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Abstract. In this study, the complex band structures of geometrically nonlinear periodic frame
structures are calculated by using the Spectral Element Method (SEM). For this purpose, the
spectral element matrix for a geometrically nonlinear beam element is derived. By solving the
inverse eigenvalue problem for computing the complex dispersion curves k(ω) instead of the
conventional eigenvalue problem for calculating the real dispersion curves ω(k), the complex
wave vector can be obtained, whose imaginary parts describes the evanescent behavior of the
Bloch waves. Subsequently, the geometrically nonlinear effects on the evanescent behavior
of the Bloch waves are investigated by evaluating the dispersion curves and the transmission
spectra.

1 INTRODUCTION

In recent years, the importance of insulating or protecting buildings, machines and people
from dynamic and acoustic influences has increased rapidly. Examples are the sound protec-
tion in residential buildings, soundproofing against road and rail traffic noise or the protection
against noise and vibration from construction work. Particularly strict are the requirements
in the field of micro- and nanotechnology, where even vibration levels of 0.5− 6µm/s could be
problematic. Due to these increasing requirements, the development of new materials and struc-
tures with outstanding acoustic and elastodynamic properties has become a popular research
field. In particular, the phononic materials and structures, shown exemplarily in Fig. 1, are very
promising. These structures are characterized by a periodic arrangement of different materials
or geometries. Depending on the periodicity, as also shown in Fig. 1, a distinction is made
between 1D, 2D and 3D phononic structures. The increasing research interest in the phononic
materials and structures is based on the unique acoustic and elastodynamic properties, namely,
these structures have certain frequency ranges, referred to as the band-gaps or stop-bands, in
which the elastic and acoustic waves cannot propagate. Accordingly, these materials and struc-
tures are suitable, for example, for selective sound and vibration insulation and surpass the
damping properties of conventional insulating materials clearly within the frequency range of a
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band-gap [1]. Compared to the conventional materials, lattice structures have a comparatively
low weight with a high load-bearing capacity and are particularly popular in lightweight con-
struction. The increasing popularity is not least due to new manufacturing techniques, such as
additive manufacturing (3D printing). Periodic lattice structures can, analogous to conventional
perodic materials, exhibit band-gaps and are also referred to as phononic lattice structures in
this context. For example, Matlack et al. [2] designed a 3D phononic lattice structure with
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z
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Figure 1: Examples of phononic structures: (a) 1D phononic structure, (b) 2D phononic structure and
(c) 3D phononic structure.

broad band-gaps in the low-frequency range by combining the Bragg scattering and the local
resonance mechanisms. Due to the simultaneously low intrinsic weight such structures have
promising applications, for example for vibration insulation in aerospace engineering, as illus-
trated in Fig. 2, or similar areas of engineering where a low weight is an important criterion.
The zig-zag lattice structures, examplarily illustrated in Fig. 3 where the associated unit-cell
is shown enlarged, represent a possible lattice topology in which even with homogeneous ma-
terial and cross-sectional properties band-gaps can be achieved [3, 4]. The wave propagation
properties of phononic zig-zag lattice structures can be tuned by many parameters, such as
the amplitude of the deflection W , the lattice constants l1 and l2, the material properties, the
cross-section properties, and others. One way of influencing the wave propagation properties

Figure 2: Phononic lattice structure for vibra-
tion insulation in a rocket. Graphic by: 3Dsculp-
tor/Shutterstock/Jung-Chew Tse, ETH Zürich.
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Figure 3: Example of a 2D phononic zig-zag-
lattice structure under uniaxial compression p and
the corresponding unit-cell.
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adaptively is to utilize the effects of the geometric nonlinearity by applying an external load p on
the lattice structure, as also illustrated in Fig. 3. In this study, the influences of the geometric
nonlinearity on the complex band structures and transmission spectra of phononic zig-zag lattice
structures are analyzed by using the Spectral Element Method (SEM). For this purpose, the
spectral element matrix for a geometrically nonlinear beam element is derived.

