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Abstract 
In the present work a new approach to solve fluid-structure interaction problems is 

described. Both, the equations of motion for fluids and for solids have been approximated 

using a material (Lagrangian) formulation. To approximate the partial differential 

equations representing the fluid motion, the shape functions introduced by the Meshless 

Finite Element Method (MFEM) have been used. Thus, the continuum is discretized into 

particles that move under body forces (gravity) and surface forces (due to the interaction 

with neighboring particles). All the physical properties such as density, viscosity, 

conductivity, etc., as well as the variables that define the temporal state such as velocity 

and position and also other variables like temperature are assigned to the particles and 

are transported with the particle motion. The so called Particle Finite Element Method 

(PFEM) provides a very advantageous and efficient way for solving contact and free-

surface problems, highly simplifying the treatment of fluid-structure interactions.  
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1. Introduction 
Many classifications have been proposed to enclose the numerical formulations that 

approximate the continuum equations that govern incompressible fluid flows. In particular 

the one describing the way that convection is treated divides the numerical formulations 

into two classes, namely material (or lagrangian) formulations and spatial (or eulerian) 

formulations. The first one describes convection by placing a set of axes over the material 

particles that move accordingly to the equations of motion. In the eulerian case the axes 

are set fixed in space and convection terms are included in the equations describing the 

transport of the fluid flow. The present work will describe a method that uses a material 

formulation. The equations of motion for both, the solid and fluid do not present convection 

terms, implying that the convection effect is directly obtained by moving the discrete 

domain.  
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Many authors have taken advantage of Lagrangian formulations to describe different types 

of problems. The Smooth Particle Hydrodynamics (SPH) method developed by Monaghan 

(1977) [mon81, mon97] should be mentioned as a pioneer method of this kind.  

 

Many other methods have been derived from SPH. One that has shown remarkable results 

is the Moving Particle Semi-Implicit method (MPS) introduced by Koshizuka and Oka 

(1996) [kos96]. These methods use a kernel function to interpolate the unknowns. SPH 

uses a weak formulation while MPS uses a strong form of the governing equations.  

 

Ramaswamy (1986) [ram87] proposed a Lagrangian finite element formulation for a 2-D 

incompressible fluid flow. In that paper the mesh was convected according to the equations 

of motion but without change of topology, making it rather limiting when the elements got 

highly distorted. The equations of motion were discretized in space by using the finite 

element method with linear shape functions. 

 

Another possible classification for numerical formulations may be the one that separates 

the methods that make use of a standard finite element mesh (like those made of tetrahedra 

or hexahedra), and the methods that do not need a standard mesh, namely the meshless 

methods. The formulation described in this paper can be considered a particular class of 

meshless method. Again, SPH might be cited as one the first meshless methods.  

 

Indeed, after Monaghans work and in particular in the past 20 years, many have been the 

attempts to develop a robust meshless method that could approximate PDE’s in 2-D and 3-

D with acceptable accuracy, convergence and speed. Among others, the methods based on 

Moving Least Square interpolations [nay92, bel94], Partition of Unity [dua95], and the 

ones based on the natural neighbor interpolation functions [bra95, suk98] may be listed.  

 

In this work the interpolation function used by the Meshless Finite Element Method 

(MFEM) [ide03a] will be implemented. This function uses the Voronoï diagram of the 

cloud of points to construct the interpolant. The extended Delaunay tessellation (EDT) 

[ide03b] is applied to connect the neighboring particles. The EDT provides polyhedral 

elements that are sliver-free in 3-D, avoiding instabilities of the Delaunay tessellation due 

to distorted tetrahedra. The MFEM shape functions adapt automatically to the polyhedra 

and in the case that the polyhedron is a simple, the shape function behaves exactly as the 

linear finite element shape function. 

 

Fluid-structure interaction (FSI) problems have been of special interest for designers and 

engineers in the past 20 years. This explains why more robust and stable formulations have 

been developed to assist the approximation of contact problems. Embedded methods have 

been developed by Löhner et al. [loh03] where a single mesh is used to partition the fluid 

as well as the structure. Also Arbitrary Lagrangian-Eulerian (ALE) formulations [Sou00] 

have given acceptable results when the displacements or the geometry deformations are 

not excessively large.  

