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SUMMARY

A discrete non-local (DNL) boundary condition is used to solve the water waves propagation problem over
variable depth. This condition is obtained by means of full solution of the discrete Helmholtz operator in a
structured network. We consider a simulation of wave propagation around a circular island located on either
a paraboloidal shoal or constant depth bathymetry. Such examples con®rm the important improvement in
accuracy for the DNL method over standard conditions in the near ®eld. # 1998 John Wiley & Sons, Ltd.
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1. INTRODUCTION

When a long wave (for example, a tsunami) is propagating over waters of variable depth, it may
be greatly ampli®ed due to the variation of sea bed topography and/or at the coast; this is a highly
non-linear phenomenon. The scattering of waves by a circular island located on a paraboloidal
shoal is a well-known problem of long wave propagation;1±11 (see Figure 1).

The calculation of di�raction of water waves over a varying sea bed, based on ®nite element
methods, was done by Berkho�12 and Chen andMei13±15 initially. Chen andMei used a Fourier±
Bessel expansion as an exterior solution in a wave di�raction problem and a specially devised
variational statement to link the exterior solution with ®nite element solutions in the interior
domain.

Zienkiewicz et al.6±9 made an important contribution in this way, when they proposed a
general methodology for the solution about this problem. There were several strategies which
allowed one to link ®nite element solutions to any kind of Helmholtz equation exterior solution
(analytical, series or boundary integral).

This problem has also been solved by Tsay and Liu,16 Houston,17 Xu et al.18 and Bonet,19 who
incorporated the exact radiation condition at in®nity in the numerical scheme by means of a
`sponge-®lters' method.

Di�erent procedures based on `in®nite elements' to solve the exterior problem governed by
the Helmholtz equation on an unbounded domain are given by Zienkiewicz and Bettess10,11 and
H. S. Chen.20 They used of 3- and 2-node shape functions, respectively, to approximate the
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exterior solution. However, such shape functions are strictly valid only in the far ®eld, in terms of
the radial distances r. These procedures have the advantage that the integrals involving the
in®nite elements can be integrated analytically.

An entirely di�erent procedure to impose the radiation condition at in®nity is given by
D. Givoli21,22 by means of the DtN method, which has been developed by Harari23 for acoustic
problems. This boundary condition is exact and non-re¯ecting, but the base system must be
selected according to the space dimension of the problem at hand. It is easily implemented in a
®nite element method.23 However, due to the truncated DtN map being non-local in space, the
resulting system of linear equations is not sparse.

In contrast with the methods described earlier, a discrete formulation to impose the radiation
boundary condition at in®nity in a numerical scheme can be developed directly. R. W. Thatcher24

used an in®nite number of triangular elements (de®ned in a systematic way) for approximating
the solution of Laplace's equation in unbounded regions. This method suggests ®nding the
general solution of a recurrence relationship, which involves ®nding the complete eigensolution
of a matrix. When the general solution of the recurrence relationship is given analytically,25 the
method is extremely easy to implement.

Other methods, based on cloning-type algorithms, have been developed by Dasgupta,26 and
Wolf and Song.27,28 In Reference 28 Wolf and Song describe the consistent in®nitesimal ®nite
element cell method to model the unbounded medium for the scalar and vector wave equation of
elastodynamics and di�usion in the frequency and time domains. This method is a boundary
®nite element procedure, which requires the discretization of the arti®cial boundary only and is
exact in the ®nite element sense. After performing the limit of the in®nitesimal cell width, the
unbounded domain is thus cloned.

A discrete non-local DNL formulation for a ®nite element method on an unbounded domain
has been developed by Bonet et al. recently.29±31 This formulation is based on the general solution

Figure 1. Sketch of the idealized island on a paraboloidal shoal with h� ar2; (a) vertical: ra� 10 km, rb� 30 km,
ha� 0.444 km, hb� 4 km; (b) horizontal (after Jonsson et al.2

# 1998 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng, 14, 849±861 (1998)

850 R. P. BONET ET AL.



of a recurrence relationship which involves the complete eigendecomposition of the discretized
operator (as well as Thatcher's method24) over a structured mesh with quadrangular linear
elements. This formulation, like the consistent in®nitesimal ®nite element cell method,28 requires
discretization on the arti®cial boundary only. The planar DNL boundary condition is non-local
in space (as well as the truncated DtN map) and non-re¯ective.