2 GEOMETRICALLY NONLINEAR SPECTRAL BEAM ELEMENT

In the following, the spectral Euler-Bernoulli beam element is derived according to the
geometrically nonlinear beam theory, which, to the best of the author’s knowledge, is not known
in the literature in the presented form. However, some authors have already derived spectral
stiffness matrices for beams that take axial forces into account. For example, Banerjee and
Fisher [5] derived the spectral stiffness matrix for a coupled bending-torsion problem consid-
ering axial forces. In addition, Capron and Williams [6] derived an exact dynamic stiffness
matrix for the Timoshenko beam on an elastic foundation considering an axial load.
The starting point for the derivation is the following equation of motion for free beam vibration

EI
∂4w

∂x4
− S∂

2w

∂x2
+ ρA

∂2w

∂t2
= 0, (1)

where E is the Young’s modulus, I is the second area moment of inertia, S is the axial force,
ρ is the mass density, A is the cross-sectional area and w is the transverse displacement of
the beam. Assuming a time-harmonic wave propagation, Eq. (1) can be transformed to the
frequency domain, which yields

EI
∂4w

∂x4
− S∂

2w

∂x2
− ω2ρAw = 0, (2)

where ω is the angular frequency. The following derivation of the spectral element matrix is
based on the force-displacement relation method. However, the derivation can also be carried
out using the state-vector equation method or the Galerkin projection. For the derivation of
the spectral shape functions, the following spectral approach for the displacement w(x)

w(x) = ae−ik(ω)x (3)

is introduced. Substituting Eq. (3) into Eq. (1) leads to

EIk4 + Sk2 − ω2ρA = 0, (4)

from which the dispersion relation

k4 ± 2λ2k2 − k4B = 0, with λ =

√
|S|

2EI
and kB =

√
ω

(
ρA

EI

)1/4

, (5)

can be obtained. Here, λ is the buckling coefficient and kB is the wavenumber for the bending
or flexural wave mode according to the linear beam theory. The sign before the second term of
Eq. (5) is positive if S is a tensile force and correspondingly negative if S is a compressive force.
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The four zeros of the dispersion relation are given by

k1 = −k2 =

√
λ2 +

√
k4B + λ4, k3 = −k4 = i

√
−λ2 +

√
k4B + λ4, (6)

if S is a compressive force, and

k1 = −k2 =

√
−λ2 +

√
k4B + λ4, k3 = −k4 = i

√
λ2 +

√
k4B + λ4, (7)

if S is a tensile force. For a shorter notation, the root terms for the case of a compressive force
S are substituted by

kλ1 =

√
λ2 +

√
k4B + λ4 and kλ2 =

√
−λ2 +

√
k4B + λ4, (8)

and for the case of a tensile force S by

kλ1 =

√
−λ2 +

√
k4B + λ4 and kλ2 =

√
λ2 +

√
k4B + λ4. (9)

Here, kλ1 and kλ2 can be understood as wave numbers for the bending wave modes according to
the geometrically nonlinear beam theory. The general solution of Eq. (1) is therefore given by

w(x) = a1e
−ikλ1x + a2e

−kλ2x + a3e
ikλ1x + a4e

kλ2x = eB,GNL(x, ω)aB, (10)

where
eB,GNL(x, ω) =

[
e−ikλ1x e−kλ2x eikλ1x ekλ2x

]
and aB = [a1 a2 a3 a4]

T . (11)

Consequently, the nodal degrees of freedom dB,GNL can be expressed as

dB,GNL =


w (0)
−w′(0)
w (l)
−w′(l)

 =


w1

θ1
w2

θ2

 =


eB,GNL(0, ω)
−e′B,GNL(0, ω)

eB,GNL(l, ω)
−e′B,GNL(l, ω)

aB = HB,GNL(ω)aB, (12)

where the sign convention shown in Fig. 4 applies. The prime ( ′ ) denotes the derivative with

x

θ1 θ2

M2M1

l

w1 w2

T1 T2

S1 S2

Figure 4: Sign convention of the Euler-Bernoulli beam element.
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respect to x and the matrix HB,GNL is given by

