THEORETICAL FOUNDATION AND LITERATURE REVIEW OF THE STUDY OF CONCEPT MAPS USING EYE TRACKING METHODOLOGY

Cristòfol Rovira

Cristòfol Rovira is professor at the Communication Department of the Pompeu Fabra University (UPF). He teaches in journalism and advertising programs, in the Master’s Degree in Social Communication (UPF), the Master in Digital Documentation (UPF), the Master in Search Engines (UPF) and Master in Management Digital Content (UB - UPF). His research focuses on search engine optimization, usability, search engine marketing, and on concept maps using eye tracking methodology. He is the academic secretary of the Faculty of Communication at the University Pompeu Fabra, and co-director of the Hipertext.net journal.

http://orcid.org/0000-0002-6463-3216
Universitat Pompeu Fabra, Departament de Comunicació, Grup de Recerca de Periodisme
Roc Boronat, 138. 08018 Barcelona, España
cristofol.rovira@upf.edu

Abstract

In this paper, we will be carrying out an in-depth analysis of a series of investigations involving concept maps used in eye tracking methodology. First, the background to this kind of research is analyzed: on the one hand we will focus on generic scientific literature about those concept maps with theoretical foundations in the psychology of learning, and second the literature of eye tracking in teaching and learning will be reviewed. Finally, we will center our attention on the way in which the literature for these two areas overlaps. A total of 15 published works on concept maps using eye tracking were located and subsequently the quality of these papers, their visibility, topics, and results were analyzed. The findings show there are very few published works on this subject, all originated from dispersed sources which proved difficult to locate, despite the fact that eye tracking methodology lends itself perfectly to the study of concept maps. We predict that in coming years there will be many more publications in this field.

Keywords

Concept maps; Knowledge maps; Graphic organizer; Node-link maps; Eye tracking; Eye movements; Comprehensive analysis; Bibliography; Literature reviews.

Resumen

En este artículo se presentan los resultados de una revisión bibliográfica sobre las investigaciones publicadas hasta la fecha sobre mapas conceptuales aplicando la metodología del seguimiento de la mirada. Se estudian los antecedentes de este tipo de trabajos: por un lado la producción científica genérica sobre mapas conceptuales con bases teóricas en la psicología del aprendizaje y por otro lado la metodología del seguimiento de la mirada aplicada a la investigación sobre la enseñanza y el aprendizaje. Finalmente se concreta en la intersección de ambos tipos de trabajos y se reseñan 15 publicaciones sobre mapas conceptuales usando el seguimiento de la mirada. Se analiza la calidad de estos trabajos, su visibilidad, los temas tratados y los resultados obtenidos. Los conclusiones son que hay pocas publicaciones, dispersas y con poca visibilidad y que el seguimiento de la mirada se aplica de forma poco eficiente. A pesar de estas conclusiones, se constata que la metodología del seguimiento de la mirada se adecua muy bien al estudio de los mapas conceptuales y se pronostica que en los próximos años habrán muchos más trabajos en este campo.
1. Introduction

Concept maps are a kind of graphic representation which show how different concepts relate to each other. They are made up of nodes (concept squares) and links (lines with tags) which are designed to represent knowledge and are used in a wide range of activities to make learning easier. There are different modes of concept maps that come together under different names, each with their own specific characteristics, some of which may even contain different lines of investigation. Most of them, however, are based on theoretical work in the field of psychology in research carried out by David P. Ausubel and presented in the theory of meaningful learning (Ausubel, 1968). Investigation into the use of concept maps goes as far back as the end of the nineties and the number of related works published has increased gradually year by year (Nesbit; Adesope, 2006). These works encompass many different subject matters, research methods and even the theories which can give meaning to these works, but most of them are based on psychology in learning, as concept maps are most commonly used as a learning tool.

The actual methodology of eye tracking itself has been widely used in learning research (Lai et al., 2013), notably in the field of reading. The use of eye tracking has gradually increased year by year (Rayner; Chace; Slattery; Ashby, 2006) because concept maps are basically graphs which we read.

The main hindrance encountered in this research was the sheer lack of previous research and the difficulty involved in tracing any related material. The main difficulty lies in the wide range of terms used to describe concept maps in scientific bibliography and the limited knowledge researchers themselves possess because of the meagre amount of previously published material.