 



The approximation for the FSI problem depends basically on the coupling of the fluid and 

structure equations. Based on this coupling FSI problems may be divided into problems 

with weak interaction and problems with strong interaction. The later are found when 

elastic deformation of the solid takes place. The weak interpolation case happens when 

large rigid displacements are present. This situation is typical in ship hydrodynamics, when 

a rigid body moves according to the forces given by the pressure field obtained from the 

fluid dynamic problem. These forces applied to the rigid body will accelerate it, changing 

its velocity and therefore, its position.  

 

FSI problems have been classically solved in a partitioned manner solving iteratively the 

discretized equations for the flow and the solid domain separately. The solution of both, 

fluid flow and solid, with the same material formulation, open the door to solve the global 

coupled problem in a monolithic fashion. Nevertheless, in this paper the rigid solid will 

still be solved separately from the fluid. A partitioned method [pip95, mok01] or iterative 

method [rug00, rug01, zha01 is chosen to solve the coupling between the fluid and solid. 

The advantage to use a material formulation for both, solid and fluid parts will be used here 

only to better reproduce breaking waves or separated drops in the fluid, which are 

phenomena impossible to reproduce using a spatial formulation. 

 

The layout of the paper is the following: in the next section the basic lagrangian equations 

of motion for the fluid and solid domains are given. Next the discretization method chosen 

to solve the incompressible fluid flow equations and the solid dynamics in time equations 

are detailed. The algorithm for the recognition of the boundary nodes and the treatment of 

the free-surface in the fluid is explained. Finally, the efficiency of the Particle Finite 

Element Method for solving a variety of fluid-structure interaction problems involving 

large motion of the free-surface in the fluid is shown.  

2.Equations of motion 

2.1 Fluid dynamic problem: updating the fluid particle positions 

The fluid particle positions will be updated via solving the lagrangian form of the Navier-

Stokes equations. 

 

Let iX  the initial position of a particle a time t=t0 and let ix  the final position. Been  

iji utxu ),(  the velocity of the particle in the final position the following approximate 

relation can be written: 

)/,,( DtDutufXx iiii  .          (1) 

  

Conservation of momentum and mass for incompressible Newtonian fluids in the 

lagrangian frame of reference are represented by the Navier-Stokes equations and the 

continuity equation in the final ix  position, as follows: 

Mass conservation: 
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Momentum conservation: 
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where   is the density, p the pressure, ij the deviatoric stress tensor, if  the source term 

(usually the gravity) and 
Dt

D
 represents the total or material time derivative. 

For Newtonian fluids the stress tensor ij  may be expressed as a function of the velocity 

field through the viscosity   by 
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For near incompressible flows 
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and it may be neglected from Eq. 4. Then:  

























i

j

j

i
ij

x

u

x

u
 .       (6) 

In the same way, the term ij

jx





 in the momentum equations may be simplified for near 

incompressible flows as: 
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 (7) 

 

Using eq. (7), the momentum equations can be finally written as: 
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Note: eq.(3) or the equivalent for incompressible fluid flow eq.(8) are non-linear. In 

Eulerian formulations the non-linearity is explicitly present in the convective terms. In this 

lagrangian formulation, the non-linearity is due to the fact that eqs. (3) and (8) are written 

in the final positions of the particles, which are unknown. There are others way to write 



lagrangian formulations, for instance staying in the initial position [aub04]. In all cases, the 

equations are non-linear. 

Boundary conditions 
On the boundaries, the standard boundary conditions for the Navier-Stokes equations are: 

niijij p     on   

nii uu    on n  

tii uu    on t  

where i  and i  are the components of the normal and tangent vectors to the boundary. 

 

2.2 Solid dynamics problem: updating the rigid body position 

In this paper, the structure will be considered as a rigid solid. Then, the equations of 

motion for a rigid body are: 

i
i F

tD

DU
m                  (9) 

where Fi are the resultant of the external forces (surface forces, gravity force, etc.), whose 

line of action passes through the mass center of the body, Ui is the velocity of the mass 

center and m the total mass of the solid. 