HB,GNL =


1 1 1 1

ikλ1 kλ2 −ikλ1 −kλ2
e−ikλ1l e−kλ2l eikλ1l ekλ2l

ikλ1e
−ikλ1l kλ2e

−kλ2l −ikλ1e
ikλ1l −kλ2ekλ2l

 . (13)

The displacement field of the spectral beam element can now be expressed in terms of the nodal
displacements and rotations dB,GNL via the relation

w(x) = NB,GNL(x, ω)dB,GNL, (14)

and the spectral shape functions are determined by

NB,GNL = eB,GNL(x, ω)H−1B,GNL(ω) =
[
ϕB1,GNL ϕB2,GNL ϕB3,GNL ϕB4,GNL

]
, (15)

which, for the sake of brevity, are not listed in detail here. From the relationships between
the displacement and the bending moment M(x) = −EIw′′(x), as well as the transverse force
T (x) = −EIw′′′(x) + Sw′(x), we obtain for the nodal forces T1 = −T (0), M1 = −M(0),
T2 = T (l) and M2 = M(l)

T1
M1

T2
M2

 =


−T (0)
−M(0)
T (l)
M(l)

 =


EIw′′′(0)− Sw′(0)

EIw′′(0)
−EIw′′′(l) + Sw′(l)

−EIw′′(l)

 . (16)

Substituting the displacement field from Eq. (14) with the shape functions from Eq. (15) into
Eq. (16) finally yields

T1
M1

T2
M2

 =

EI


ϕ′′′B1,GNL(0) ϕ′′′B2,GNL(0) ϕ′′′B3,GNL(0) ϕ′′′B4,GNL(0)

ϕ′′B1,GNL(0) ϕ′′B2,GNL(0) ϕ′′B3,GNL(0) ϕ′′B4,GNL(0)

−ϕ′′′B1,GNL(l) −ϕ′′′B2,GNL(l) −ϕ′′′B3,GNL(l) −ϕ′′′B4,GNL(l)

−ϕ′′B1,GNL(l) −ϕ′′B2,GNL(l) −ϕ′′B3,GNL(l) −ϕ′′B4,GNL(l)

 (17)

+ S


−ϕ′B1,GNL(0) −ϕ′B2,GNL(0) −ϕ′B3,GNL(0) −ϕ′B4,GNL(0)

0 0 0 0
ϕ′B1,GNL(l) ϕ′B2,GNL(l) ϕ′B3,GNL(l) ϕ′B4,GNL(l)

0 0 0 0




w1

θ1
w2

θ2

 ,
where the expression in the brackets (•) is the spectral element matrix of the Euler-Bernoulli
beam according to the geometrically nonlinear theory and can be written as

SB,GNL =


sB11,GNL sB12,GNL sB13,GNL sB14,GNL

sB21,GNL sB22,GNL sB23,GNL sB24,GNL

sB31,GNL sB32,GNL sB33,GNL sB34,GNL

sB41,GNL sB42,GNL sB43,GNL sB44,GNL

 . (18)
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The elements of the spectral element matrix SB,GNL, taking into account the symmetry property
sBij,GNL = sBji,GNL and the abbreviations S = S/EI, l1 = kλ1 l and l2 = kλ2 l, are given by

sB11,GNL = − EI
∆11

kλ1kλ2
(
k2λ1 + k2λ2

) (
3k2λ1kλ2 sin

(
2l1
)
− k3λ1 sinh

(
2l2
)
− k3λ2 sin

(
2l1
)

+ 3kλ1k
2
λ2 sinh

(
2l2
)

+ k3λ1 cos
(
2l1
)

sinh
(
2l2
)

+ k3λ2 cosh
(
2l2
)

sin
(
2l1
)

− 8kλ1k
2
λ2 cos

(
l1
)

sinh
(
l2
)
− 8k2λ1kλ2 cosh

(
l2
)

sin
(
l1
)

+ kλ1k
2
λ2 cos

(
2l1
)

sinh
(
2l2
)