This article aims to seek a solution to the aforementioned lack of data by carrying out an exhaustive bibliographic study on all the previously published material about concept maps using eye tracking up to date. In all, only 15 works were found: one PhD dissertation, five congress presentations, one technical document, and seven articles. All the documents, with the exception of three, were indexed in Scopus and the remaining six were located in Web of Science (SSCI). The first work was published in 2007 and the most recent in 2014. The works are somewhat scattered as they make little reference to each other and are not easily findable. If we exclude the article by Amadieu (2009), none of the other publications are readily cited. In fact, in a great number of the sources researched, the methodology of eye tracking was dealt with in a rather insufficient way, failing to exploit the potential of this method.

A concept map is a graphic diagram made up of concepts and relationships between concepts.

2. Methodology

The main objectives of this article are the following: To present an overview of the range of concept maps of any relevance in specialized bibliographies; analyze the theoretical groundwork which establishes how to create and use these maps; examine the main themes; identify the most productive lines of investigation; and finally to examine in greater depth those works in which eye tracking methodology has been applied in studies regarding concept maps. In order to achieve the aforementioned objectives, an exhaustive bibliographical analysis was carried out of a descriptive and evaluative nature. First of all, the articles are described, including their main theme, quality, and findability. Then, the way in which the methodology of eye tracking was applied is assessed. And, finally, conclusions are drawn with an eye towards the future within this field of research. In order to locate the 15 articles, the following databases and search engines were employed: Google Scholar, Web of Science, Scopus, and ERIC. The search equations were as follows:

For the concept of a concept map:
“concept mapping” OR “concept map” OR “graphic organizer” OR “node link diagram” OR “node and link diagram” OR “knowledge map” OR “knowledge mapping” OR “semantic map” OR “semantic mapping” OR “mind map” OR “mind mapping” OR “concept diagram”

For the concept of eye tracking:
“eye tracker” OR “eye-tracker” OR eyetracker OR “eye tracking” OR “eye-tracking” OR eyetracking OR “eye movement” OR “eye movements”

To complete the study, both groups of terms were joined up using the AND operator and searches were restricted to
titles or key words. From the results obtained, a selection was made of those works which best encompass the lines of investigation into the most productive and consolidated concept maps currently available, all of which are related to teaching and learning processes.

3. Origins and definitions of concept maps

Concept maps are a kind of graphic framework which allow to depict knowledge (Novak; Cañas, 2006; Novak; Gowin, 1984; Novak, 1990a, 1990b). They are made up of concepts and relationships between different concepts, generally referred to as cross links. The concepts are usually shown inside a square and the cross link phrases label the lines or arrows which join up two or more concepts. See figure 1. The concepts are the subject matter of the phrases (nouns or adjectives) and the cross links tend to contain verbs and prepositions. The origin of concept maps can be traced through the theories of David P. Ausubel in his work on meaningful learning (Ausubel, 1963, 1968, 2012) which gave rise to a number of graphic tools aimed at facilitating learning. There are three basic elements in Novak’s definition which are present in other types of maps: graphs or frameworks, concepts or ideas, and relationships or links between these concepts.

The first reference to concept maps in a specialized bibliography (Åhlberg, 2004) was at the end of the seventies (Stewart, 1979), but it was not until the nineties that the amount of research using concept mapping increased notably (Nesbit; Adesope, 2006). Different kinds of maps were devised and developed individually, complying with the three basic characteristics previously stated. Some of the authors and titles, which can be found in the bibliography; are as follows:

- Concept maps (Novak, 1990a).
- Mind maps (Buzan; Buzan, 1995).
- Knowledge maps (O’Donnell; Dansereau; Hall, 2002; Wiegmann; Dansereau; McCagg; Rewey; Pitre, 1994).
- Semantic maps (Lambiotte; Dansereau; Cross; Reynolds, 1989).
- Node-link diagrams (Dansereau, 2005; McCagg; Dansereau, 1991).
- Conceptual diagrams.