 

The actual motion of the rigid body consists in the superposition of the translation produced 

by the resultant force Fi and the rotation produced by the couple Ti satisfying:  

 

i
i T

tD

DM
 ,   (10) 

where Mi is the angular momentum about the mass center. It must be noted that in (10) the 

time derivative is expressed as the rate of change with respect to any non-rotating system 

of axis. It may be also expressed as the derivative with respect to the body fixed axes by: 

ikjiijk
ii TMe

tD

MD

tD

DM
  ,   (11) 

where   denotes the angular velocity of the body, e are orthogonal unit basis vectors,   

the permutation symbol and tDD /   is the derivative with respect to the body fixed axes. 

 

Let now the body fixed axes be the principal axes of inertia of the body, with its origin at 

the center of mass, then: 

iii IM  , (without summation in the index i)    (12)              

where Ii are the principal moments of inertia and then: 
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Finally, the equations of motion of the body might be summarized as: 
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Calling ai and i the linear and the angular acceleration of the mass center of the body: 

ii Fam  ,  (16) 

  ikkjiijkii TIeI  , (17) 

 

This is a non-linear system of partial differential equations that has to be linearized for its 

numerical approximation. 

 

The final rigid body velocity of an arbitrary point is a combination of both, the linear 

velocity of the center of mass Ui and the angular velocity i  according to: 

kjiijkii reUu   . (18) 

where ri is the distance from the origin of the body axes to an arbitrary point attached to 

the body. The velocity ui will be used later as a boundary condition for the fluid dynamics 

problem. 

 

A very large number of problems involve plane motion. In this case, equation (15) reduces 

to: 

TI
tD

D
I 


 , (19) 

where  , I ,  and T are the planar angular velocity, the moment of inertia, the planar 

angular acceleration and the external couple respectively. 

3.The discrete fluid dynamics problem  
The Navier-Stokes equations present three main difficulties: 

 The equations are time dependent and thus a temporal integration needs to be carried 

out. 

 A spatial dependency is also present and thus the space will be discretized. 

 Finally, Eq. 3 presents a non-linearity, which must be solved iteratively. 

 

Each of the above items will be explained and a solution algorithm will be introduced to 

obtain a final accurate and robust numerical scheme. 

3.1 Implicit-explicit time integration 

Let 
nt and 

1nt  be the initial and final time step. Let 
nn ttt  1
 be the time increment. 

Eq. (8) is integrated implicitly in time as: 
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where   


n
tx ),( means nnnn txtx  ˆ)1(),()1(),( 11    

and ),(ˆ nn tx   represents the value of the function at time 
nt  but at the final position x

. For simplicity 
n will be used instead of n̂ . 

 

Only the case of 1  (fully implicit scheme) will be considered next. Other values, as for 

instance 2/1 , may be considered without major changes. 

The time integrated equations become: 
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The mass conservation is also integrated implicitly by: 
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The time integration of Eq. (20) presents some difficulties: it is a fully coupled equation 

involving four degrees of freedom by node. When the fluid is incompressible or nearly 

incompressible advantages can be taken from the fact that in Eq. (20) the three components 

of the velocity are only coupled via the pressure. The fractional-step method proposed in 

[cod01] will be used for the time solution. This basically consists in splitting each time step 

in two pseudo-time steps. In the first step the implicit part of the pressure is avoided in 

order to have a decoupled equation in each of the velocity components. The implicit part 

of the pressure is added at a second step. The fractional-step algorithm for eqs. (21) and 

(22) is the following: 

Split of the momentum equations 
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where  *

iu  are fictitious variables termed fractional velocities defined by the split:  
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where ),( nn txpp   is the value of the pressure at time 
nt  evaluated at the final position 

and if  is considered constant in time. 

 

In Eqs. (24) and (25)   is a parameter giving the amount of pressure splitting, varying 

between 0 and 1. A larger value of   means a small pressure split. In this paper   will be 

fixed to 0 in order to have the larger pressure split and hence, a better pressure stabilization. 

Other values as, for instance 1 , may be used to derive high order schemes in time 

[cod01]. 