In this paper we employ a formulation for a bounded computational domain that are derived
by the DNL method for the circumferential case. The DNL procedure represents a general
methodology. It has been applied to solve exterior problems associated with the Helmholtz
operator,29,31 employing the ®nite di�erence (FDM) or ®nite element (FEM) method, as well,
in the solution of the ship wave resistance problem.32 By means of this procedure the exterior
problem associated with the Berkho� equation12 is solved numerically, and a DNL boundary
condition over the arti®cial boundary is obtained. This condition has the ability to describe
scattered waves in all directions adequately, yet in the near ®eld.

We present the shallow water di�raction solution for the scattering of water waves by a circular
island and we compare the cases when the island is and is not located on a paraboloidal shoal.
These numerical tests validate the numerical method employed.

2. FORMULATION

We consider the scattering from a bounded region O in two-dimensional space. This region
is limited by a circumference B of radius ri centred at the origin. Outside from the circle limited by
B (denoted O0) (i.e. outside the shoal) we assume that both the incident wave ®eld Zi(x, y) and the
scattered wave ®eld Zs(x, y) independently satisfy the Helmholtz equation,

DZ � k
2
0Z � 0 �1�

where k0(�2p/l0) is the wave number corresponding to the constant depth.
The scattered wave ®eld Zs satis®es the Sommerfeld radiation condition,12

lim
r!1

�����������k0r�
p @

@r
ÿ ik0

� �
Z � 0 �2�

We suppose that the domain O within B is bounded internally by the smooth surface G (see
Figure 2). In the region with variable water depth (i.e. in the region over the shoal) the time-
independent part of the water elevation Z(x, y) satis®es the long-wave equation2

H�hHZ� � k
2
hZ � 0 in O �3�

where H is the horizontal gradient operator, o is the angular frequency, g is the gravitational
acceleration, and h� h(x, y) is the water depth. C� Cg�

���p gh� are the phase and group
velocity, respectively; k�o/C5 0 is the wave number, such that k(x, y) changes continuously
until to the boundary B, where it takes the value k0 . (This theoretical formulation is classical
and you can ®nd it expressed in other papers, of di�erent forms, for example in References 2, 9
and 26.)

In the external region toO the numerical solution is derived by means of a partial discretization
process. Details are included in the following Sections.
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3. THE DNL FORMULATION

The circumferential DNL procedure is based on the full solution of the exterior problem
governed by the discretized Helmholtz operator with constant refraction index. For this, the
unbounded domain (in the external region to O (see Figure 2)) is subdivided into two parts Ð a
bounded region (the annular region ri4 r4 re , ÿp4y4p (see Figure 3)) and an unbounded
semi-in®nite region (the region r5 re). Figure 3 (left) shows the scatterers surrounded by a circle

Figure 2. A model domain for radiation and scattering problem

Figure 3. Circular DNL method: (left) sketch on the scattering process by DNL method; (right) condensation process
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of radius ri , located at the arti®cial boundary (in the near ®eld) and the successive circles (0 layers)
until the circle r� re (in the far ®eld), which is taken su�ciently large such that the in¯uence of
curvature can be neglected. In contrast with Thatcher's method,24 the DNL method uses a
discretization with quadrangular linear elements (see layer j in Figure 3), resulting in extremely
easy implementation. The crucial issue is, ®rst, the adequate representation of the scattered wave
®eld in the far ®eld (r5 re), and second, in the near ®eld (where is located the arti®cial boundary
of the computational domain (r� ri)).

We describe here brie¯y such a procedure performing the partial discretization of theHelmholtz
equation (1) in polar co-ordinates, with quadrangular linear elements. Integrating in the trans-
versal direction y, we obtain a second order di�erential equation system in r of the form

I�Z � 1

r
I_Z ÿ 1

r2
M
ÿ1
KZ � k

2
0IZ � �0 �4�

where Z� Zs, _Z� dZs/dr, M and K are the mass and sti�ness assembled matrices, respectively,
and I is the identity matrix. Discretization of equation (4) in r can be done by the ®nite
di�erence method or the ®nite element method. Independently of the partial discretization
procedure employed, the corresponding discrete equation for layer j has the form

C
jZjÿ1 � B

jZj � A
jZj�1 � 0 �5�

where Zj is the vector containing potential values for the nodes on layer j. We note that, unlike for
the rectangular geometry case, here Aj, Bj and Cj are di�erent matrices at successive layers, due to
the rj factors.

