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ABSTRACT

Despite many advancements in computational resources, the cost of using them for simulating high-
fidelity (Finite Element) models is still high. Model order reduction aims to reduce this by projecting
the entire system of equations onto a lower-dimensional subspace through a projection function. In this
contribution, we look at two ways of generating these projection functions, data-based and physics-
based approaches. In the data-based method, called Proper Orthogonal Decomposition (POD) [1,
2], Singular Value Decomposition (SVD) is applied to a training data set (generated from varying
parameters of the same high-fidelity problem) to obtain the projection function. For the physics-based
approach, named Linear Manifold (LM), the dynamic eigenmodes of the system are extended using
modal derivatives that can capture the effect of nonlinear kinematics. These so-called modal derivatives
and dynamic eigenmodes form the projection function [3, 4]. In this contribution, we intend to model
quasi-statics of the same high-fidelity problem (that can be extrapolated to dynamics, if necessary) to
observe the difference between these methods. To this extent, we propose a residual parameter in the
reduced space for both these methods and an additional mode selection algorithm for the physics-based
method (LM). As a start, we assess the performance of both these methods on problems involving
geometric nonlinearity. The results showed that the displacement error for these methods for model
problems involving simple loading scenarios falls way below 1% and a computational time gain of
approximately 25−30% compared to the original FE calculation. The difference in these methods has
been visible in complex loading scenarios, where LM takes less number of modes compared to POD
to reach an error below 1%, but the time gain remains the same.
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