+ k2λ1kλ2 cosh
(
2l2
)

sin
(
2l1
) )
,

with ∆11 = k4λ1 − k4λ2 cos
(
2l1
)
− k4λ1 cosh

(
2l2
)
− k4λ2 cosh

(
2l2
)
− k4λ1 cos

(
2l1
)

+ k4λ2 + 18k2λ1k
2
λ2

+ k4λ1 cos
(
2l1
)

cosh
(
2l2
)

+ k4λ2 cos
(
2l1
)

cosh
(
2l2
)

+ 6k2λ1k
2
λ2 cos

(
2l1
)

+ 6k2λ1k
2
λ2 cosh

(
2l2
)
− 32k2λ1k

2
λ2 cos

(
l1
)

cosh
(
l2
)

+ 2k2λ1k
2
λ2 cos

(
2l1
)

cosh
(
2l2
)
,

sB12,GNL =
EI

∆12

[
k6λ1 − k6λ2 + Sk4λ1 + Sk4λ2 − k6λ1 cos

(
2l1
)

+ k6λ2 cos
(
2l1
)
− k6λ1 cosh

(
2l2
)

+ k6λ2 cosh
(
2l2
)
− Sk4λ1 cos

(
2l1
)
− Sk4λ2 cos

(
2l1
)
− Sk4λ1 cosh

(
2l2
)
− Sk4λ2 cosh

(
2l2
)

− 9(k2λ1k
4
λ2 − k4λ1k2λ2 − 2Sk2λ1k

2
λ2)− cos

(
l1
)

cosh
(
l2
) (

16k4λ1k
2
λ2 − EIk2λ1k4λ2

+ 32Sk2λ1k
2
λ2

)
+ k6λ1 cos

(
2l1
)

cosh
(
2l2
)
− k6λ2 cos

(
2l1l
)

cosh
(
2l2
)

+ Sk4λ1 cos
(
2l1
)

cosh
(
2l2
)

+ Sk4λ2 cos
(
2l1
)

cosh
(
2l2
)
− 3k2λ1k

4
λ2 cos

(
2l1
)

+ 3k4λ1k
2
λ2 cos

(
2l1
)
− 3k2λ1k

4
λ2 cosh

(
2l2
)

+ 3k4λ1k
2
λ2 cosh

(
2l2
)

+ 6Sk2λ1k
2
λ2 cos

(
2l1
)

+ 6Sk2λ1k
2
λ2 cosh

(
2l2
)
− 4kλ1k

5
λ2 sin

(
l1
)

sinh
(
l2
)
− 4k5λ1kλ2 sin

(
l1
)

sinh
(
l2
)

+ kλ1k
5
λ2 sin

(
2l1
)

sinh
(
2l2
)

+ k5λ1kλ2 sin
(
2l1
)

sinh
(
2l2
)
− k2λ1k4λ2 cos

(
2l1
)

cosh
(
2l2
)

+ k4λ1k
2
λ2 cos

(
2l1
)

cosh
(
2l2
)

+ 2Sk2λ1k
2
λ2 cos

(
2l1
)

cosh
(
2l2
)

− 8k3λ1k
3
λ2 sin

(
l1
)

sinh
(
l2
)

+ 2k3λ1k
3
λ2 sin

(
2l1
)

sinh
(
2l2
) ]
,

with ∆12 = 2k4λ1 − 2k4λ2 cosh2
(
l2
)
− 2k4λ1 cos

(
2l1
)
− 2k4λ2 cos

(
2l1
)
− 2k4λ1 cosh2

(
l2
)

+ 2k4λ2

+ 12k2λ1k
2
λ2 + 4k2λ1k

2
λ2 cos

(
2l1
)

+ 2k4λ1 cos
(
2l1
)

cosh2
(
l2
)

+ 2k4λ2 cos
(
2l1
)

cosh2
(
l2
)

+ 12k2λ1k
2
λ2 cosh2

(
l2
)
− 32k2λ1k

2
λ2 cos

(
l1
)

cosh
(
l2
)

