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Abstract

In this work a generalized anisotropic elastoplastic constitutive model for the
large strain analysis of fiber-reinforced composite materials in the frame of mix-
ing theory and the finite element method is presented. The isotropic equivalent
formulation proposed assumes the existence of a fictitious isotropic space where
a mapped fictitious problem is solved. Both real anisotropic and fictitious spaces
are related by means of linear fourth order transformation tensors that contain the
complete information about the real anisotropic material. Details of the numerical
implementation of the model into a non-linear of large strain finite element solution
scheme are provided. Application examples showing the performance of the model
for analysis of fiber reinforced composite materials are given.

1 INTRODUCTION

The use of composite materials in structures has significantly increased during the past
few years. This trend is mainly due to the fact that composite materials have properties
which are very different from conventional isotropic engineering materials.

Composite materials present high strength to weight and high stiffness to weight
ratio, are corrosion resistant, thermally stable and are well suited for structures in which
the weight is a fundamental variable in the design process. Structural components
requiring high stiffness and strength, impact resistance, complex shape and high volume
production are suitable candidates to be manufactured using composite materials. This
explains why aerospace, automotive and marine industries are taken the advantages of
the special characteristics of these materials (Ali, 1996) (O’Rourke, 1989). Components
manufactured with composite materials are tough and durable, exceeding in many
occasions the performance of metal parts.
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In the redesign process of a structural component using composite materials, sim-
ple replacement of the component is not enough. Due to the special characteristics of
these materials (high anisotropy and high strength ratio between matrix and fibers)
the redesign of the component is necessary. Furthermore, analytical techniques for
components manufactured with composite materials are entirely different from conven-
tional methods of analysis used for isotropic materials and require specialist knowledge.
The design process of components made up of composite materials is nowadays mostly
based on empirical methods. The absence of numerical simulation tools for the non-
linear analysis of the behavior of composite materials is observed in the literature.

Several attempts using the finite element method (FEM) for the analysis and design
of composite material components have been carried out in the past few years. The
correlation between analytical and measured results is deficient (Ali, 1996) (Klintworth
and Macmillian, 1992). The inability to simulate the behavior of highly non-linear
anisotropic materials is the main problem with conventional FEM codes. This is ex-
tremely important in fiber-reinforced materials, which are strongly anisotropic.

To simulate the non linear constitutive behavior of composite materials is necessary
to consider many of their relevant features such as: a) high anisotropy with permanent
directionally strains; b) existence of several compounding substances; ¢) one directional
plastic flow of fibers; d) debonding, leading to lost of kinematic compatibility; e) local
buckling; f) tendency of the fibers to arrange in the direction of the higher stress, and
g) large strains. All of this phenomena produce loses in the global strength and stiffness
and are the main responsibles for the non-linear behavior of composite materials.

A general constitutive model for composite materials is proposed in this work. The
model takes into account the relevant characteristics of the behavior of composite ma-
terials by combining mixing theory with a general anisotropic elastoplastic constitutive
model. A new procedure for treating anisotropy effects by means of an equivalent
isotropic formulation is presented. The implementation of the model in a general non
linear finite element solution scheme is straightforward and some examples of applica-
tion are shown.

The layout of the paper is the following. In the next section an overview of differ-
ent constitutive models for composite materials is given. A constitutive model based
on the mechanics of a continuum medium for each point of the solid is used in this
work. Section 3 describes the mixing theory chosen where the proposed anisotropic
elastoplastic constitutive model is implemented. The behavior of composite materials
assumes that each compound participates in the whole composite in the same vol-
ume proportion and with independent constitutive laws: elastic, elastoplastic, etc. In
Section 4 the anisotropic elastoplastic constitutive model in large strains proposed to
simulate the reinforcement phase is detailed. Section 5 describes the implementation
of the constitutive model in the context of mixing theory. In Section 6 details of the
numerical implementation of the model into a general non-linear, large strain finite
element solution scheme are provided. In Section 7 application examples showing the
performance of the model for the analysis of carbon-epoxi fiber reinforced composite
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structures are given.

2 CONSTITUTIVE MODELS FOR COMPOSITE MA-
TERIALS

Micro and the macro-models constitute the alternatives to study the mechanical be-
havior of composite materials. Micro-models focus the study at micro-mechanical level
of the interatomic bounding and on the integrity of the composite beyond the damage
point limit (Obraztsov and Vasilev, 1982). Although micro-models are quite expen-
sive for practical purposes they can be successfully used for modeling the behavior of
composite materials.

Macro-models express the whole composite behavior as that of a single material.
Most macro-mechanical models are based on mixing theory. This theory allows to study
the behavior of composite materials as a combination of individual compounds each one
with its own constitutive law satisfying an appropriate closing equation. This equation
establishes the inter-material kinematic conditions. In this work perfect compatibility
between the different compounds is assumed.

An alternative procedure used for the analysis of composite materials is the ho-
mogenization method (Hill, 1965) (Sanchez Palencia, 1980) (Suquet, 1981) (Suquet,
1982). This method has been typically used to analyze materials made up with peri-
odic characteristics. Basically it consists on finding the solution of a cell that governs
the properties of the composite. This methodology was used by Larson (1976) for the
study of the transport of neutrons in a non homogeneous medium. Len’e and Leguil-
lon (1982) and Len’e (1986) used this method for the computation of the properties
of a material made up with linear elastic components. The homogeneization method
is not satisfactory for the analysis of long fiber reinforced composites due to the high
computational costs.

The PAM-FISS code (Engineering Systems International, ) (Stavrinidis, 1985) used
a bi-phase constitutive model assuming a fragile behavior of the material. The strength
and stiffness of a composite are computed by adding the effect of an orthotropic matrix
material and a unidimensional fiber. Matrix and fibers may have different rheological
constitutive laws and can fail independently therefore simulating a fragile material.
With the objective to capture cracks, fracture mechanics is used. This methodology
requires re-meshing techniques which lead to considerable computational cost.

R. Ali (1996) treats composite materials as a stack of plies with different orientations
of the principal materials directions of each plie. In the analysis he considers that each
sheet presents an orthotropic linear elastic behavior. Haug et. al. (1998) have used
the PAM-FISS bi-phase model assuming that both matrix and fibers have a behavior
characterized by a degradation of stiffness modeled by a damage constitutive law.

In this work the non linear behavior of composite materials is modelled by means
of mixing theory acting on a general anisotropic elastoplastic constitutive model for-
mulated in large strains. The anisotropic elastoplastic constitutive model is considered
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one of the ”base” models which can be included in the mixing theory. In section 3 the
characteristics of the mixing theory used are described.