3.1. DNL method in the far ®eld

To obtain the DNL condition in the near ®eld it is necessary to obtain the DNL condition in the
far ®eld, where the curvature e�ects can be neglected. We denote this layer by j�M (see
Figure 3). For layer j�M (5) reduces to

A
MZMÿ1 � B

MZM � A
MZM�1 � 0 �6�

The AM and BM matrices are real, and cyclic in virtue of their periodicity. Their dimension is
Nlay�Nlay . We consider that the AM and BM matrices remain almost constant for the layer j5M
(in the semi-in®nite region r5 re), and it allows the application of the planar DNL method.30

Then, we denote AM� A and BM� B for the layer j5M.
For the real matrix A71B, there is an orthogonal transformation V, such that

A
ÿ1
B � VLVÿ1 �7�

where L� diag(l1 , l2 , . . . , lN lay
) is a diagonal matrix formed by the eigenvalues of the A71B

matrix and V is the eigenvector system of A71B.
By means of the non-singular transformation

Zjl �
XN lay

i�1
Vl;i�c�i m�ji � c

ÿ
i m
ÿj
i �; l � 1; 2; . . . ;N lay �8�
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the scattered wave ®eld is split into `forward' and `backward' propagation modes, where m+i is the
characteristic equation solution:

�m2i � limi � 1� � 0 �9�

In previous work the propagation modes were characterized, as for each li the roots m1 , m2 of (9)
satisfy j m1km2 j � 1; then two possibilities arise. If j m1 j 5 15 j m2 j , then we de®ne m�i � m1,
mÿi � m2, whereas if j m1 j � j m2 j � 1, the selection is done on the basis of the group velocity,
which results in Im(m�i �4 0.30

We denote by G the matrix G� diag(m1(l), . . . , mN lay
(l)) and based on equation (8), it is easy to

prove that equation (6) is satis®ed exactly for `forward' propagation modes by means of the
relation

�Z��j�1 � F�Z��j �10�

such that the F matrix named the planar DNL matrix can be given by F� VGV71.
Then, by means of this procedure developed for the rectangular Cartesian co-ordinates,29,30

we obtain the corresponding DNL matrix FM� F for the layer j�M:

�Z��M�1 � F
M�Z��M �11�

3.2. Derivation of the DNL method in the near ®eld

The derivation of the DNL method in the near ®eld is obtained by means of the recursive process
of calculus from the far ®eld (j�M) to the near ®eld (j� 1) (see Figure 3 (right)).

Substituting (11) into (5) for the layer j�M, and solving (5) for (Z�)M, we obtain the DNL
matrix for the layer j�M7 1:

F
Mÿ1 � ÿ�AM

F
M � B

M�ÿ1CM �12�

Repeating recursively this calculation from layer j�M7 1 to j� 1 (the layer corresponding to
r� ri) we obtain the DNL matrix for layer r� ri and the relation

�Z��2 � F
1�Z��1 �13�

on the arti®cial boundary r� ri . This relation in the near ®eld represents a discrete non-local
solution of the exterior problem governed by the Helmholtz equation. We note that the F1 matrix
contains all the information on the behaviour of the scattered wave ®eld since the far ®eld.

This process is numerically stable and is named `condensation from the plane DNL matrix to
the circular DNL matrix'.

We note that the solution of the exterior problem (1)±(2) is in¯uenced by the location of the
r� re external boundary, where is calculated the rectangular DNL condition. In previous work
Bonet et al.31 veri®ed that the scattering errors along the r� ri boundary will diminish as the
circle r� re is placed far away from the computational domain. In this process, the CPU time
increases with the exterior radius re , without increasing the RAM memory. We recall that, in
general, these kinds of applications are memory bounded. Furthermore, the number of operations
can be drastically reduced by means of an eigenvalue decomposition of the matrix M71K.
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Such a procedure has been developed for the study of radiation and scattering water waves
around a circular island.29,31

4. NUMERICAL RESULTS

4.1. Scattering of a plane wave from a circular island

We have computed the scattering of an incident plane wave travelling along the positive x-axis
(y� 0) (by a circular island of radius ra and depth� 4.0ra), in a normal direction to the cylinder's
axis. We consider a hard boundary along the coast and the DNL boundary condition at the far
boundary. With a condensation width of 8 wavelengths the numerical results are presented.

Figure 4 shows the absolute values of the analytical/numerical solution, for di�erent values of
radius R� ra , 2ra and 3ra . In this Figure, the numerical solutions represent the expected physical
behaviour of the solution. Numerical solutions about this problem have been reported by
Zienkiewicz et al.9,10 for the relation depth� 5.0ra , and by Chen20 and Berkho�12 for the relation
kra� 2.0.