Some authors (Nesbit; Adesope, 2006, 2013) cite the works of Quillian at the end of the sixties as one of the earliest sources of theoretical information for modern-day maps owing to their theories regarding semantic maps (Collins; Quillian, 1969; Quillian, 1967). These works should, however, be contextualized in a different field than the subject matter dealt with in this article. It involves the use of maps to represent the human memory with a view towards developing software in order to imitate its functioning pattern. This is a tactic which has been employed in such areas as Computer Linguistics, Artificial Intelligence, or Robotics. Investigation has also been made into node-link graphs overlapping from other fields such as usability and visualization of information (Ghoniem; Fekete; Castagliola, 2004; Ghoniem, 2005; Henry; Fekete; McGuffin, 2007; Holten; Van-Wijk, 2009), linguistics (Haspelmath, 2003; Van-Der-Auwera; Plungian, 1998; Van Der Auwera, 2008), and library and information sciences (Tramullas; Sánchez-Casabón; Garrido-Pizac, 2009). These works are not, however, cited in bibliography with theoretical grounding in psychology.
All the different varieties of maps we have mentioned contain a structure consisting of nodes and links, and can be differentiated using three basic criteria: they either associate (or not, as the case may be) the text to the related phrases, the position of the original concept (center or top), and the grid pattern for general organization in maps (network, star, or hierarchy). Some of these works have been established as lines of investigation, especially in concept maps by Novak (1990a), knowledge maps by Dansereau (McCagg; Dansereau, 1991) and graphic organizers (Estes et al., 1969).

As far as the main objective of this article is concerned, all of the mentioned works may be considered valid ways to use maps, but the main aim here is to examine the research which has applied the methodology of eye tracking to graphs using the “node-link” paradigm.

There is a fair amount of confusion about the terminology used in scientific literature. A number of authors use the generic term “graphic organizers”, and within this term they include concept maps by Novak and knowledge maps by Dansereau (Stull; Mayer, 2007; Vekiri, 2002); however other authors use “knowledge maps” as a generic term (McCagg; Dansereau, 1991; Wiegmann et al., 1992), and still there are others who consider the term “concept maps” to be the most comprehensive term (Millam et al., 2000; Nesbit; Adesope, 2006, 2013). In this article, we have decided to use the latter and when we make any specific reference to Novak’s maps, we will use the expression “Novakian concept maps”.

4. Theoretical groundwork in concept maps

The most common theories involved in creating, using, and studying concept maps belong to the field of cognitive psychology (Ausubel; Vygotski; Piaget; Bruner). Nevertheless, some versions of graphic organizers of nodes and links have been studied in other fields such as Linguistics (Van-Der-Auwera, 2008), Information visualization, and Human computer interaction (Gioniemi et al., 2004; Henry et al., 2007).

Concept maps are versatile and flexible tools which have been applied for varying purposes such as strengthening learning techniques, assessing students, assisting creativity in writing (brainstorming), reading comprehension, exchanging ideas in work groups, and communicating ideas (presentations). It is, however, in the processes of teaching and learning where we encounter the vast majority of literature in this field. The first research was carried out at the end of the eighties and the beginning of the nineties (Daley; Shaw; Balistrieri; Glasenapp; Placentine, 1999; Markham; Mintzes; Jones, 1994; Roth; Roychoudhury, 1992, 1993; J. D. Wallace; Mintzes, 1990; Willerman; Mac-Harg, 1991) and the number of works published has gradually increased every year up to the present. (Adesope; Nesbit, 2009; Nesbit; Adesope, 2006, 2013; O’Donnell et al., 2002; Vekiri, 2002).

More specifically, in the study and use of concept maps for learning, we will consider three main lines of work, all of which can be traced back explicitly to the theory of meaningful learning created by Ausubel (1963). Each line of work uses one kind of map which is given a name and has specific characteristics. The investigation will generally focus on specific aspects of the learning process. See table 1.

The theory of meaningful learning by Ausubel (1963, 1968, 2012) established theoretical grounding and led the way in these three lines of inquiry and for most of the subsequent scientific production of concept maps when they are applied to the field of teaching and learning. The central idea of Ausubel’s theory is that the learning process will be produced in a more efficient or significant, not memory-testing way, if newly-acquired knowledge can be related in great part to what the student already knows. Therefore, in order to achieve success in the learning process, the students would need to have assimilated this knowledge previously. This is known as “advance organizers”, and can be produced in a more efficient or significant, not memory-testing way, if newly-acquired knowledge can be related to general and abstract ideas which depict a general overview, as well as being relevant for recently assimilated knowledge (Ausubel, 1960, 1978). Advance organizers allow to build a platform or scaffolding (Mayer, 1979) for new learning that students will be able to use precisely in order to organize their knowledge and to distinguish between what is important, to be able to draw significant conclusions between newly-acquired information and their previously-attained knowledge.