+ 4k2λ1k
2
λ2 cos

(
2l1
)

cosh2
(
l2
)
,

sB13,GNL =
1

∆13

[
4EIkλ1kλ2e

l(kλ2+kλ1i)
(
kλ1 sin

(
l1
)

+ kλ2 sinh
(
l2
)) (

k2λ1 + k2λ2
) ]
,

with ∆13 = e2l2(kλ1 − kλ2i)2i−
(
k2λ1 − k2λ2

) (
e2(l2+il1) + 1

)
i + el12i(kλ1 − kλ2i)2i

− 8kλ1kλ2e
l(kλ2+kλ1i) + 2kλ1kλ2

(
e2(l2+il1) + 1

)
,

sB14,GNL =
EI

∆14

[
kλ1kλ2

(
cos
(
l1
)
− cosh

(
l2
)) (

k2λ1 + k2λ2
) (

2kλ1kλ2 + k2λ1 sin
(
l1
)

sinh
(
l2
)

− k2λ2 sin
(
l1
)

sinh
(
l2
)
− 2kλ1kλ2 cos

(
l1
)

cosh
(
l2
) )]

,

with ∆14 = k4λ1 cos2
(
l1
)

cosh2
(
l2
)
− k4λ1 cos2

(
l1
)
− k4λ1 cosh2

(
l2
)

+ k4λ1 + 2k2λ1k
2
λ2 + k4λ2

+ 2k2λ1k
2
λ2 cos2

(
l1
)

cosh2
(
l2
)

+ 2k2λ1k
2
λ2 cos2

(
l1
)
− 8k2λ1k

2
λ2 cos

(
l1
)

cosh
(
l2
)

+ 2k2λ1k
2
λ2 cosh2

(
l2
)

+ k4λ2 cos2
(
l1
)

cosh2
(
l2
)
− k4λ2 cos2

(
l1
)
− k4λ2 cosh2

(
l2
)
,
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sB22,GNL =
EI

∆22

(
k2λ1 + k2λ2

) (
k3λ1 sin

(
2l1
)
− k3λ2 sinh

(
2l2
)
− 3kλ1k

2
λ2 sin

(
2l1
)

+ 3k2λ1kλ2 sinh
(
2l2
)
− k3λ1 cosh

(
2l2
)

sin
(
2l1
)

+ k3λ2 cos
(
2l1
)

sinh
(
2l2
)

+ 8kλ1k
2
λ2 cosh

(
l2
)

sin
(
l1
)
− 8k2λ1kλ2 cos

(
l1
)

sinh
(
l2
)
− kλ1k2λ2 cosh

(
2l2
)

sin
(
2l1
)

+ k2λ1kλ2 cos
(
2l1
)

sinh
(
2l2
) )
,

with ∆22 = k4λ1 − k4λ2 cos
(
2l1
)
− k4λ1 cosh

(
2l2
)
− k4λ2 cosh

(
2l2
)
− k4λ1 cos

(
2l1
)

+ 18k2λ1k
2
λ2

+ k4λ2 + k4λ1 cos
(
2l1
)

cosh
(
2l2
)

+ k4λ2 cos
(
2l1
)

cosh
(
2l2
)
− 32k2λ1k

2
λ2 cos

(
l1
)

cosh
(
l2
)

+ 6k2λ1k
2
λ2 cos

(
2l1
)

+ 6k2λ1k
2
λ2 cosh

(
2l2
)

+ 2k2λ1k
2
λ2 cos

(
2l1
)

cosh
(
2l2
)
.

It should be noted that for a compressive force, the wavenumbers have to be chosen according
to Eq. (8) and the axial force S has to be used with a negative sign. For a tensile force, the wave
numbers in Eq. (9) have to be used and the positive sign applies to the axial force S. It should
also be noted that the critical buckling load of a system can also be determined by the derived
spectral element matrix SB,GNL. To do this, the angular frequency has to be set to ω = 0 and
an eigenvalue problem for the axial force S must be solved.
Finally, the spectral element matrices of the rod element, which can be found in the works of
Doyle [7] or Lee [8], and the geometrically nonlinear beam element can be combined into a 6×6
extended spectral Euler-Bernoulli beam element matrix SEB,GNL with the corresponding
nodal degrees of freedom [u1 w1 θ1 u2 w2 θ2]

T , where ui are the nodal axial displacements.

