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E. Oñate, M. Papadrakakis and B. Schrefler (Eds)

NUMERICAL STUDY ON THE FLUID-STRUCTURE
INTERACTION AND AERODYNAMIC NOISE RADIATION

OF A MEMBRANE AIRFOIL

ELENA KOLB1,∗ AND MICHAEL SCHÄFER1
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Abstract. This paper investigates the fluid–structure interaction phenomena and their
effect on the aerodynamic noise radiation observed for a membrane airfoil subjected to
a turbulent flow at a fixed angle of attack α = 20◦. For this purpose, two cases with
different Reynolds numbers (Re = 53,100 and Re = 79,700) are simulated. The applied
partitioned fluid–structure interaction approach uses large eddy simulations to predict
the incompressible flow problem and includes geometric non-linear effects for the struc-
tural problem. Following a hybrid method based on a hydrodynamic/acoustic splitting
technique, the incompressible flow field solution provides the acoustic source term for the
aeroacoustic computation. The results suggest a coupling between the vortex shedding,
the dynamic structural response and the radiated aerodynamic sound for this configura-
tion.

1 INTRODUCTION

Flying mammals such as bats and flying squirrels possess thin compliant wings that
grant them exceptional flight capabilities. The lightweight nature of such membrane wings
make them especially interesting for micro air vehicle (MAV) applications with Reynolds
numbers in the low to medium range (Re = 50,000− 100,000), and also the broader field
of morphing wings enjoys increasing popularity. Unlike rigid airfoils, membrane airfoils
passively adapt to the flow, resulting in a complex and usually unsteady fluid-structure
interaction (FSI) process.
The effect of wing flexibility on the aerodynamic performance of membrane wings has been
studied for example by Song et al. [1]. They reported that membrane wings show in-
creased lift slopes and a higher maximum lift coefficient compared with their rigid counter-
parts. In a comprehensive experimental study on the unsteady FSI of membrane airfoils,
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Rojratsirikul et al. [2] suggested that a coupling between the membrane oscillation and
the vortex shedding exists in the studied Reynolds number range (Re = 53,100−106,000)
and for high angles of attack. On the other hand, the aerodynamic sound radiation of
membrane wings has received less attention so far. The relevant studies in this field mostly
refer to flapping wings (see, e.g., [3]). From an engineering point of view the question of
aeroacoustic properties is often crucial and therefore requires investigation.
Although many studies have demonstrated the beneficial aerodynamic performance of
membrane airfoils, the associated fluid-structure interaction processes at medium to
high angles of attack are complex and not fully understood. Additionally, it is unclear
how the wing flexibility affects the aerodynamic sound radiation. To better understand
these effects, we present coupled fluid-structure-acoustic simulations of a membrane air-
foil (α = 20◦). The geometry under consideration corresponds to the experiments of
Rojratsirikul et al. [2] on membrane airfoils for MAV applications. The partitioned FSI
approach uses the flow solver FASTEST [4] to predict the hydrodynamic flow field gov-
erned by the incompressible Navier-Stokes equations with large eddy simulations (LES).
The finite-element solver CalculiX [5] includes geometric non-linear effects for the struc-
tural problem. The aeroacoustic problem is treated by a hybrid approach based on a
hydrodynamic/acoustic splitting technique, where the acoustic field is calculated sub-
sequently to the FSI problem using acoustic sources from the incompressible flow field
solution.

2 MEMBRANE AIRFOIL

The membrane airfoil geometry under consideration corresponds to the experiments of
Rojratsirikul et al. [2] on nominally two-dimensional airfoils. As sketched in Fig. 1, a thin
flexible membrane is attached to the leading and trailing edges of a rigid support structure
mounted at an angle of attack of α = 20◦. The airfoil structure is exposed to a flow at the
Reynolds number Re = (cV∞ρ

ic)/µ ic (chord length c = 0.15 m, density ρ ic = 1.16 kg/m3,
dynamic viscosity µ ic = 16.415 µPas), where V∞ is the undisturbed inflow velocity. Two
different Reynolds numbers are investigated with Re = 53,100 and Re = 79,700. In this
Reynolds number range Rojratsirikul et al. [2] measured quasi two-dimensional membrane
deformations. The corresponding Mach numbers are Ma=0.022 and Ma=0.015. The
material properties of the membrane with a thickness of t = 0.2 mm mimic the latex
rubber sheet used in the reference experiment with density ρ s = 1,000 kg/m3 and Young’s
modulus E s = 2.2 MPa. The experimental Poisson’s ratio is not known. It is set to
ν s = 0.3 to match the DNS study of Yang et al. [6].
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Figure 1: Sketch of the membrane airfoil configuration at an angle of attack of α = 20◦