Concept maps are derived directly from the idea of “advance organizers” which were originally developed by means of fragments of text. They later evolved to include graphs and

Table 1. Main research lines related to concept maps

<table>
<thead>
<tr>
<th>Name of map</th>
<th>Main author/s</th>
<th>Key issue of the research</th>
<th>Specific characteristics of the maps</th>
</tr>
</thead>
<tbody>
<tr>
<td>Graph organizers</td>
<td>Estes et al., 1969</td>
<td>Maps used to facilitate reading comprehension</td>
<td>- The links are not usually labelled</td>
</tr>
<tr>
<td>Concept map</td>
<td>Novak, 1990a</td>
<td>Learning by creating maps</td>
<td>- Hierarchic structure</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- The most general and abstract concepts are at the top</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- The links always have labels</td>
</tr>
<tr>
<td>Knowledge map</td>
<td>McCagg; Dansereau, 1991</td>
<td>Learning by map reading</td>
<td>- Standardized links</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Standardized structures</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Design based on the Gestalt principles</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Link lines with direction symbols</td>
</tr>
</tbody>
</table>
were called “graphic organizers”. Concept maps are an ideal tool when playing the role of graphic organizers in order to depict concepts in an easy way and give a general and abstract vision about a specific subject by means of a concept network. They allow us to apply the idea of advance organizers in which students are able to identify concepts they already understand alongside new ones, all contained in just one general context dealing with all the most important items of knowledge about the theme in question.

In addition to concept maps, other kinds of graphs have been used to play the part of graphic organizers such as matrices, lists, flow charts, timelines, and tables. In all these cases they aim, with the use of graphic representation, to depict the relationship between concepts by their position, linking lines or intersections of figures. There is also a certain amount of confusion regarding the term “graphic organizer” and authors have been unable to agree in establishing a definitive terminology (Merkley; Jefferies, 2000; Moore; Readence, 1984). This is not the only point of contention—many investigations assume the term ‘graphic organizers’ refers to node-link graphs (that is to say concept maps) while we may really be working with matrices.

Novakian concept maps and Dansereau’s knowledge maps, either because of their temporary nature or their internal traits, may be considered two distinct kinds of graph organizers with individually defined characteristics which consolidated the earlier, rather vague, beginnings in graph organizers (Nesbit; Adesope, 2006; Robinson; Katayama; Dube, Devaney, 1998). In fact, we could establish a two-tier level of consolidation. On the first stage, we could study Novak’s concept maps, where two basic conditions of graph organizers are applied. The first condition is that they must have a hierarchy, while the second is that the relationships between the concepts must always come with labels containing a linking phrase made up of the verbal composition of the phrases. Knowledge maps would be on a second level as the links and structure must also be standardized in compliance with previous models.

Concept maps are applied to learning methods based on the significant learning theories of David P. Ausubel, according to whom the learning process will be more significant rather than memory based if new knowledge input can be related largely to that which the student has already retained.

In research dealing with concept maps, other theories, models, or hypotheses grounded in psychology are often cited, thus allowing us to establish the pattern of research, debate the proposed objectives, and later contextualize and explain the results obtained (Nesbit; Adesope, 2006, 2013; Vekiri, 2002). The leading works in this field are: Dual coding (Paivio, 1986, 1991), Cognitive load theory (Sweller, 1988), Conjoint retention theory (Kulhavy; Lee; Caterino, 1985), Activity theory (Leontyev, 1972), Visual argument theory (Waller, 1981), and Assimilation theory (Mayer, 1979). See table 2.

Table 2: Principal psychological theories related to investigation into concept maps