3 CALCULATION OF THE COMPLEX BAND STRUCTURES

The band structures are calculated using a unit-cell with periodic Bloch-Floquet boundary
conditions, where the investigations in this work are based on the unit-cell shown in Fig. 5a with
the square cross-section shown in Fig. 5b. Due to the exact element matrices the discretization
of the unit-cell into several elements is only required in the case of geometric discontinuities,
such as at the kinks of the zig-zag lattice, and in the case of cross-section and material changes.
For the following calculations the geometric parameters are set to l = 100 mm, W = 10 mm,
a = 2 mm, and the material properties of aluminum with E = 70 GPa, ρ = 2700 kg/m3 are used.

l

l
a1

a2

W

x

y
a

al/4

l/4

Cross-section

E, ρ

kx

ky

Γ X

M

2π
l

2π
l

Ψ

(a) (b) (c)

Figure 5: (a) Unit-cell of the phononic zig-zag lattice with the (b) cross-section of the zig-zag members.
(c) First irreducible Brillouin zone of the unit-cell.
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When calculating the complex band structures, a quadratic or quartic eigenvalue problem must
be solved depending on the edge of the first irreducible Brillouin zone (IBZ) considered, which
is shown in Fig. 5c. The exact procedure for calculating the complex band structures is described
in detail in the work by Veres [9], for example, and is therefore not explained in detail here. An
efficiency comparison between the SEM and the FEM for the calculation of the complex band
structures can be made by evaluating the numerical errors of the FEM calculations for different
numbers of degrees of freedom and the associated corresponding calculation times. The relative
error ε2 of the l2 norm can be calculated for the band structure for each discrete frequency via

ε2 =

√√√√ N∑
n=1

(
kn − krefn

)2/√√√√ N∑
n=1

(
krefn

)2
· 100, (19)

where in this case kn are the wave numbers of the FEM solutions and krefn are the wave numbers
of the SEM reference solution. The Fig. 6a shows the averaged errors ε2 of the FEM calculations,
which are obtained by avererging the errors ε2 of 1200 discrete frequencies. It is evident, that
the errors are decreasing and the FEM solution is approaching the SEM reference solution with
increasing number of degrees of freedom. However, the corresponding calculation time of the

Figure 6: (a) Average errors ε2 of the FEM calculations for different numbers of degrees of freedom.
(b) Corresponding calculation times for 1200 discrete frequency steps of the FEM for different numbers
of degrees of freedom and the calculation time of the SEM for 21 degrees of freedom.

FEM, as shown in the Fig. 6b, is increasing exponentially with increasing number of degrees of
freedom. In addition, the calculation time of the SEM solution for 21 degrees of freedom is also
shown in Fig. 6b, which is extremely low with t = 4.4 s. Considering the very low calculation
time of the SEM which at the same time yields exact solutions, the clear advantage of the SEM
compared to the FEM becomes evident. The calculated complex band structures are shown
in the Fig. 7, where the real part of the wave vector is shown on the left, the imaginary part
is shown in the middle and the corresponding transmission spectrum of a finite-sized periodic
structure consisting of 8 unit-cells in the y-direction and 16 unit-cells in the x-direction is shown
on the right. From the band structures it can be seen that the zig-zag lattice structure has 3
band-gaps in the considered frequency range. The smallest imaginary part of the wave vector
is always zero outside of the band-gaps and always larger than zero inside the band-gaps. The
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smallest imaginary part of the wave vector is an important indicator for the damping behavior
of a finite-sized periodic structure since it characterizes the least rapidly decaying wave. The
transmission spectrum on the right shows that the transmission falls off rapidly within the
frequency range of a band-gap and the vibration is very strongly damped. For more details on
the calculation of the transmission spectra we refer to [3].