 

Taking into account Eq. (7), the last term in Eq. (24) may be written as: 
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The following approximations have been introduced [cod01]: 
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This allows to write Eq. (24) as: 
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For 1  and 1  the equations for the fractional velocities becomes: 
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Split of the mass conservation equations 
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where 
*  is a fictitious variable defined by the split 
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Coupled equations 

From eqs. (25), (31) and (32) the coupled mass-momentum equation becomes: 
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Taking into account Eq. (31) the above expression can be written as: 
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It is important to note that in eq. (34) the incompressibility condition has not be introduced 

yet. The simplest way to introduce the incompressibility condition in a lagrangian 

formulation is to write: 

  01 nn
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Then, the first term of Eq. (34) disappears, giving: 
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The three steps of the fractional method used here can be summarized by: 
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3.2 The spatial discretization provided by the MFEM 

One of the key to solve a fluid mechanics problem using a lagrangian formulation is to 

generate efficiently the shape functions to approximate the spatial unknown. In the Finite 

Element context, this means to generate permanently, at each time step, a new mesh. In 

this work the interpolation function used by the Meshless Finite Element Method (MFEM) 

[ide03a] will be implemented. This function uses the Voronoï diagram of the cloud of 

points to construct the interpolant. The extended Delaunay tessellation (EDT) [ide03b] is 

applied to connect the neighboring particles. The EDT provides polyhedral elements that 

are sliver-free in 3-D, avoiding instabilities of the Delaunay tessellation due to distorted 

tetrahedral. EDT provide a way to generate meshes at each time step very efficiently in a 

computing time which is largely smaller than the computing time needed to solve the 

linearized system of equation. EDT together with the MFEM are the main key to make the 

PFEM presented in this paper a useful tool. 

 

The unknown functions are approximated using an equal order interpolation for all 

variables in the final configuration: 
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In matrix form: 
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or in compact form:  
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where 
T

N are the MFEM shape functions and PU,  the nodal values of the three 

components of the unknown velocity and the pressure respectively. 

 

It must be noted that the shape functions ),( tXN  are functions of the particle coordinates 

only. Then, the shape functions may change in time following the particle positions.  

 

During the time step, a mesh update may introduce a change in the shape function 

definition, which must be taken into account. During the time integration there are two 

times involved: 
nt  and 

1nt . The following notation will be used to distinguish between 

),( ntXN  and ),( 1ntXN : 
nntX NN ),(    and    

11),(   nntX NN . (45) 

 

In this work, the following hypothesis will be introduced: There is not mesh update during 

each time step. This means that if a mesh update is introduced at the beginning of a time 

step, the same mesh (but deformed) will be kept until the end of the time step. 

 

Mathematically this means: 

).,(),( 1 nn tXtX NN     (46) 

 

Unfortunately, this hypothesis is not always true and this introduces small errors in the 

computation, which are neglected in this paper.  

 

Using the Galerkin weighted residual method to solve the splitted equations, the following 

integrals are obtained: 

  ,0)(

*












































dpdV
x

u

x

dVp
x

dVf
t

dVu
t

dVu

i

n

j

n

ijnii

j

n

i

jV

i

n

iV

ii

V

i

n

i

V

ii

V

i











NN

NNNN

 (47) 

,0)() -(
111

2

2*








































 


 duu
t

dVpp
xx

u

t
u

i

n

ii

n

i

V

nn

ii

i 





NN  (48) 

,0)ˆ()()( 11*1





























dppdVpp
xt

uu i

nn

i

nn

i

i

n

i

V

i NN  (49) 

where the boundary conditions have been also spliced and V  is the volume at time 
1nt . 

Integrating by parts some of the terms, the above equations become: 
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The essential and natural boundary conditions of Eq. (51) are: 
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is the rigid body velocity obtained from Eq. (19). 

 

Discrete equations 

Using the approximations given be Eqs. (44), (45) and (46) the discrete equations become: 
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In compact form: 
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Making use of the approximation described before for 
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For 1  and 0 : 
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In the same way: 
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In compact form: 
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Finally: 
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In compact form: 
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For 1  and 0 : 
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Where the matrices are: 
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Stabilization of the incompressibility condition 
In the Eulerian form of the momentum equations, the discrete form must be stabilized in 

order to avoid numerical wiggles in the velocity and pressure results. This is not the case 

in the lagrangian formulation where no stabilization terms must be added to eqs. (62). 