<table>
<thead>
<tr>
<th>Main theory/hypothesis</th>
<th>Main author/s</th>
<th>Year</th>
<th>Main argument</th>
<th>Degree of application in concept maps</th>
</tr>
</thead>
<tbody>
<tr>
<td>Significant learning</td>
<td>Ausubel</td>
<td>1968</td>
<td>The learning process is produced in a significant and not a memory-oriented mode if new knowledge can be substantially related to what the student has already learned.</td>
<td>High</td>
</tr>
<tr>
<td>Dual coding</td>
<td>Paivio</td>
<td>1986</td>
<td>The graphs and texts are represented in two ways in our memory: visually and verbally. The two representations are related, and when combined will benefit our memory retention and assist in learning.</td>
<td>High</td>
</tr>
<tr>
<td>Cognitive load theory</td>
<td>Sweller</td>
<td>1988</td>
<td>Cognitive load refers to the mental effort required in memory control. Cognitive load theory identifies three types of load: cognitive intrinsic, strange and pertinent. The resulting analysis of the different kinds of cognitive load, allows us to establish guidelines to enable us to present information in the right conditions so as to guarantee optimum intellectual performance.</td>
<td>High</td>
</tr>
<tr>
<td>Conjoint retention theory</td>
<td>Kulhavy</td>
<td>1985</td>
<td>It is an extension of Dual coding which explains how we acquire information using graphs, geographic maps in particular, bearing in mind the symbols, icons and reference points they tend to include.</td>
<td>Low</td>
</tr>
<tr>
<td>Activity theory</td>
<td>Leontyev</td>
<td>1972</td>
<td>The Activity theory is a metatheory or an umbrella term applied to a number of fields. In teaching, this theory postulates that students learn more deeply by practising and carrying out activities rather than passive behaviour such as listening, reading or looking up information.</td>
<td>Low</td>
</tr>
<tr>
<td>Visual argument theory</td>
<td>Waller</td>
<td>1981</td>
<td>Graphic representations are effective because their processing requires less cognitive transformation than reading texts and therefore do not overload the limits of our work memory.</td>
<td>Low</td>
</tr>
<tr>
<td>Assimilation theory</td>
<td>Mayer</td>
<td>1979</td>
<td>Graphs allow us to build a mental representation of a text and set the scene before reading.</td>
<td>Low</td>
</tr>
</tbody>
</table>

Register for free at https://www.scipedia.com to download the version without the watermark.
and Technology (Nesbit; Adesope, 2013). They have, by and large, been used for transmitting and learning knowledge, whether it be verbal or conceptual. A whole host of computer programs have also been developed to enable to create and edit these maps (Rovira, 2005), many of which were devised for an educational environment. In spite of this extensive collective experience, there are still many question marks as to why they work, and how to effectively utilize them.

The amount of research into concept maps used in training and learning has gradually increased since the end of 1980 (Nesbit; Adesope, 2006). A number of authors have examined these works and identified the most common themes of investigation, the theories involved, the targets aimed at, the methodology applied, and the results obtained (Cañas et al., 2003; Lambiotte et al., 1989; Milam et al., 2000; Moore; Readence, 1984; Nesbit; Adesope, 2006, 2013; Ve- kiri, 2002; Winn, 1991).

Eye tracking methodology provides us with notions as to how each individual processes information. Some authors consider it to be a “window to our mind”

Most of these studies assess the effectiveness of concept maps in processes of teaching/learning, whether it be as a tool to transmit knowledge (concept map reading), as a means of carrying out learning tasks (creating concept maps), or as an assessment tool for work already completed (assessment tests with concept maps), see table 3. Other studies attempt to identify the optimum characteristics of concept maps in order to meet their targets (map design), or to appreciate whether individual differences (such as experts versus novices) are a conditioning factor in the learning process. The latest trends point towards the development of computer programs to create concept maps which give ideas to those authors who wish to present maps in a more interactive and dynamic fashion (Nesbit; Adesope, 2005; Rueda, Larrañaga; Arruarte; Elorriaga, 2003).

6. Concept maps and eye tracking

Eye tracking is a research methodology used in a wide array of fields including publicity, psychology, usability, and human-computer interaction (Marcos; González-Caro, 2010). It involves identifying and analyzing zones on a computer screen, gazung at the theme in question, and carrying out tasks which are being investigated. It is based on the mind-gazing (Just; Carpenter, 1980) hypothesis, according to which eye movements enable us to trace with great accuracy where the viewer is directing his/her attention, thus presenting us with indications as to the motivation and cognitive processing of individuals. While it is fair to say there are some studies on this matter that might consider the results inconsistent, it is a widely accepted hypothesis (Duchowski, 2003; Rayner et al., 2006; Rayner, 1998), especially when carrying out complex tasks which involve processing large amounts of information, such as learning, visualizing multimedia material, and reading (Frenck-Mestre; Pynte, 1997; She; Chen, 2009). The evidence that eye tracking gives us insight into how people process information has led some authors to classify it as a “mind window” (Grant; Snowly, 2003).