1. BL: 2125 - 3045 Hz

2. BL: 4511 - 6367 Hz

3. BL: 8068 - 9048 Hz
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Figure 7: Complex band structures of the unit-cell shown in Fig. 5 and transmission spectrum of a finite-
sized periodic structure consisting of 8 unit-cells in the y-direction and 16 unit-cells in the x-direction.

4 INFLUENCES OF THE GEOMETRICAL NONLINEARITY

The following investigations are based on the unit-cell shown in Fig. 5 with the geometric
parameters l = 100 mm, W = 10 mm, a = 2 mm, and the material parameters E = 70 GPa,
ρ = 2700 kg/m3. Figure 8 shows the influence of the axial frequencies of the first band-gap. The

Figure 8: Influence of the axial compressive force S on the band-gap edge frequencies of the first band-
gap.
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calculations are based on a biaxial load condition, where all beams of the lattice have the same
axial force S. In addition, only axial forces below the first local buckling load are considered,
which means that the influences from the geometric nonlinearity remain reversible. Figure 8
shows that applying an axial compressive force of S = 130 N can reduce the edge frequencies
by about 200 Hz. For the lower edge frequency of the first band-gap, this corresponds to a
reduction of around 10%. To illustrate the influence of the geometric nonlinearity, the frequency
of f = 2000 Hz is marked in Fig. 8, which is outside the band-gap for S = 0 N (without
geometric nonlinearity) and inside the band-gap for S = 130 N (with geometric nonlinearity).
The corresponding displacement field in the frequency domain for the case S = 0 N (without

Figure 9: Displacement field in the frequency domain for f = 2000 Hz and S = 0 N (without geometric
nonlinearity). TThe structure is excited on the left boundary by the prescribed displacement u0 =

[0.1 0.1]
T

m.

Figure 10: Displacement field in the frequency domain for f = 2000 Hz and S = 130 N (with ge-
ometric nonlinearity). The structure is excited on the left boundary by the prescribed displacement

u0 = [0.1 0.1]
T

m.
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geometric nonlinearity) is shown in Fig. 9, where the finite-sized lattice structure is excited
on the left boundary with a prescribed displacement u0 = [0.1 0.1]T m. It is obvious that the
vibrations or elastic waves can propagate in the lattice structure without being damped. On
the other hand, the displacement field in the frequency domain for the case S = 130 N (with
geometric nonlinearity), which is shown in Fig. 10, shows that the vibrations cannot propagate
in the lattice structure and are strongly attenuated.
Finally, the influence of the axial force S on the damping behavior of the phononic zig-zag
lattice structure is also investigated. Fig. 11 shows the influence of the axial force on the
smallest imaginary part of the wave vector at the band-gap center frequencies and the associated
elastic wave transmission. It turns out that the axial force S, in contrast to other parameters
such as the deflection W , has no significant influence on the smallest imaginary part of the wave
vector and the elastic wave transmission of the phononic zig-zag lattice structure. Consequently,
the damping behavior of the phononic lattice structure is neither improved nor deteriorated
significantly by considering axial forces. However, the presented examples show, that the band-
gap frequency ranges of the phononic lattice structures can be adaptively influenced by utilizing
the effects of the geometric nonlinarity.

Figure 11: Influence of the axial compressive force S on the (a) smallest imaginary part of the wave
vector at the band-gap center frequencies and (a) on the corresponding elastic wave transmission.

5 CONCLUSIONS

The SEM is a very efficient numerical method to compute the complex band structures,
which give valuable information about the evanescent bahavior of the Bloch waves, and the
transmission spectra of periodic lattice structures. It can provide highly accurate results with a
reasonable computing time. The band-gaps of phononic zig-zag lattice structures can be tuned
by the geometric parameters (deflection W , lattice constant l, cross-sectional parameters, etc.)
and adaptive vibration or elastic wave filters can be designed by utilizing the effects of the
geometric nonlinearity.
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