Nevertheless, the incompressibility condition must be stabilized in equal-order 

approximations to avoid pressure oscillations in some particular cases.  

 

For instance for small pressure split ( 0 ) or for small time step increments (Courant 

number much less than one) it is well known that the fractional step does not stabilize the 

pressure waves [cod01]. In those particular cases, a stabilization term must be introduced 

in Eqs. (62) in order to eliminate pressure oscillations. 

 

A simple and effective procedure to derive a stabilized formulation for incompressible 

flows is based in the so-called Finite Calculus (FIC) formulations [ona98, ona00, ona02].  

In all the examples presented in this paper the FIC formulation was used to stabilize the 

pressure oscillations. 

3.3 Non-linearity of the lagrangian formulation 

Many algorithms are available to linearize the equations of motion. The Newton-Raphson 

scheme is probably the most popular because of its robustness and fast convergence. It has 

been applied with success in this type of formulation in [rad98]. Nevertheless we consider 

that it might not be the most appropriate option for the type of equations we are intending 

to solve as it requires large memory storage. Instead, the successive iteration algorithm has 

been chosen for the present analysis. In this case, only the variables that induces the non-

linearity need to be stored in successive iterations. Let us now describe the process that 

may take place until convergence: 

 

I) Approximate 
1nu  (For the first iteration 01 nu . For the subsequent iterations 

the value of 
1nu  corresponding to the last iteration is taken). 

II) Move the particles to the 
1nx  position and perform an EDT polyhedrization. 

III) Evaluate the fractional velocity 
*u  from (56). It must be noted that the matrices 

M and K  are separated in 3 blocks. Then, these equations may be solved 

separately for ** , yx UU and
*

zU . For 0   (implicit scheme) involves the 

solution of 3 symmetric linear systems of equations. For 0  (explicit 

scheme) the M matrix may be lumped and inverted directly. 

IV) Evaluate the pressure 
1np  by solving the Laplacian equation (58). 

V) Evaluate 
1nu  using (61).  

4. Time integration of the solid dynamics problem 
Eqs. (14) and (15) that govern the movement of rigid bodies are integrated in time by the 

explicit Newmark algorithm. It consists in evaluating the velocity by linearizing the 

acceleration between two time steps: 
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 (70) 

 

The point position for the explicit version of the Newmark algorithm is evaluated by: 
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To integrate the angular acceleration in a 3D system by Newmark algorithm two steps are 

needed, namely: 

predictor step: 

  n

i

n

ii t  1*     (72) 

then, the accelerations are predicted by using Eq. (17): 
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corrector step 
1*1   n

ii

n

i t     (74) 

 

The linear velocities are integrated directly using Eqs.(16) and (70): 
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(75) 

 

For the present analysis 2/1  will be considered.  

 

Both velocities, 1n

iU and 1n

i  are used in (18) to evaluate the new velocity of all the points 

of the body.  

 

In the explicit version of the Newmark algorithm, the new position of the rigid body is 

evaluated by : 
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(76) 

where xi is the new position of the center of mass and  i are the angular rotations of the 

body. 

 

It must be noted that for planar motion, the predictor step is unnecessary and 1n

i  may be 

evaluated directly using (19). 

 

4.1 The Coupled Problem 

On the coupling boundary the fluid velocity and the solid velocity should converge to the 

same value. This could be expressed as: 

Γ2sΓ1f |u=|u  (77) 

 

Thus, two subsystems need to be solved, namely the fluid system: 
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 and the solid system: 
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In the equations above only the variables to be solved at time step 1+n are shown. 

An iterative procedure has to be implemented to couple both systems. A fixed point 

algorithm may be implemented and thus the system could be written as: 
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The first equation in Eqs. (78) denotes the fluid subsystem and the second equation the 

solid subsystem. The subscript k is the iteration counter. 

In the present analysis a Gauss-Seidel process has been chosen [cod96]. In this way, the 

iterative procedure means to solve first one of the subsystems, for instance the fluid system. 

Next the solid system is solved using the information from the fluid computation. Eqs. (78) 

should be modified and the final expression used for the computation is as follow: 
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Convergence occurs when the difference between velocities of successive iteration steps is 

less than the acceptable error. 