3 MIXING THEORY - GENERAL DEFINITION

Composite materials are made of substances of inorganic or organic types. Their state
of atomic balance depends on the different interatomic bonds giving place to amorphous
or crystalline materials.

The mechanical characteristics of these materials result from their intrinsic proper-
ties (macroscopic structure, bond type, crystalline structure, etc.). Material behavior is
also influenced by extrinsic properties such as: characteristic of the production process,
microporous size and distribution, microcracks, initial stress states, etc.

The behavior of the composite is a function of the proportion of the total volume
and morphologic distribution of the compounding substances.

Mixing Theory is considered adequate to simulate the behavior of composite materi-
als. This theory is the appropriate one to explain the behavior of a point of a composite
based on the physical-mathematical structure of the mechanics of a continuum. Mixing
theory is based on the principle of interaction of the compounding substances that con-
stitute the material with the following hypotheses: (i) in each infinitesimal volume of
a composite material participate a finite number of compounding substances; (ii) each
substance participates in the behavior of the composite in the same proportion as its
volumetric participation; (iii) all compounds have the same strains (closing equation
or compatibility concept); (iv) the volume occupied by each compound is much smaller
than the total volume of the composite.

The second hypothesis implies an homogeneous distribution of all substances in a
certain region of the composite. The interaction between the different compounding
substances, each one with their own constitutive ("base”) model, yields the behavior
of the composite which depends on the percentage volume occupied by each substance
and their distribution in the composite.

Trusdell and Toupin (1960) studied mixing theory providing the background of the
work of Ortiz and Popov (Ortiz and Popov, 1982a). The results obtained by Trusdell
also constitute the base of the work of Green and Naghdi (Green and Naghdi, 1965)
and Ortiz and Popov (Ortiz and Popov, 1982b) for bi-phase materials. The model here
presented is a more general one and it allows to represent the non linear constitutive
behavior of a material made up of ”n” anisotropic phases undergoing large strains.

3.1 The closing equation

Classic mixing theory is based on the combination and interaction of the basic sub-
stances that make up composite materials (Trusdell and Toupin, 1960) (Green and
Naghdi, 1965) (Ortiz and Popov, 1982b) (Oller et al., 1996). It also assumes that in
each material point all the component substances contribute at the same time and with
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their own constitutive law in the assigned volume proportion. This allows to combine
materials with different constitutive behavior (i.e. elastic, elasto-plastic, elasto-brittle,
elasto-damage,etc.).

In this work it is assumed that all phases in the mixture have the same strain field.
This assumption is valid in absence of atomic diffusion. The atomic diffusion phenom-
ena take place at high temperatures. In this analysis a moderate temperature below
melting point is considered. The strain compatibility condition must be fulfilled in the
referential and updated configurations for each phase. In the updated configuration
the condition can be written as (Trusdell and Toupin, 1960) (Onate et al., 1991):

eij = (eij)l = (6ij)2 = ... = (eij)n (13)

The Almansi’s strain tensor can be written as:

€ij = % [gij - (bij)il] (2)

where b = FFT is the left Cauchy-Green strain tensor, gijis the spatial metric tensor
given by:

g L Osti#]
glJ_IU_(SU{lSij:j} (3)
and F is the deformation gradient, which can be computed as
8:ci
F;= 4
770X, @)

In the referential configuration the closing equation proposed is:

Er;=(Ers), = (Ers)y = .. = (E15), (5)

where the Green-Lagrange strain tensor is defined as:

1
Ery =35 (Crs —G1y) (6)
where G is the material metric tensor, defined as:
- - 0sil+#J
GIJ—IIJ—élJ{lsiI:J} (7)

and C = FTF is the right Cauchy-Green strain tensor. The relationship between
Almansi’s and Green-Lagrange strain tensors is shown in the Appendix

Taking into account the definition of the right Cauchy-Green deformation tensor
and Eq. (5), the closing equation is obtained in terms of the deformation gradient as

F=F, =F,=..=F, (8)
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It is important to note that the strain compatibility condition chosen holds only
for materials with parallel behavior. Above closing equation is therefore not valid for
composites with short fibers reinforcement and in this case a correction in the properties
of each compound is needed to maintain the same closing equation.

3.2 The free energy function

Composite materials that fulfill Egs.(1a) and (5) also satisfy the basic condition of
additivity of the free energy of their components (Trusdell and Toupin, 1960). In the
updated configuration this can be expressed as

my (e,6,0™) =Y kemet), [e, (€F),, 0, a7 (9)
c=1

where m and m, are the density of the composite and of each of the phases in the
updated configuration, respectively, 1. the free energy corresponding to each one of
the compounding substances of the mixture, k. the volumetric participation coefficient,
(eP). the plastic deformation of each phase and o are the internal variables of each
phase which define the physical behavior of the phase.

The mixing theory here used is based on the principle that all the substances con-
tribute to the behavior of the composite proportionally to the relative volume that they
occupy. The volumetric participation coefficient is defined as:

_av.
- &

where V. is the volume of each phase and 1} is the total volume of the composite.
The mass conservation law establishes that

ke (10)

dv
Fa detF =J (11)

where v and V are the volumes in the updated and referential configurations respec-
tively. The relation between the volume in the updated and reference configurations
for each phase can therefore be expressed by:

dv,
=J 12
av. (12)
Substituting Eq. (12) into (10) gives
1 dv, dv.
L= 28 13
JdVy  dvy (13)

where vy is the total volume of the composite in the updated configuration. Eq. (13)
shows that the volumetric participation coefficient remains constant in both updated
and reference configurations.
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The volumetric participation coefficient of each phase should satisfy the following
condition:

i ke =1 (14)

Mixing theory is only valid in case that all the phases of the composite material
are compressible or incompressible. In the presence of compressible and incompressible
phases the closing equation does not hold as the incompressible phases do not admit
a state of volumetric strains compatible with the compressible phases. This situation
violates the strain compatibility condition.

3.3 Constitutive equation

The stress state of the composite is obtained starting from an hyperelastic model sat-
isfying the dissipation condition of the second principle of thermodynamics, i.e.:

o= ma—i} = Z kem ad)‘: Z keme (o (15)

c=1

The tangent constitutive tensor of the composite is given by

T _
¢ ae®ae Z"’ (16)

where (CT)C is the anisotropic tangent constitutive tensor of each phase. The relation-
ship between the constitutive tensors in the Reference and Updated configurations are
shown in the Appendix.

Figure 1 shows an schematic flow diagram for the non-linear solution of a multiphase
material. It can be seen that each phase can have its own constitutive model and is
independent of other phases.