3 NUMERICAL SIMULATION METHODOLOGY

The problem domain Ω consists of a fluid part Ω f and a solid part Ω s with the fluid-
solid interface Γ fs. Within the fluid domain part, a hydrodynamic/acoustic splitting
technique [7] for low Mach number flows is applied, with a decomposition of the total flow
variables density ρ, velocity vi and pressure p of the form:

ρ = ρ ic + ρ a , vi = v ic
i + v a

i , p = p ic + p a , (1)

into the incompressible variables (ic) representing the hydrodynamic flow field and the
acoustic variables (a).

3.1 Computational fluid dynamics

In the fluid domain part Ω f , the incompressible flow field is computed by LES using
the flow solver FASTEST [4]. To incorporate moving boundaries, which arise at the fluid-
solid interface Γfs, the arbitrary Lagrangian-Eulerian (ALE) approach is applied. The
incompressible flow equations for a control volume V with closed surface S formulated in
an arbitrarily moving frame of reference read:∫

S

v ic
j njdS = 0 , (2)

D

Dt

∫
V

ρ icv ic
i dV +

∫
S

ρ icv ic
i

(
v ic
j − v

g
j

)
njdS =

∫
S

τijnjdS +

∫
V

ρ icfidV , (3)

where v g
j , fj and nj denote the j-th component of the grid velocity, the external body

forces and the outwards pointing unit normal vector to the surface S, respectively. For
Newtonian fluids the stress tensor becomes:
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τij = µ f

(
∂v ic

i

∂xj
+
∂v ic

j

∂xi

)
− p icδij , (4)

where µ f denotes the dynamic viscosity of the fluid and δij denotes the Kronecker delta.
In addition, the so-called space conservation law (SCL) must be fulfilled to ensure that
no space is lost when a control volume changes its shape:

D

Dt

∫
V

dV −
∫
S

v g
j njdS = 0 . (5)

The flow equations are discretised in FASTEST using a finite-volume method on a block-
structured, body-fitted grid and solved using a SIMPLE type pressure correction scheme
[4]. Time discretisation is performed using a second-order backward differencing scheme
with a time step size of ∆t ic = 10−5 s. The convective fluxes are approximated by a
second-order multi-dimensional linear interpolation (MuLI) scheme in combination with
a first-order upwind scheme (80% MuLI with 20% upwind) to stabilise the simulation.
The applied subgrid-scale model is based on Germano’s dynamic procedure [8]. The grid
has an O-type structure with a radius of 25c and spanwise extension of Ls = 0.6c. The
total number of control volumes is approximately 20.39×106 (531×640×60 in the radial,
circumferential, and spanwise directions, respectively). Periodic boundary conditions are
applied in the spanwise direction, and a convective exit boundary condition is applied at
the outlet.

3.2 Computational aeroacoustics

The acoustic equations for the fluid domain part Ω f in ALE formulation read:

∂ρ a

∂t
+ ρ ic∂v

a
i

∂xi
+
(
v ic
i − v

g
i

) ∂ρ a

∂xi
= 0 , (6)

ρ ic∂v
a
i

∂t
+ ρ ic

(
v ic
j − v

g
j

) ∂v a
i

∂xj
+
∂p a

∂xi
= 0 , (7)

∂p a

∂t
+ c2
∞ρ

ic∂v
a
i

∂xi
+
(
v ic
i − v

g
i

) ∂p a

∂xi
= −∂p

ic

∂t
+ v g

i

∂p ic

∂xi︸ ︷︷ ︸
q

, (8)

where c∞ is the speed of sound. Hence, the derivative of the incompressible pressure rep-
resents the major sound source term q. The acoustic equations are discretised and solved
within the FASTEST framework using a finite-volume method. A high-resolution scheme
is used based on the Osher flux limiter with β = 1.0, which gives second order accu-
racy for smooth solutions. To comply with the multiscale character of the hydrodynamic
flow field and the acoustics, a frozen fluid approach [7] is applied with ∆t ic/∆t a = 600.
Applying periodic boundary conditions to numerically solve the acoustic equations with
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a simulated span similar to the hydrodynamic flow field can result in an unphysically
correlated acoustic field [9, 10]. Therefore, a 2D simulation is performed in the mid-span
plane of the LES grid with the spanwise-averaged acoustic source

q̃ (x1, x2, t) =
1

Ls

∫ Ls/2

−Ls/2

q (x1, x2, x3, t) dx3 . (9)

A subsequent correction for finite bodies is not performed here, as the focus is on a
qualitative assessment of the acoustic radiation. A zero-gradient boundary condition in
the far-field allows the acoustic waves to leave the acoustic domain.