5. Free-surface and boundary recognition 
The solution of partial differential equations (PDE) requires to prescribe boundary 

conditions as a necessary step to a well-posed problem. When the PDEs are approximated 

in space and the domain is partitioned into discrete elements (finite elements, particles, 

balls, nodes, etc.) the boundary elements should be provided at the initial time step, such 

that, at run time the algorithm knows where to impose or fix the variables of the analysis 

(pressure, velocity and their derivatives for instance). This would be the case of a static 

domain, where the geometry does not change in time and the boundaries remain constant.  

 

In this work the interest is focused on problems where the solution domain is highly 

distorted, and boundary elements can change between time steps. In this case an efficient 

boundary recognition algorithm is mandatory in order to impose boundary conditions over 

the right elements, thus avoiding possible error accumulation over the time. 

 

When applying the MFEM [Ide03a] to the discrete space problem, the EDT [Ide03b] is 

computed to connect the particles that discretize the domain, thus, all the empty Voronoï 

spheres are found and stored. These spheres will be used to compute the boundary using 

the alpha-shape technique [ede94]. 

 

The particles will follow a given h(x) distribution according to the maximum error allowed 

for the discrete space problem, where h(x) is the expected distance among neighboring 

particles. Then, having all the empty Voronoï spheres and h(x) the boundary particles are 



regarded as: all the particles which are on an empty sphere with a radius r  bigger than 

h . 

 

In this criterion,   is a parameter close to one, typically 2.1  and h  is the mean value 

taken from the defining particles of the sphere under inspection. 

 

Once a decision has been made concerning which of the nodes are on the boundaries, the 

boundary surface must be defined. It is well known that, in 3-D problems, the surface fitting 

a number of nodes is not unique. For instance, four boundary nodes on the same sphere 

may define two different boundary surfaces, one concave and the other convex. 

 

In this work, the boundary surface is defined by all the polyhedron faces having all their 

nodes on the boundary and belonging to just one polyhedron. See [ide03b]. 

 

The correct boundary surface may be important to define the correct normal external to the 

surface. Furthermore; in weak forms (Galerkin) it is also important a correct evaluation of 

the volume domain. It must however be noted that in the criterion proposed above, the error 

in the boundary surface definition is of order h . This is the standard error of the boundary 

surface definition in a meshless method for a given node distribution. 

 

Another important feature of the alpha-shape technique related to the contact problem is 

shown in Fig.5.1. The image shows two different time steps of a solid cube falling into 

water after the alpha-shape algorithm for the boundary recognition has been applied. The 

particles, as well as the connections provided by the EDT are depicted. At the first time 

step all the radii of the empty circles constructed with the nodes of the cube and the nodes 

regarded as belonging to the free-surface are larger than )(xh  and thus the elements that 

they define are eliminated from the tessellation. The second picture shows a more evolved 

state, with the cube reaching the water surface. Thus, at this state the circle radii are less 

than )(xh  and so the connections between the cube and the fluid take part of the 

computation. In this way free surface and contacts are solved at once. 

 

                        

Fig. 5.1. The alpha-shape technique used for contact recognition. 

 



6. Joining and breaking particles 
 
The idea of h variable mesh is rather different in particle methods than in classical eulerian 

formulations. In particle methods, each particle is followed in time and the same particle 

can cross domains in which the solution need small h in order to represent high gradients 

or can cross a region with large h where the solution is smooth. The concept of variable h 

is introduce in particle methods by joining two particles when they are too close to each 

other or breaking a particle in two when all the neighboring particles are too far and the 

solution needs a higher gradient. 

 

In the example presented in this paper the following criterion has been used: 

1) During the EDT algorithm to build the polyhedral mesh a particle is not added if there 

is a previous point at a distance d <  h(x), being  = 0.5 a constant parameter. 

2) on the contrary, when there is an empty sphere whose radius r >  h(x) a point is added 

to its center and assigned with values interpolated from the sphere defining particles. 

The parameter is currently taken as  = 1.1*sqrt(dim)/2 in order to accept, with a 10% 

of tolerance, near-square (dim = 2,   .78) or near-cube (dim = 3,   .95) local arrays 

as connected inner points. This parameter must be less than the alpha-shape parameter 

)(xh  in order to avoid interference with the boundary recognition algorithm. 