4 ANISOTROPIC ELASTOPLASTIC MODEL FOR A
SINGLE PHASE

The constitutive model presented in this section is one of the ”base” models which can
be introduced in the mixing theory previously presented. This model is adequate to
simulate the non linear constitutive behavior of highly anisotropic materials.

Modelling the behavior of an elastic anisotropic solid does not present big difficul-
ties. In this case is possible to use the general elasticity theory (Hull, 1987), (Pendleton
and Tuttle, 1989), (Matthews and Rawlings, 1994), etc.

The formulation of a constitutive law adequate to simulate the non linear behavior
of orthotropic or anisotropic solids is a problem of higher complexity. The first attempts



An Anisotropic Elastoplastic Model for Fiber Reinforced Composite Materials 9

INCREMENT: n
NEXT ITERATION AU =AU +K ! Freg —
- Reference Configuration

EM=E +1/2(C-1)
A
Elastic Trial Stress
CONSTITUTIVE MODELSFOR EACH COMPOUND ‘
\ . \ .
(C‘TI )1 (Ul )2 (Crl )3 (U )n -
Q o p < S
% wo % (g (0 %’ wo g we g
= | >y Z | =4 Z | >4 z |4y S
a E< [a) E< a E< [a) E< =2
=z 2 z z 2 z zZ =) z = = = =
5 E =] E s E s E e S
o | b o | b o | b o | b o
T88 | | 2|88 |88 T8 | %
g (s3] (5) 82 g os g 82 TS_
O O o o E
i 1
(). ). (') ().
' ]
RECOMPOSITION
e
g'= z K, (U' )C
A
5
NO CONVERGENCE CHECK RESIDUAL ] 3
FORCE AND g &
CONVERGENCE e
['4 =
S
NEXT
INCREMENT: n+1
v

Figure 1: Schematic flow diagram for the non-linear solution of a multiphase material
formulated in the reference and updated configurations.
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to formulate yield functions for orthotropic materials were due to Hill who was able
to extend the isotropic Von Mises model to the orthotropic case (Hill, 1971). The
main limitation of this theory is the impossibility of modelling materials that present
a behavior which not only depends on the second invariant of the stress tensor, i.e. the
case of geomaterials or composite materials.

The anisotropic theory presented here is based on the ideas proposed by Betten
(1981, 1988) and uses the concept of mapped stress tensor. This concept makes it
possible to use the advantages and algorithms of the well known isotropic formulations;
consequently has many computational advantages.

In previous works the authors have developed a generalization from the isotropic
plasticity theory to the anisotropic case (Oller et al., 1993a and 1993b) . The basic
idea consists in modeling the behavior of a solid in the real anisotropic space through
an ideal solid in a fictitious isotropic space. The main hypothesis is that the elastic
strains are the same in both spaces, which introduces a limitation in the anisotropic
mapped theory. This limitation emanates from the necessary proportionality between
the strength limit and the elasticity modulus for each material direction.

The constitutive model presented in this work is a generalization of the classical
plasticity theory and it is useful to simulate high anisotropic materials, such as fiber
reinforced composites.

All the information on the material anisotropy is contained in fourth order trans-
formation tensors relating the stresses and strains in the real (anisotropic) and ficti-
tious (isotropic) spaces. The parameters which define the transformation tensors can
be found from adequate experimental tests. The constitutive model in the fictitious
isotropic space is defined using the same yield function, plastic potential and integration
algorithms developed for standard isotropic materials.

4.1 Yield and potential function

The elastic free energy is defined in terms of a simple quadratic potential. This as-
sumptions restraints the validity of the model to the small elastic strain range, whereas
large plastic strains can be tackled with (Lubliner, 1990) (Garcia Garino and Oliver,
1992).

The yield and potential functions are defined in the updated configuration in the
following way:

Yield function : f (o

ag')
Potential function : g (o;al

=0
) =K (17)

where o is the Cauchy stress tensor.
The yield and plastic potential functions are isotropic if the invariance conditions

[ (aipajqopg;ag’) = f(opg;ag') =0 (18)
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9 (aipajqopg;ag’) = glopgay) =K (19)

are satisfied for any orthogonal transformation a;ra;; = 6;; where a;; is a unit diagonal
tensor and 0;; is the Kronecker tensor.

4.2 Space transformation

Traditional procedures to obtain the constitutive equations for anisotropic elastoplastic
materials are based on the description of a yield and plastic potential surfaces in terms
of the characteristic properties of the material. Satisfying the invariance conditions are
in these cases is difficult.

A procedure that guarantees satisfying the invariance conditions consists on defin-
ing the properties of the real anisotropic solid in terms of a fictitious isotropic solid
through a linear relationship between the real and fictitious stresses spaces (Oller et al.,
1995)(Casas et al., 1998) (see Figure 3):

045 = a%szkl (20)

From Eq. (20)

— ~1
Tij (k) = A (21)

In above oy, and 7;; are the stress tensors in the real anisotropic and fictitious
isotropic spaces respectively and a7 is a fourth order tensor called space transforma-

tion tensor, which relates the stress in the real and fictitious spaces. In the following (e)
and (e) denote variables in the fictitious isotropic space and the real anisotropic space,
respectively. The space transformation tensor is defined in the updated configuration
as

afi = Fij (fu) ™! (22)

where Tij and fr; are the yield strengths of the material in the isotropic and anisotropic
spaces respectively.
The relationship between Almansi’s elastic strains in both spaces is defined as

€ = 7 ikChi (23)

This assumption implies non-uniqueness of elastic strains when the change of space
is produced. In Eq. (23) af;;, is the fourth order strain transformation tensor. This
tensor can be derived from Eq. (20) as follows:

a?jkl = 0y (O'kl)il = (Eikrséis) (c]'lmnefnn)il
= Ez’krsgyeas (efnn)_l (Cﬂmn)_l

- Eikrsayeasmn (lemn)_l (24)
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and hence:

e — -1 o

Arsmn = (CikTS) Q;5k1C5lmn (25)
where €;rs and cjimy are the constitutive tensors in the fictitious and real spaces and
relating stresses and strains in the standard manner as

Oij = Cijki€k (26)

Tij = Cijkl€kl (27)

Note that c;;1; includes the actual properties of the material. The choice of ¢;i; can
be arbitrary and for this purpose the property of any known material can be chosen.

The relationship between the constitutive tensor in the real and the fictitious spaces
is deduced from Eq. (24) as

—1_
lemn - (a%kl) Cikrsaismn (28)

Note that the anisotropic constitutive tensor c is expressed in a local reference
system. This means that prior to the derivation of a® and a” it is necessary to transform
of ¢ to a global reference system, i.e.