3.3 Computational structural dynamics

The structural mechanics problem, is solved using the finite-element solver CalculiX
[5]. The basic balance equations of momentum for the solid domain part Ω s expressed in
terms of the structural displacement u s

i read:

ρ sD
2u s

i

Dt2
− ∂ (SjkFik)

∂Xj

= ρ sfi , (10)

with ρ s the structural density, fi the external force acting on the solid and Fij the material
deformation gradient tensor. Taking into account non-linear geometric effects due to
large deformations and a St. Venant–Kirchhoff material behaviour, the Green-Lagrangian
strain tensor Eij and the second Piola-Kirchhoff stress tensor Sij are given by:

Eij =
1

2
(FkiFkj − δij) and Sij = λ sEkkδij + 2µ sEij . (11)

Here, λ s and µ s denote the Lamé constants. The structural equations are discretised
using the finite-element method and the α-method time integration scheme [11] with an
integration parameter α = −1/3. The time step size is the same as for the incompressible
flow problem. Motivated by the fact that the measured membrane deformations are two-
dimensional, two setups are investigated to reduce the computation costs of the coupled
FSI simulation. First, a subset of the elastic structure is resolved with 46× 30 four-node
membrane elements and periodic boundary conditions. Second, the cross-section of the
structure is resolved with 68×2 four-node plane strain elements with reduced integration,
representing a membrane wing of infinite length. In both cases, the expansion in the
spanwise direction is identical to the expansion of the flow field. The membrane is fully
fixed to the support structure.

3.4 Field coupling

The coupling between the fluid and the solid requires the exchange of interface data,
for which the coupling library preCICE [12] is used. Since the density of liquid and solid
differ considerably, it is sufficient to exchange the interface data only once per time step,
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resulting in an explicit coupling scheme. On the fluid-solid interface Γfs the following
interface conditions must be fulfilled:

u ic
i = u a

i = u s
i , τ s

ijnj = τ ic
ij nj ,

∂u ic
i

∂t
=
∂u s

i

∂t
,

∂u a
i

∂t
ni = 0 on Γfs . (12)

Here, u ic
i and u a

i denote the displacement of the hydrodynamic and the acoustic field,
respectively. The applied splitting approach assumes that the acoustic field is considerably
less energetic than the incompressible flow field for low Mach number flows. Therefore,
its influence on the structure can be neglected and the acoustic field can be computed
subsequently to the FSI problem. Between the incompressible flow field and the acoustic
field a unidirectional coupling exists through the acoustic source term and the interface
velocity is fully impressed on the incompressible flow field. Since the fluid and structural
grid do not match at the interface, preCICE performs an interpolation of the exchanged
data based on a radial basis function mapping with thin plate splines.

4 RESULTS AND DISCUSSION

The flow over a flexible membrane airfoil induces a mean camber to the airfoil and a
dynamic membrane oscillation. As stated by Rojratsirikul et al. [2] and illustrated in
Fig. 2 (Re = 53,100, α = 20◦), the roll-up of large vortices plays an important role at
medium to high angles of attack. In the following, time-averaged numerical results of the
membrane behaviour are presented, followed by an spectral analysis of the FSI effects
and aeroacoustic results. In general, numerical results are evaluated over 20 membrane
oscillation cycles after a quasi-periodic oscillatory state becomes established.

Figure 2: Visualisation of large vortice structure for Re = 53,100 using a smoke visualisa-
tion technique (image from Rojratsirikul et al. [2] (mirrored)) and a velocity magnitude
and streamline plot from present LES

