← Solve (8)
while t ≤ Tf

Set bcs (9) using Un−1, Ωn−1

t = tn = tn−1 +∆t
while iter ≤ max iter & residuals ≥ max error
Set ϕ = p∗

vIi ← Solve (10)
pn−1/2 ← Solve (11)
Set ϕ = pn−1/2 − ϕ
end
vni ← Solve (12)

F n
fl, M

n
fl ← Solve (4)

Un, Ωn ← Solve first 2 eqs in (3)
Update fluid variables with superposition
end
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3 RESULTS

In this section, we present the results of our study in both qualitative and quantitative man-
ners. Figure 1 illustrates a section of the computational domain, highlighting the configurations
of both perforated and full disks.

Figure 1: Computational mesh around the discs

We have identified and classified the main falling styles exhibited by thin discs of several di-
mensions and thickness, both for perforated and full configurations. In the following figures, we
present visual representations of the different trajectories, including the steady state, weakly
oscillating, fluttering, helicoidal tumbling, and tumbling. These experiments refer to the disks
with dimensionless inertia moment and Reynolds reported in tables 1 and 2. For what concern
the thickness-to-ratio parameter, all the modes have χ = 50 except the fourth which has χ = 10.
In the perforated disk cases the inner diameter is chosen to be half the outer one. Visualizing
those modes allows us to gain qualitative insights into the dynamics of these objects during
free fall.
As expected, at low Reynolds numbers, we observe a straight trajectory for the falling objects.
However, as the Reynolds number increases, oscillations start to appear due to the emergence
of instabilities. This is why we refer to the second mode in figure 2 as the weakly oscillating
regime. Keeping unchanged the dimensionless moment of inertia and increasing the number
of Re we have a shifting towards the fluttering from the weakly oscillation mode. We call the
second mode in figure 3 helicoidal tumbling because the disk strongly deviates from the vertical
and autorotates on itself following a helicoidal trajectory.
At higher reynolds number we recover the typical tumbling mode and also a choatic trajectory
is found. The Strouhal number, which is a dimensionless parameter that represents the fre-
quency of vortex detachment, was calculated for all the modes, except the chaotic one. It is
possible to compute the Strouhal number by using oscillation frequency f associated to Ux in
the laboratory frame, using the mean velocity Um of the disk from simulation data, hence:

St =
f(do − di)

Um

(13)
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Figure 2: Steady and weakly oscillating trajectories
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Figure 3: Fluttering and helicoidal tumbling trajectories
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Figure 4: Tumbling and chaotic trajectories

I∗ Re Mode St

0.0751 18 Steady oblique 0
0.0751 48 Weakly oscillating 0.0591
0.0751 268 Fluttering 0.1258
0.3755 400 Helicoidal tumbling 0.2501

Table 1: Strouhal number for perforated
disks

I∗ Re Mode St

0.0801 36 Steady oblique 0
0.0801 96 Fluttering 0.1718
0.0801 448 Tumbling 0.4404
0.205 780 Chaotic -

Table 2: Strouhal number for full disks
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Upon analyzing the values for both configurations, it becomes apparent that there is a de-
crease in the Strouhal number when the disk is perforated. This trend can be interpreted as
a stabilization process, likely attributable to a reduction in the moment of inertia. However,
it is possible that there exists an additional stabilizing contribution resulting from vortices
generated within the inner hole. These vortices may act as a counterbalance to the external
vortices, further contributing to the overall stabilization. Summarizing, the falling styles in
a phase diagram as in Fig. 5 allows us to immediately have an indication of the trajectory
expected by an object from the knowledge of only two parameters, one for the solid and one
for the fluid. Further results, including the determination of the critical values of inertia and
Reynolds number beyond which the steady falling style is unstable are given in [12].

Figure 5: Phase diagram for falling styles

In addition to the previously mentioned analyses, in Fig. 6 we report the evolution of the angle
between the vertical axis and the unit vector along the z-direction in the body frame. This
measurement enabled us to quantify the angular variation during the motion of the objects.
By incorporating this information, we were able to further validate and confirm the qualitative
results obtained.
To complete the quantitative analysis, in figures 7 and 8 we present the body velocity profiles
for the fluttering and tumbling modes, as they exhibit significant differences. During fluttering,
the disc undergoes oscillations in the xy plane, symmetrical with respect to the vertical axis.
This behavior is evident in the profiles of the translational velocities along the x and y axes,
as they exhibit oscillations between two values of opposite signs. During tumbling instead, the
disc tends to follow a unidirectional motion, losing any form of symmetry. As a result, the
translational speed profiles do not change sign throughout the tumbling process. Additionally,
during tumbling, the disc may experience a decrease in the average falling speed. This slow-
down can be attributed to the center of gravity shifting its position along the positive z-axis
direction due to autorotation.
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Figure 6: Angles variation in time

Figure 7: Fluttering - velocity variation in time

Figure 8: Tumbling - velocity variation in time

4 CONCLUSIONS

The primary aim of this study is to examine the main falling patterns displayed by symmet-
rical axial geometries, particularly discs with a diameter-to-thickness ratio exceeding 10. To
achieve this objective, a combination of qualitative and quantitative analyses was employed.
Qualitative analysis involved studying the trajectory of falling objects to identify the predomi-
nant modes. Additionally, quantitative measures such as the Strouhal number, angle variations
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relative to the vertical axis, and speed profiles were utilized to provide a more comprehensive
characterization of the identified modes. By employing these approaches, the study successfully
distinguished and categorized the main modes of motion. Furthermore, the study introduces a
definition of stabilization resulting from the piercing of the disk, adding to the understanding
of the phenomenon. The results obtained in this study align with existing literature, both in
terms of qualitative and quantitative observations. Additional simulations must be performed
in order to better delineate the boundary in the phase diagram. Nevertheless, these findings
lay a solid groundwork for further research and investigations in this field.
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