Cijkl = Rirjs (crqu)loc Rkplq (29)

where (Crspq),,. 1S the local anisotropic constitutive tensor. The rotation tensor is
defined as

Rijr = rarj (30)

where r;;, = cos ((?1) glob > (¢';) loc) and “€’; is the unit vector corresponding to the kth

component of the global reference coordinate system chosen. The rotation tensor R
takes into account the angles between the local principal directions of the anisotropic
material and those of the global coordinate system.

The transformation of Eq. (20) leads to changes in the shape of the yield surface.
This can be observed in Figure 2 for different yields functions. The space mapping
allows to represent appropriately high anisotropic yield and potential surfaces, such
as the case of fiber reinforced composites where the relationship r = @;;/0y; is large.
Note in Figure 2 the loss of strength in a given direction for the case of the Von
Mises associate plasticity yield function, while in the normal direction the plastic flow
increases in the same proportion.

4.3 Constitutive equation

In this section the free energy function for each of the anisotropic phases of a composite
is derived. This function is then used to define the stress state from Eq. (15).
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Figure 2: Changes in the shape of several yield functions. r is the relationship between
the fictitious isotropic and the real anisotropic yield stresses

4.3.1 Basics aspects

The constitutive equation for an anisotropic material is obtained by writing the dissipa-
tion of an isothermic elastoplastic process in the real anisotropic space. The dissipation
expression is obtained taking into account the first and second principles of thermody-
namics.

The first principle postulates the balance of the energy, demanding the conservation
of the total internal energy of the system. The local Eulerian form of the energy rate
can be expressed by (Malvern, 1969) (Lubliner, 1990).

m = o : d +mr — div(q) —m 7 0 —mn 0 (31)

where w is the internal specific energy, o is the Cauchy stress tensor, d is the velocity
gradient, 7 is the specific internal source of heat, q is the conductivity heat flow and
is the Helmholtz free energy density.

The second principle establishes that for an irreversible process the change in the
internal production of entropy should be bigger or the same than the change of intro-
duced entropy (Malvern, 1969) (Oller, 1989). This gives the specific local dissipation
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as

~ ~ :d 1
2=-4 n— w +(UT> - —qV9 (32)

Om

4.3.2 Helmholtz’s free energy function definition

In the definition of Helmholtz’s free energy is not correct to use as a free variable the
elastic Green - Lagrange strain tensor as this it is affected by the plastic flow through
the plastic component of the deformation gradient F?. A more convenient form of the
Helmhotlz’s free energy is:

Y =1 (e 0; ) (33)

where 6 is the absolute temperature, e® is the Almansi’s strain tensor and «; is a set
of internal plastic variables.

4.3.3 Hypothesis of uncoupled elasticity
The hypothesis of uncoupled elasticity transforms Eq. (33) into:

¥ (€% 0;a) = 9° (e 0) + P (ai; 0) (34)
This assumption is based on the fact that the necessary energy levels to distort the
crystalline net, responsible of the elastic strains, are different from the necessary energy
levels for the intercrystalline slip. This splitting has been used by several authors and
is the base of different computational models (Oller, 1989) (Lubliner, 1990) (Garcia
Garino and Oliver, 1992) (Garcia Garino and Oliver, 1992) (Luccioni et al., 1996).
The free variables of the problem are the temperature # and the elastic part of
Almansi’s strain tensor which is defined as

t
ee:e—ep:%(l—bl)—/épdt (35)
0

where €P is the plastic strain in the updated configuration, b is the left Cauchy-Green
tensor and e”is rate of change of plastic strains in the updated configuration.

4.3.4 Dissipation expression

The rate of change of the free energy function is given by:

- oY oy . oY .
= d°+ — 46 i

V=0 T o0 ' o0 @ (36)

where d® = L, (e°) is the rate of change of the elastic part of the strains. The term L,
denotes the standard Lee derivative (see Appendix). Substituting Eq. (36) into (32)

gives the expression of the dissipation as
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E:[o':d 8wdem]—m9[a—d)—n]—ma—d)d—lq.VHZO (37)

 Dec Oa 0

Taking into account the additive decomposition of the velocity gradient tensor d =
d¢ + d? (Garcia Garino and Oliver, 1992) Eq. (37) becomes:

- Y ) [0Y o . 1
== — :df*—m o |—= — :dP —m—a—-q.V6>0 38
{0’ m mo | 5g +o My, & —5aVo > (38)
Eq. (38) is known as the Clasius-Duhem inequality. In continuum mechanics this
inequality must be satisfied for every possible process, since d and 0 represent arbitrary
temporary changes of the free variables of the problem. Eq. (38) imposes restrictions
in the form of the constitutive equations and it is satisfied only if the multipliers of d®

and 0 are null. This allow to define the constitutive equation in general form as
o oy

= m < = —
dec T 98

The expression of the free energy function is derived in next section.

o (39)

4.3.5 Free energy expression. Special case: small elastic strains and isother-
mal state

Composite materials are usually subjected to small elastic strains. Thus the elastic part
of the deformation gradient F¢ tends to unity and the elastic part of the left Cauchy-
Green tensor (be)_1 tends to the spatial metric tensor g. In this case the distinction
between intermediate and deformed configurations is irrelevant.

However, the plastic strains continue being finite and therefore it is necessary to
keep the presence of the right Cauchy-Green tensor C in the material expression of the
constitutive model to preserve the physical meaning of the model.

For the case of small elastic strains it is enough to characterize the elastic component
of the free energy by means of a quadratic function of the elastic part of Almansi’s strain
tensor, i.e.

Ye = %ee tc:ef (40)

The expression of the free energy function can be rewritten taking into account the
hypothesis of uncoupled elasticity (Eq. 34), the expression of the elastic part of the
free energy (Eq. 40) and the relationship between the constitutive tensors in the real

and fictitious spaces (Eq. 28). This gives
1
p=—(e:c:e’)+ P = (41)

2m
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1

— %ee : [(ag)_1 :C: (ae)} cef + P (a) (42)

The constitutive equation in the real anisotropic space is obtained substituting Eq.
(42) into (39), i.e

= [(a")f1 :E} et =) 7 (43)

Eq. (43) shows that the stresses in the real anisotropic space are obtained by transfor-
mation of the stresses in the fictitious isotropic stress state through (a")fl.