7. Validation Examples. 
PFEM was developed as a general-purpose method for solving different kind of problems 

on which large free surface or interface boundaries changes are involved. The method is 

well suited to solve a large variety of mechanical problems including mixing fluid and 

solid materials, wave motion problems, mould filling, coupled thermal-mechanical 

problems and fluid-solid interaction as well.  

In this section some problems are included in order to show the validation of the present 

approach towards experimental and numerical tests. In the following section, some more 

specific examples on fluid structure interaction will be shown. 

 

7.1 Sloshing 

The simple problem of the free oscillation of an incompressible liquid in a container is 

considered first. Numerical solutions for this problem can be found in several references 

[rad98]. This problem is interesting because there is an analytical solution for small 

amplitudes. For larger amplitudes the wave breaks and also some particles can be separated 

from the fluid domain due to their large velocity. PFEM can solve very large amplitudes, 

even in a 3D domain [ide04]. However, in this section only the small amplitude, 

two-dimensional example is shown to validate the method. 

Figure 7.1 shows the variation in time of the amplitude compared with the analytical 

results for the near inviscid case. Little numerical viscosity is observed on the phase wave 

and amplitude in spite of the relative poor point distribution. 

 

 



 
 

Fig. 7.1. Sloshing: Comparison of the numerical and analytical solution. 

 

7.2 Wave on a channel: comparison with experimental results. 

This example was performed in order to compare and validate the method with 

experimental results. A wave is running from the left to the right arriving to a shallow 

domain were the wave breaks. The example is represented on Fig 7.2 were the calculated 

particle positions are shown at different time steps. The wave was produce by a particular 

movement of the left wall. This example was reproduced experimentally in the CIEM 

(Maritime Experimental and Research Channel) of the Escuela Técnica de Ingenieros de 

Canales Caminos y Puertos in the University of Catalunya. The channel is 100 meters 

length, 3 meters wide and 5 meters high.   

 

A pressure sensor was placed on the right wall at 0.2 meters from the bottom. 

 



 

 

 

 

 

 
Fig. 7.2. Wave on a channel: particle distribution for different time steps. 

 



Experimental and numerical pressure results are compared at different time step in Fig. 7.3. 

Both results, experimental and numerical, were smoothed in order to ignore the artificial 

oscillations from high order waves present in the problem. The comparison of the results 

in the pressure values shows a reasonably agreement 

 

    
Fig. 7.3. Wave on a channel: experimental and numerical comparison of the pressure. 

7.3 Dam collapse 

  
Fig. 7.4. Dam Collapse. Initial position. Left: experimental [Kos96]. Right: 3D 

simulation. 

 

The dam collapse problem represented in Figure 7.4 was solved by Koshizu and Oka 

[Kos96] both experimentally and numerically in a 2D domain. It became a classical 

example to test the validation of the Lagrangian formulation in fluid flows.  
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The water is initially located on the left supported by a removable board. The collapse 

starts at time t = 0, when the removable board is slid-up. Viscosity and surface tension are 

neglected. The water is running on the bottom wall until, near 0.3 sec, it impinges on the 

right vertical wall. Breaking waves appear at 0.6 sec. Around t=1 sec. the main water wave 

reaches the left wall again. 

In [Ide04] the results obtained using the method proposed in 2D and 3D domains are 

presented and compared with experimental results. Agreement with the experimental 

results of [kos96] both in the shape of the free surface and in the time development are 

excellent. 

In this example the power of the method to represent breaking waves and flow 

separation for a very complicated and random problem is verified and compared to 

experimental results. 

This example is further exploited here to compare results obtained with three different 

node densities at some time steps in order to check the convergence of the method. 

 

 
Fig. 7.5. Dam Collapse. Comparison between the experiment and numerical results 

obtained in different time steps, with different refinement levels. 

 

Figure 7.5 shows the domain profile at different time steps and with different refinement 

levels. At the top there are some photos taken on the experimental setup corresponding to 



.2, .6 and 1 second from the starting point. From top to bottom grids with 2.2, 4.4 and 

8.8mm in typical distance between neighboring particles are shown. 

The excellent agreement already obtained with low refinement is even better with higher 

level of refinement. 