4.1 Fluid-structure interaction

Figure 3a compares the time-averaged membrane shape for Re = 79,700 to those
observed in the experiment and in the simulation by Yang et al. [6]. The qualitive shape
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matches well, but in general the numerical results underpredict the maximum membrane
displacement. The standard deviation of the membrane displacement in Fig. 3b indicates
that the membrane oscillation exhibits a second mode at this Reynolds number. To assess
the influence of the finite-element type, the mean membrane shape and the standard
deviation computed with membrane elements and plane strain elements for Re = 53,100
are compared in Fig. 4. No significant difference between the two types of elements
is evident. The second mode of membrane oscillation is also captured for the smaller
Reynolds number in accordance with the experimental results. The maximum membrane
displacement is underestimated here by 10.9% compared to the experiment, while the
chordwise location of the maximum membrane displacement deviates by only 2.1%. In
summary, the maximum membrane displacement is underpredicted by the simulations,
while the qualitative mean shape and dynamic response compare well with the experiment.
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Figure 3: Mean membrane shape and oscillation mode for Re = 79,700
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Figure 4: Mean membrane shape and oscillation mode for Re = 53,100
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A spectral analysis is performed using the Fast Fourier Transform (FFT) algorithm
in MATLAB. Figure 5 presents the amplitude spectrum of the membrane deformation
measured at three different chordwise locations. The amplitude spectrum of the membrane
deformation at x = 0.25c and x = 0.75c each shows a single dominant frequency, where
the Strouhal number is close to unity. On the other hand, the amplitude spectrum
calculated from the lift coefficient presented in Fig. 6 reveals several main frequencies in
the flow field. The first peak around St = (f c)/V∞ ≈ 0.5 is associated with the natural
vortex shedding frequency for thin airfoils and flat plates. The second major frequency
St ≈ 1 coincides with the membrane oscillation frequency. A third peak around twice
the membrane oscillation frequency St ≈ 2 is more pronounced for the smaller Reynolds
number. The spectral analysis supports the observation by Rojratsirikul et al. [2] that a
coupling exists between the vortex shedding and the membrane oscillation.
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Figure 5: Spectral analysis of the membrane deformation ∆z/c
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Figure 6: Spectral analysis of the lift coefficient cl
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4.2 Aeroacoustic results

The aeroacoustic computation using the hydrodynamic/acoustic splitting approach is
based on the acoustic source term coming from the incompressible flow field. Figure 8
illustrates the time evolution of the computed acoustic pressure field and the associ-
ated acoustic source term distribution over one cycle of the membrane oscillation for
Re=79,700. The results indicate a dipole sound generation at double the membrane’s
oscillation frequency (t/T = 0 and t/T = 2/4) due to the second mode oscillation. Ad-
ditionally, the source term distribution shows a mix of low-frequency components due
to the shedding of large-scale coherent vortices and high-frequency small-scale turbulent
structures at the trailing and leading edge. The sound pressure level at a monitor point
R = 10c above the membrane airfoil (Θ = 90◦) presented in Fig. 7 confirms the dominant
frequency at a Strouhal number around two, which corresponds to twice the membrane
oscillation frequency.
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Figure 7: Sound pressure level (SPL) at R = 10c, Θ = 90◦

5 CONCLUSIONS

This study investigates the FSI and aeroacoustic characteristics of a membrane airfoil
subjected to a turbulent flow and mounted at α = 20◦. The qualitative membrane shape
and the membrane dynamics agree well with the experimental reference data even though
the maximum membrane deformation is underpredicted. A spectral analysis provides
further evidence for a coupling between the vortex shedding and the dynamic structural
response of the membrane. The acoustic results show a characteristic frequency at twice
the membrane oscillation frequency and therefore suggest a coupling between the sound
radiation and the dynamic structural response.

6 ACKNOWLEDGEMENT

Calculations for this research were conducted on the Lichtenberg high performance
computer of the TU Darmstadt.

9



E. Kolb and M. Schäfer
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Figure 8: Visualisation of the two-dimensional acoustic pressure field p̃ a (in Pa) and the
acoustic source term q̃ (in Pa/s) for Re = 79,700
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REFERENCES

[1] Song, A., Tian, X., Israeli, E., Galvao, R., Bishop, K., Swartz, S. and Breuer, K.
Aeromechanics of Membrane Wings with Implications for Animal Flight. AIAA Jour-
nal (2008) 46(8):2096–2106.

[2] Rojratsirikul, P., Wang, Z. and Gursul, I. Unsteady fluid-structure interactions of
membrane airfoils at low Reynolds numbers. Experiments in Fluids (2009) 46:859–
872.

[3] Geng, B., Xue, Q., Zheng, X., Liu, G., Ren, Y., and Dong, H. The effect of wing
flexibility on sound generation of flapping wings. Bioinspiration & Biomimetics
(2017) 13(1):016010.

[4] Technische Universität Darmstadt, Institute of Numerical Methods in Mechanical
Engineering, Darmstadt. FASTEST Manual, (2005).

[5] Dhondt, G. and Klaus, W. CalculiX: A Three-Dimensional Structural Finite Element
Program. http://www.calculix.de (2003).

[6] Yang, H.Q., Dudley, J. and Harris, R.E. Aeroelasticity Validation Study for a Three-
Dimensional Membrane Wing. AIAA Journal (2018) 56(6):2361–2371.
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