4.4 Flow rule. Evolution law for the internal variables

The rate expression of the plastic strain is defined by:

Jg
oo

All the relevant information on the material anisotropy properties is contained in
the two fourth order tensors a® and a®. The expression of the plastic potential function
for the anisotropic solid is written in terms of these tensors and the Cauchy stress tensor
as

d? =eP=)\ (44)

g(o;0) =g(0;a%0) =7 (0;0) = K (45)
Substituting Eq. (45) into (44) the rate of the plastic Almansi strains is

99 _; 99 97 _; 07 a” = (3) a7 (46)

/\80' Jo o do

. g
where <€> is the plastic flow normal to the isotropic potential function g.
The evolution law of the plastic internal variables is given by:

.gg A():gﬁ:a—E:'A(hi):a—gzaa (47)
o Oo 7 Jo

where (hi)a is a second order tensor to be determined for each one of the 7 internal

variables. In the simplest case of plasticity theory this tensor takes the form of the

Cauchy stress tensor. In this case the evolution law of the internal variables can be

written as

a=\ (h')_

09

@ e

(48)
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The additivity strain concept (see Eq. 35) allows to extend the transformation rule
defined for the total strains to their plastic part, i.e.

Jg

—

e =a:e’=)\a°:

A\ O
a’ =a°: <§> :a? (49)
where & is the plastic strain tensor in the fictitious space.

4.4.1 Dissipation in isotropic fictitious space. Uniqueness of dissipation

In this section the invariance of the dissipation through the thermodynamic process is
shown. As a consequence it is concluded that it is irrelevant to write the constitutive
model in either the anisotropic or isotropic spaces.

The expression of the mechanic dissipation in the fictitious isotropic space can be
written taking into account the following transformations

Q|
|

a’:o (50a)
a‘:e (50Db)

ol
|

The rate of change of plastic strains in the fictitious isotropic space is given by:
g .
0o

Taking into account Eq. (38), the plastic dissipation in the real anisotropic space
for the isothermal process is

g =\a‘: a’ (51)

Emec = 0 : dP — mg—i a>0 (52)

The dissipated mechanical power can be written in the fictitious isotropic space by

substituting in Eq. (52) the flow rule, the evolution law of the internal variables and
taking into account Egs. (50a) and (50b), i.e.

o6
— oy—1.= ey—1.,¢e.99 o
=\(@%)" o :(a% a’:o—:a
:AE:%:E:(@)” (53)
Substituting this expression into Eq. (52) and using Eq. (44)gives
oY — [(=\° oY =
Emec = 0 : dP a_ a= —M—— Q= Zpec >
o:d? —m— & (e) Mm@ 0 (54)
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Eq. (54) shows that the dissipation is an invariant of the thermodynamic process.
Therefore, its value is independent of the space where it is computed.

The Helmholtz’s free energy in an isothermal process can be expressed in the
isotropic fictitious space by

J(E5a) =5 (&0 &) 47 (a") (55)
2m
and hence the constitutive equation in the fictitious isotropic space is given by
0y (8% a)
oe©
Taking into account Egs. (28) and (50b) the Cauchy’s stress tensor in the fictitious
isotropic space is given by

o =1m

=cC:¢e° (56)

=a’:c?:e*=a’: 0 (57)

The previous expression and Eq.(54) show that it is equivalent to write the consti-
tutive model in the anisotropic real space or in the isotropic fictitious one. Obviously
writing the constitutive models in the isotropic fictitious space allows to profit from
the advantages and algorithms used for isotropic materials.

4.5 Tangent constitutive equation

The expression of the tangent constitutive equation is obtained by performing the
temporal derivative of Eq. (43), i.e.

. 801‘]’ 00, 8E$m e

= €1.1=
kl
06, 0€2,, O,

—1_ .e
— g € —
- (aijrs) CrsmnQmnkl €ki=

o —1_ - .
= (aij'rs) Crsmn <ekl - Eil) (58)
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This equation can also be obtained considering Eq. (50a) relating the Cauchy stress
tensor in the fictitious and real spaces. Taking into account that the stress transforma-
tion tensor between spaces a“ is time independent and the plastic consistency condition,
the rate constitutive equation in the fictitious isotropic space is obtained as

o= (©)? e (59)

where (€)% is the tangent elastoplastic constitutive tensor in the fictitious isotropic
space given by

(Eijrs 8?;?3 ) (363'” E'r'slcl) (60)
9f g of° (hm) dg

=P _ =
Cijkl = Cijkl

T pq Cpgin 3, 2 Doy M5 T,

The rate expression of the Cauchy’s stress tensor in the anisotropic space is obtained
taking into account Eq. (50a), i.e.

. -1 _ -
Oij= (a%kl) szljrs €rs (61)
Combining Egs. (61) and (50b) leads to the final expression of the rate constitutive
equation in the anisotropic solid as

dij: (a‘ijjkl)i E::Il)rs&$5Pq épq: ngppq épq (62)
with
-1 _,
CZPP(I = (agjkl) Czl?rsaﬁqu (63)

Eq. (62) shows that the expression of the tangent elastoplastic anisotropic tensor
is a function of the tangent elastoplastic constitutive tensor in the fictitious isotropic
space through a’ and a®.

In order to simulate the constitutive behavior of highly anisotropic composite mate-
rials the constitutive model here proposed only requires the definition of the following
material properties in the real and fictitious spaces:

e Real anisotropic space:

— Initial constitutive tensor in local coordinates cjocal
— Yield strength oy;e1q
— Rotation tensor R

e Fictitious isotropic space:
— Yield function f (&,a) =0
— Plastic potential function g (&, a) =0
— Yield strength o yie1q
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Figure 3: Scheme of the elastoplastic anisotropic constitutive model
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Figure 3 shows the operations to be performed for an anisotropic compounding of
a composite material. The first operation is to transport the strain tensor from the
reference configuration to the updated configuration using a ”push forward” operation
(See Appendix). In step 2 a trial stress o* is computed. Next the trial stresses o*,
the strains e and the constitutive tensors ¢ are transported from the real anisotropic
updated configuration to the fictitious isotropic space using tensors a’ and a®. In the
fictitious isotropic space the yield condition must be satisfied. Otherwise an elastoplas-
tic problem must be solved providing a new stress state o and the tangent elastoplastic
constitutive tensor (€). In step 3 the new stress state and the tangent elastoplastic
constitutive tensor must be mapped to the real anisotropic updated configuration using
(a®) "' and (a®)"! tensors, giving o and (c)’. In step 4 o and (c)? are mapped to
the reference anisotropic configuration. Finally the residual force is computed and a
convergence check is performed.

4.6 Integration of the constitutive equation

A material with inelastic behavior requires the numerical integration of the constitutive
equation in a discrete sequence of time steps.