4.2. Di�raction calculations for waves incident on an island located on a paraboloidal shoal

An island of circular cylindrical shape, located on a paraboloidal shoal in an in®nite ocean
of constant depth is attacked by small amplitude regular waves of long period and of plane
incidence (see Figure 1). The wave ®eld around the island is calculated according to di�raction
theory. The bathymetry for this case is shown in Figure 1. This type of island is seemingly
accepted as being representative for some real cases.1,2,4,5

Figure 4. Scattering of a plane wave (at y� 0) from a circular island of radius ra , kra � 1.23. Absolute values of the nodal
interpolation of the series solution and the Galerkin solution
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Figure 5. Relative amplitude A/Ai vs. azimuth y8

Figure 6. Relative errors at shoreline vs. azimuth y8
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In the shallow water approximation the di�raction problem has an analytical solution. For this
case, Homma1 solved the in®nite set of linear two-point boundary problems. Figure 5 depicts
curves of relative amplitudes A/Ai at r� ra , r� 2ra and r� 3ra vs. azimuth y8. The relative
amplitudes at the shoreline (with a radius of ra� 10 km) correspond to the results reproduced in
other papers13,15 for a period of T� 240 s. This curve has the same form as the curve obtained by
Zienkiewicz et al. for this period, but there is a discrepancywith the relative amplitudes reported by
them, due to the di�erence in the geometrical parameters relative to the parabolic shoal. We note
that, for the same period, if a increases, then the relative amplitudes at the island also increase.

The numerical solutions (Figures 4 and 5) by the ®nite element method and the DNL pro-
cedure were obtained when the radius r� re is located 8l from the arti®cial boundary. Figure 6
shows the corresponding relative errors (in per cent) at the island with the continuous right line.
We can observe that the maximum relative errors diminish as the circle r� re is placed far away
from the computational domain. It is interesting to study how the wave at the island is delayed
compared to the far ®eld for the same value of r. In other words, the phase delay (`local phase
lag') tells us how much the presence of the island plus the shoal has retarded the `undisturbed'
wave ®eld.2 This can be expressed at the position r as2

C � f ÿ kr cos y �14�
where the angle f is by de®nition the phase lag relative to the incident waves in the far ®eld at
y�+908. Figure 7 presents the phase delay C vs. azimuth y8. The numerical results are similar
to results obtained by Jonsson et al.2

Figure 7. Phase-delay C8 vs. azimuth y8. Comparison numerical vs. analytical solution based in shallow water
di�raction theory
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Figure 8 shows the in¯uence of the shoal on the scattered waves. Note that the shoal has
retarded the `undisturbed' wave ®eld, and originates a new area of `geometrical shadow'. In the
shallow water approach, it acts as a `waveguide', since here the phase velocity is proportional to
the distance from the centre of the island.

5. CONCLUSIONS

In this paper an approach to solving long water wave propagation numerically has been shown
using two di�raction problems as examples. The DNL numerical solution for long waves
scattered by a circular island standing in open sea of constant depth was presented. A novel
numerical solution has been developed for water wave propagation in a region of variable water
depth. Employing the same condensation width as the previous case, its solution has been
obtained. After comparing the results obtained with and without a shoal over the depth, we found
that an island located on the paraboloidal shoal induced very strong wave ampli®cations near the
coastline, as expected. The comparison between the numerical result employing the DNLmethod
and the ®rst order local condition shows the improvement of these procedures.

APPENDIX: NOMENCLATURE

B � circumference of radius ri
Z � water elevation
Zs � scattered ®eld
Zi � incoming ®eld (or incoming wave)
Ai � incoming ®eld (or incoming wave amplitude)
D � Laplacian operator
k0 � 2p/L0 wave number

Figure 8. Scattering of a plane wave (at y� 0) from a circular island: (left) located on a constant ocean; (right) located on
a paraboloidal shoal
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r � radial polar co-ordinate
y � angular polar co-ordinate
O � ®nite element computation domain
O0 � outside computation domain
i � ���p ÿ1� imaginary unit
G � boundary surface
h � water depth
L � wavelength
L0 � wavelength of wave front
o � wave angular frequency
n � outward normal on G
C � wave celerity
ri � interior radius from annular region
re � exterior radius from annular region
T � wave period
_f � derivate of f with respect to x
M �mass assembled matrix
K � sti�ness assembled matrix
I � identity matrix

A j �matrix corresponding to j7 1 layer
B j �matrix corresponding to j layer
C j �matrix corresponding to j � 1 layer
F j �DNL matrix at j layer
F �DNL matrix
j � layer index
n � transversal mode number
l � wavelength
a � radius of cylinder
R � radial distance

Nlay � number of nodes per layer
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