8 Further Examples on fluid-structure interaction 

8.1 Ship profile hit by a wave 

In the example of Figure 8.1 the motion of a fictitious rigid ship hit by an incoming wave 

is analyzed. This is the first example in which the rigid body is moved by the fluid forces 

in a coupling problem as was explained in the previous chapters. 

The dynamic motion of the ship is induced by the resultant of the pressure and the viscous 

forces acting on the ship boundaries. The horizontal displacement of the mass centre of the 

ship was fixed to zero. In this way, the ship moves only vertically although it can freely 

rotate. The position of the ship boundary at each time step is evaluated using eq. (76) and 

the velocity of the body by using eq. (18). This defines a moving boundary condition for 

the free surface particles in the fluid as introduced in eq. (59).  

Figure 7.7 shows instants of the motion of the ship and the surrounding fluid. It is 

interesting to see the breaking of a wave on the ship prow at t= 0.91 sec. as well as on the 

stern at t= 2.05 sec. when the wave goes back. Note that some water drops slip over the 

ship deck at t= 1.3 sec. and 2.95 sec. 

8.2 Oil ship tank under a lateral wave. 
 

The present example depicts the flexibility of the algorithm introduced in this paper to 

solve some complicated configurations as the one shown in Fig. 8.2. The traversal cut of 

an oil ship tank is hit by a wave. The structure of the ship does not only interact with the 

external water but it also moves due to the fluid forces induced by the fluid in the tank. 

 

Fig. 8.2 shows the temporal development of the problem. The blue lines over each particle 

represent the magnitude of the velocity field. 

 

Initially (t = 0.0) the ship is released from a fixed position and the equilibrium configuration 

found is consistent with Arquimides principle. During the following time steps the external 

wave hits the ship and both the internal and the external fluids interact with the ship 

boundaries. At times t = 5.10 sec and 6.00 sec. breaking waves and some water drops 

slipping along the ship deck can be observed. Figure 8.3 shows the pressure pattern at two 

time steps. 

8.3. Tanker Sinking 

This example represents the sinking of a tanker, which is being flooded by the ship prow. 

The ship has many connected compartments that are serially flooded. 



 

 

 

 

 

 

Fig. 8.1. Ship profile hit by a wave: particle positions for different time steps 

 



 

 
Fig. 8.2. Oil ship tank under a lateral wave: Particle distribution and velocity field. 

 

 

 
Fig. 8.3. Oil ship tank under a lateral wave: Pressure profile at two different time steps. 



 

 

 
Fig. 8.4. Sinking tanker. Particle distribution at three different time-steps. 



 

 

 

Fig. 8.5. Sinking tanker. Velocity field. 

 

In this example proper fluid-structure interaction is displayed as the buoyancy, pressure 

and drag forces from the fluid are acting over the ship and, on the other hand, the ship 

displacement moves internal and external free surfaces on the fluid. 

In Figure 8.4 there are three time-steps shown with the particle positions and the tanker in 

three different sinking stages. 

Figure 8.5 displays velocity profile on a zoom of the first and last time steps form 

previous figure. In this figure, the vorticity is also easily shown. 



This is an interesting example using a variable distance between particles to enhance the 

solution near the ship and free surfaces. This variable distribution was obtained following 

the method outlined in section 6 above. 

The large cyan dots are representing the free surface recognized by the method as 

explained in section 5. 

9. Conclusions 
 

The particle finite element method (PFEM) seems ideal to treat problems involving fluids 

with free-surface and submerged or floating structures within a unified lagrangian finite 

element framework. Problems such as the analysis of fluid-structure interactions, large 

motion of fluid or solid particles, surface waves, water splashing, separation of water drops, 

etc. can be easily solved with the PFEM. 

  

The success of the method lays in the accurate and efficient solution at each time step of 

the equations of an incompressible fluid and the interacting solid. Essential ingredients of 

the numerical solution are the efficient regeneration of the polyhedral mesh using an 

extended Delaunay tessellation, the polyhedral finite element interpolation via the MFEM 

and the identification of the boundary nodes using an Alpha-Shape type technique.  

 

The examples presented have shown the potential of the PFEM for solving a wide class of 

practical FSI problems. Other examples of application of the PFEM can be found in 

[ona04]. 
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