The result of the integration algorithm is a non-linear function that defines the stress
tensor in terms of the history of strains until the current time step. This integration
algorithm allows to treat the elastoplastic problem as an equivalent elastic problem in
the time step.

The tangent operator used in the linearized problem should be obtained by lineariz-
ing the response function consistently with the integration algorithm of the constitutive
equation. The use of the consistent tangent operators preserves the quadratic conver-
gence of iterative solution schemes based on Newton methods.

In the proposed constitutive model the integration of the constitutive equation is
carried out in the fictitious isotropic space by means of “return mapping algorith-
m” using the backward-Euler scheme.(Crisfield, 1991) In the solution of elastoplastic
problems that requires incremental constitutive equations the consistency between the
tangent operator and the integration algorithm plays a fundamental role (Simo and
Taylor, 1985) (Crisfield, 1991). In the proposed model consistent tangent operators
have been used to preserve the quadratic convergence of Newton methods.

5 COMPOSITE CONSTITUTIVE MODEL

The large strain anisotropic elastoplastic constitutive model presented in previous sec-
tion is one of the ”base” model used in the mixing theory. In particular, in fiber
reinforced composite materials case a constitutive model for each phase is considered
(see Fig. 4). A standard isotropic plasticity model has been chosen for the matrix
material, whereas the behavior of the fiber reinforcement is modelled by means of the
anisotropic elastoplastic model here proposed.
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Figure 4: Constitutive model for fiber reinforced composite materials.
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6 NUMERICAL IMPLEMENTATION OF THE PRO-
POSED MODEL

In this section the basic steps for the implementation of the constitutive model into an
standard elastoplastic finite element program are given.

Box 1: Numerical implementation (1)

- Definition of the yield stress tensors in the real anisotropic space and

the isotropic fictitious space for each phase of the composite material.
fif

- Definition of the constitutive tensor in the real anisotropic space, of the
constitutive fictitious isotropic tensor in the reference configuration and
of the rotating tensor for each phase of the material.

G (C)e s R

- Compute the anisotropic constitutive tensor in the global coordinate

system for each phase of the composite material.
c=R:(¢),.:R
- Definition of the mapping tensors for each phase of the composite material.
c=fe(f)! ; a*=@ ':a%:c

- Compute the anisotropic and isotropic constitutive tensors from mixing

theory.

c= Z ke(c), 5 €= Z ¢ (©),
v LOOP OVER LOAD INCREMENT n=1, Max. Load Increment

e LOOP OVER ITERATION: i=1, Max. number of iterations
1. Compute stiffness matrix.

n [K(e)]i —n (K) = Anelem [K(e)]i
2. Compute strain increments in the reference configuration
. -1 . . . .
AU = [HRY] - (Fresia) T (U) = (AUY 4 (AD)
"(E)*' =1/2 (FTF - 1)
3. Push-forward of the strain tensor to the updated configuration

n (e)i+1 _ ? [n (E)iJrl}
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Box 1: Numerical implementation (2)

4. Integration of the constitutive equation in the updated configuration
& LOOP OVER EACH PHASE OF COMPOSITE MATERIAL:
j=1,NCOMP
(a) Compute elastic trial stress.
n *\2+1 n i+1  n
(@) =l | () = (o)
(b) Transform predicted stresses to the fictitious isotropic space.
@] =l [ e
c (&
(c) Integration of the constitutive equation.
05\ (
" [(E)ep]fjl = |C— 572 .5%)®a(TBF.C) a3
Jo :%*Zn: gar (W) 55 .
(d) Back transformation of stresses and tangent elastoplastic
constitutive tensor to the real anisotropic space.

", = ], e,

"7 = @) T @),

—

12
< ar

& END LOOP OVER EACH PH&SE OF COMPOSITE MATERIAL
5. Compute composite stresses and constitutive tensor according
to mixing theory.
" (o) = S ke [ (o)
") = S ke | [0
6.Pull back of stresses and tangent elastoplastic constitutive tensor
to the reference configuration

n (S)i+1 _ “Tn (O,)i+1

n i+l Tnoonitl
(C©) =2"(c)
7. Compute the residual force in the reference configuration and
check convergence.
=" (F

+1
" [FT(:LZZd} resid
If ||Fresid| > 0?7 =i =14 1 Go back to (1)
else converged solution for the nth. increment
n =n+ 1 Compute new load increment

e END LOOP OVER EACH EQUILIBRIUM ITERATION
 END LOOP OVER LOAD INCREMENTS

resid

)i+l — pnelem [F(e) ]Hl
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7 NUMERICAL EXAMPLES

7.1 General description

In this section application examples using the proposed model are presented. The
examples consist in the numerical simulation of the non linear behavior of a specimen
made up of composite material subjected to a tension state. The simulations have been
carried out using a finite element mesh of standard 4 node rectangular finite elements
with 1988 elements, 2097 nodes and 4194 degrees of freedom. This mesh is similar to
the one used in a study carried out by the European Space Agency (Stavrinidis, 1985).
(see Figure 6a).

The test is carried out on specimens of carbon-epoxi T300/914C that present a
notch in the central area of the specimen. The reinforcement are carbon fibers. The
angle orientations of the carbon fibers in the different tests specimens are: 0°, 10°, 45°
and 90° related to the longitudinal axis of the sample.

The test consists in a tensional state imposing a displacement on the top of the
specimen. In Figure 5 dimensions of the specimen, a detail of the central area and the
points in which the experimental measures were carried out are observed.

In the notched area a stress concentration is generated which perturbs the matrix.
This situation generates stresses that exceed the elastic limit of the matrix. In uni-
directional fiber reinforced composite materials cracks always start in the matrix and
tend to advance parallel to the fiber direction. This behavior is the opposite to that
observed in tests carried out on homogeneous isotropic specimens.

The resin behaves as an isotropic material with an elastoplastic constitutive law,
while fibers behave as an anisotropic elastoplastic material (DFVLR, 1983).

In each numerical simulation the previously described constitutive model is used.
The mechanical properties of each phase (matrix and fiber) are summarized in Tables
land 2. Numerical results presented can be divided in two groups:

e Graphic results, in which the deformation of the specimen as well as iso-surfaces
of the final stress, strain and equivalent plastic states are presented.

e Quantitative results, in which numerical X-Y curve are plotted and compared
with experimental results. The experimental data have been obtained from the
ESI Project Nb ED/83-383/RD/MS and ED/84-415/RD/MS and from a research
project carried out by the European Space Agency (Stavrinidis, 1985).

7.2 Test of T300/914C specimens with 0° fiber angle

A sample of carbon epoxi with 0° fibers related to the longitudinal axis of the specimen
is submitted to an imposed displacement on the top.

It is considered that the resin behaves as an isotropic Von Mises material with an
elastoplastic behavior law. The mechanical properties of the epoxi resin are given in
Table 1.
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Figure 5: Specimen geometry. Dimensions and detail of the central part

Young modulus 13000 Mpa
Poisson Coefficient 0,325
Yield Stress 43,323 Mpa
Post yield behavior law | exponential with softening
Fracture Energy 5N/m
Vin 52,5%

Table 1: Material properties of epoxi resin
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Young Modulus 239.551 Mpa
Poisson Coefficient 0,0
Yield Stress 300 Mpa
Post yield behavior law | linear with hardening
Vi 47, 5%

Table 2: Material properties of carbon fiber

It is considered that the fiber behaves as an anisotropic elastoplastic material. The
mechanical properties used in the numerical simulation are summarized in Table 2.

An incremental analysis considering 30 displacement increments was performed.
The total displacement imposed at the top of the specimen was 0, 385mm.

Figures 6b and 7 show the deformation of the specimen in the final state, and
a detail of the deformation in the notched zone respectively. These figures present
a displacement amplification factor of 50 illustrating the most important phenomena
obtained in the analysis.

a) b)

Figure 6: a) Finite element mesh used in numerical tests. b) Test of T300/914C
specimen with 0° fiber angle. Deformation (amplified 50 times)

In Figure 6b is clearly observed that due to the vertical position of the carbon fibers
the external faces of the specimen do not deviate from the vertical axis of the specimen.
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Deviation does take place when the fibers are inclined with respect to the longitudinal
axis of the sample (see tests with fibers at 10° and 45°, Figures 14 and 21a).

For the 0° case four cracks start in the notch root and progress parallel to the
longitudinal axis of the specimen coincident with the reinforcement direction. The
origin of two of the cracks can be appreciated in Figure 7. They start in the notch root
and spread in the direction of the longitudinal axis.

Figure 7: Test of T300/914C specimen with 0° fiber angle. Detail of deformation at
the notch

In Figure 8a contours of the displacements norm is presented. It is observed that
in the central area of the specimen the displacement field presents a soft gradient, with
four areas clearly distinguished where displacement gradients are high. These areas
begin in the root of each notch and progress parallel to the longitudinal axis of the
specimen, coincident with the reinforcement direction.

The equivalent plastic strain contours in the composite are plotted in Figure 8b.
The areas with higher straining are in the notch root due to the concentration of
stresses. Plasticity effects progress in a parallel direction to the longitudinal axis of the
sample.

Figure 9 shows the plasticity levels in fibers clearly indicating the regions where the
debonding phenomenon has taken place. One of the reasons of the non linear behavior
of reinforced composite materials is due to the phenomenon of crack propagation in
the matrix and the relative displacement between fiber and matrix. The phenomena
of matrix cracking and debonding or slip between fibers and matrix reduces the global
stiffness and leads to inelastic or not recoverable strains. This phenomenon is taken
into account here by limiting the load capacity of the fibers due to the inability of the
matrix to transmit the loads. More details about modeling of this phenomenon will
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Figure 8: Test of T300/914C specimen with 0° fiber angle. a) Contours of displacement,
norm. b) Equivalent plastic strain contours

be reported in future work. Figure 9 also clearly shows that cracks progress from the
root of the notch, due to the concentration of stresses in this area, towards the center
of the specimen. The debonding phenomenon prevents fibers reaching the maximum
yield stress as the matrix is not able to transfer the load to the fiber. This also leads
to a change in the slope of the load - displacement curve. (Figure 12)

In Figures 10a and 10b contours of 0, and o, stresses in the composite are plotted.
The stress concentration in the notched area as well as the changes in the stress state
taking place in the cracked area are shown.

In Figure 11 a detail of the o, stresses in the vicinity of the notched area is shown.

Some experimental and numerical results are compared in Figures 12 and 13. The
curve in Figure 12 shows the force vs. the displacement at the top of the specimen. A
comparison between experimental results, the results obtained with the mixing theory
considering a linear elastic behavior for each phase and the proposed non linear model
is presented. Results using the linear elastic model provide upper limit values.

At high load levels a non-linear behavior is observed in experimental tests due to
debonding phenomena between fibers and matrix. Numerical results detect with re-
markable agreement the onset of this non linear phenomenon. In Figure 13 curves
relating the displacement at the top level of the specimen and the crack opening dis-
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Figure 9: Test of T300/914C specimen with 0° fiber angle. Contours of equivalent

plastic strain in fibers.

Figure 10: Test of T300/914C specimen with 0° fiber angle. a) Contour of o, stress

in the composite. b) Contour of oy, stress in the composite.
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Figure 11: Test of T300/914C specimen with 0° fiber angle. Detail of oy, stress contours
at the notch
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Figure 12: Test of T300/914C specimen with 0° fiber angle. Load vs. displacement at
the top of the specimen
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placement (COD) in the central area are plotted. (see Figure 5)
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Figure 13: Test of T300/914C specimen with 0° fiber angle. COD vs. displacement at
the top of the specimen.

The overall agreement between experimental and numerical results obtained with
the full non linear model can be considered satisfactory.

7.3 Test of T300/914C specimens with 10° fiber angle

The numerical simulations have been carried out considering a total of 50 time dis-
placement increments. The total imposed displacement at the top level was 0, 59mm.

In Figure 14 the deformed sample is presented. This figure presents an amplification
factor of the displacements of 30 times. Note that due to the position of the carbon
fibers, the external faces of the specimen deviate with the vertical axis of the sample.
This phenomena is due to a tendency of the fibers to be reoriented in the direction of
the applied force.

In Figure 15a the displacements norm contours are plotted. In the same it figure
can be observed that the displacement field presents discontinuities in the central area
of the specimen. In this region a crack starts along the reinforcement direction.

In Figure 15b contours of the equivalent plastic strain is presented. Note the areas
in which plastic straining has taken place. It is observed that due to the imposed
displacements conditions, plastic straining takes place in the right upper part and
the left lower zone of the specimen and it progress in a direction coincident with the
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Figure 14: Test of T300/914C specimen with 10° fiber angle. Deformation (amplified
30 times)

reinforcement orientation.

Figure 16 shows the plastic strains in the composite. It is observed that plastic
strains take place in the right upper and left lower corners zones and progress towards
the center of the specimen.

In Figures 17a and 17b contours of 0, and oy, stresses are presented. An induced
directionality is observed in the material.

The experimental and numerical results are compared in Figures 18, 19 and 20.

In this case analytical results present a good agreement with those obtained ex-
perimentally, except for the case of Figure 19 in which a higher crack opening can
be observed in the notched area on the right side of the specimen. It is necessary to
highlight that the experimental results do not show symmetry and the crack opening
displacement is different at the left and right top sides. This could be due to measure-
ment errors or discontinuities in the material. This phenomenon is not observed in the
numerical simulation and symmetric results have been obtained. The size of the crack
opening displacements is the same for both top sides.

A comparison between numerical and experimental results for the right top side of
the specimen is shown in Figure 19. A non gradual increase of the displacements field
is observed in experimental results at the final stage of the test. In Figure 20 numerical
results agree well with experimental values.
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Figure 15: Test of T300/914C specimen with 10° fiber angle. a) Contours of displace-
ment norm. b) Equivalent plastic strain contours
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Figure 16: Test of T300/914C specimen with 10° fiber angle.

Contours of plastic
deformation in the composite.
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Figure 17: Test of T300/914C specimen with 10° fiber angle. a) Contour of o, stress
in the composite. b) Contour of o, stress in the composite.

7.4 Test of T300/914C specimens with 45° fiber angle

An incremental analysis has been performed with a total of 50 displacement increments.
The total imposed displacement at the top level was 0, 59mm.

In Figure 21a and 21b the deformed sample and a detail of the notched area are
presented respectively. These figures present a displacement amplification factor of
25 times. Note the rotations of the external faces due to the 45° direction of the
reinforcement. This phenomenon takes place due to a tendency of the fibers to be
reoriented in the direction of the applied force.

In Figure 22a contours of the displacements norm are presented. Strain localization
can be appreciated in the central area of the sample. This agrees with experimental
results. Note that the cracks progress along the reinforcement direction.

In Figure 22b contours of the equivalent plastic strain is observed. It is appreciated
that plasticity is associated with the matrix materials and progresses normally to the
reinforcement direction. This phenomenon takes place when the fibers try to align with
the force direction. This produces changes in the stress field in the matrix generating
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Figure 18: Test of T300/914C specimen with 10° fiber angle. Load vs. displacement
at the top of the specimen.

plastic strains and debonding.

Figure 23 shows the plasticity levels in the fibers clearly indicating the regions where
the debonding phenomenon has taken place.

In Figures 24a and 24b contours of 0., and oy, stresses are presented. Again an
induced directionality is observed in the material.

The experimental and numerical simulation results are observed in Figures 25, 26
and 27. As in previous cases experimental results are compared with those obtained
numerically using the proposed non linear model and a simpler model based on mixing
theory and assuming a linear behavior for both fiber and matrix.

Analytical results present a good agreement with experimental values in this case.
Note the symmetry of the experimental results. This phenomenon is also observed in
the numerical results and the values of the crack opening displacements are the same
for both sides of the specimen (Figures 26 and 27).

7.5 Test of T300/914C specimens with 90° fiber angle

An incremental analysis has been performed with a total of 40 displacement increment.
The total imposed displacement at the top level was 0, 385mm.

In Figures 28a and 28b the deformed sample and a detail of the notched area are
presented. These figures present an amplification factor of the displacements of 200
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Figure 19: Test of T300/914C specimen with 10° fiber angle. COD vs. displacement
at the top of the specimen (Right side)

times.

Figure 28a shows the straining in the central area of the sample oriented in a
perpendicular direction to the longitudinal axis, coincident with the direction of the
reinforcement.

In Figure 29a the displacements norm contours are plotted. In the same figure it
can be observed that the displacement field presents discontinuities in the central area
of the specimen. In this region a crack starts along the reinforcement direction.

In Figure 29b contours of the plastic internal variable are shown. It can be appre-
ciated that plastic strains start at the notch root and progress parallel to the reinforce-
ment towards the center of the specimen.

In Figures 30a and 30b contours of 0, and o, stresses are plotted. In both figures
the stress concentration due to the presence of the notch which generates plastic strains
in the matrix can be appreciated.

The experimental and numerical simulation results are compared in Figure 31. The
curve shows the force vs. the displacement at the top of the specimen. The curve show
the comparison between experimental results, the results obtained with the mixing
theory considering a linear elastic behavior for each phase and the proposed non linear
model. The numerical simulation using a linear elastic behavior gives the upper limit
response as in previous examples.
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Figure 20: Test of T300/914C specimen with 10° fiber angle. COD vs. displacement
at the top of the specimen (Left side)

8 CONCLUDING REMARKS

The conventional techniques used for the analysis of simple isotropic materials are not
valid for the non linear analysis of composite materials.

In this work and as an alternative to more standard models the non linear behavior
of composite materials is modelled by means of a modified mixing theory, acting on a
general anisotropic elastoplastic constitutive model formulated in large strains.

The use of an auxiliary fictitious isotropic space simplifies both the formulation of
the non linear constitutive model and the computational implementation into standard
non linear finite element codes.

The examples presented show that the constitutive model is appropriate for the
analysis of composite materials in linear and non-linear regimes. The formulation is
quite general and it allows to reproduce complex non linear phenomena in composite
materials such as anisotropy, large strains, plasticity and damage.
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Figure 22: Test of T300/914C specimen with 45° fiber angle. a) Contour of displace-

ment norm. b) Equivalent plastic strain contours.
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Figure 23: Test of T300/914C specimen with 45° fiber angle. Contours of equivalent

plastic strain in fibers.
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Figure 24: Test of T300/914C specimen with 45° fiber angle. a) Contour of o, stress
in the composite. b) Contour of oy, stress in the composite.
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Figure 25: Test of T300/914C specimen with 45° fiber angle. Load vs. displacement,
at the top of the specimen.
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Figure 26: Test of T300/914C specimen with 45° fiber angle. COD vs. displacement,
at the top of the specimen (Right side)
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Figure 27: Test of T300/914C specimen with 45° fiber angle. COD vs. displacement,
at the top of the specimen (Left side)
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Figure 28: Test of T300/914C specimen with 90° fiber angle. a) Deformation (amplified
200 times). b) Deformed detail at the notch.
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Figure 29: Test of T300/914C specimen with 90° fiber angle. a) Contours of displace-
ment norm. b) Detail of equivalent plastic strain contours at the notch.
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Figure 30: Test of T300/914C specimen with 90° fiber angle. a) Contour of o, stress
in the composite. b) Contour of oy, stress in the composite.
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Figure 31: Test of T300/914C specimen with 90° fiber angle. Load vs. displacement,
at the top of the specimen
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Appendix

Transport operators
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