Researchers tend to use two kinds of eye movements to establish metric guidelines allowing them to draw conclusions about the behavior and way of processing information. The two are saccadic movements and staring. The saccadic mo-

Table 3. Main themes of investigation into concept maps

<table>
<thead>
<tr>
<th>Theme</th>
<th>Main author/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Learning by creating maps</td>
<td>Amadieu et al., 2009; Chang; Sung; Chen, 2001; Hay, 2007; Horton et al., 1993; Lambiotte; Danserau, 1992; Novak; Cañas, 2006</td>
</tr>
<tr>
<td>Learning by consulting and studying previously created maps</td>
<td>Nesbit; Adesope, 2011; O’Donnell et al., 2002; D. F. Wallace, 1998; Willerman; Mac-Harg, 1991</td>
</tr>
<tr>
<td>Comparison between creating and reading a map</td>
<td>Karpicke; Blunt, 2011; Lim; Lee; Grabowski, 2009; O’Donnell et al., 2002; Stull; Mayer, 2007</td>
</tr>
<tr>
<td>Comparing concept map learning with other tools</td>
<td>Chang et al., 2001; Danserau; Moreland; Chmielewski, 1997; Hall; O’Donnell, 1996</td>
</tr>
<tr>
<td>Reading comprehension texts with the aid of concept maps</td>
<td>DiCecco; Gleason, 2008; Jiang; Grabe, 2007; Robinson; Kiewra, 1995</td>
</tr>
<tr>
<td>Designing effective concept maps</td>
<td>D. F. Wallace, 1998; Wiegmann et al., 1992</td>
</tr>
<tr>
<td>Comparing the effectiveness of concept maps by taking individual differences into account</td>
<td>Amadieu et al., 2009; Lambiotte et al., 1989; O’Donnell et al., 2002</td>
</tr>
<tr>
<td>Learning assessment using concept maps</td>
<td>Markham et al., 1994; J. D. Wallace; Mintzes, 1990; Kinchin; Hay; Adams, 2000; Novak; Gowin, 1984; Pearse; Skipper; Mintzes, 1997; Ruiz-Primo; Shavelson, 1996; Tums; Atman; Adams, 2000</td>
</tr>
<tr>
<td>Learning in a collaborative way using concept maps</td>
<td>Esiobu; Soyibo, 1995; Haugwitz; Nesbit; Sandmann, 2010; Okebukola; Olugbemiro, 1988; Patterson; Danserau; Wiegmann, 1993; Roth; Roychoudhury, 1993; Stoyanova; Kommers, 2002; Van-Boxtel; Van-der-Linden; Roelofs; Erkens, 2002</td>
</tr>
<tr>
<td>Concept maps used to plan and develop a curriculum design map</td>
<td>Cristea; Okamoto, 2001; Edmondson, 2000; Novak, 1998</td>
</tr>
<tr>
<td>Concept maps used to empower creativity in writing</td>
<td>Anderson-Inman; Hornby, 1996; Sturm; Rankin-Erickson, 2002</td>
</tr>
</tbody>
</table>
Eye tracking has been widely and successfully applied in the field of learning research in recent decades. Lai (2013) identified up to 113 investigations published in the journal Web of Science between 2000 and 2013 where eye tracking was applied to the field of learning. From 2009 onwards, the number of publications increased sharply, from three in 2008 to 21 in 2009, to a peak of 36 works on this subject in 2012. In all likelihood, the number of published articles will continue to rise in the near future.

More than 70% of the research identified by Lai is devoted to the analysis of information processing and the effects of eye tracking and learning strategies. Studies including concept maps are in the latter group (Amadieu et al., 2009) along with other multimedia learning fields (D’Mello, Olney, Williams; Hay; Mi, 2016; Pradhan et al., 2011; Wiberg, Minogue; Gall-Jones; Cowley, Krebs, 2009).

In works where eye tracking is applied to concept maps, different issues are resolved: to contextualize and debate the results obtained. Bibliographies about concept maps using other types of methodology are also cited, as mentioned previously in point 4. It should also be pointed out that, due to the lack of previous research on maps studied using the eye tracking method, the references cited are studies where this methodology is applied to other kinds of tools or processes such as multimedia, graphs, reading, and resolving problems (table 4).

Studies on concept maps applying eye tracking methodology

An in-depth examination of available works on this subject has shown there are a total of 15 investigations into concept maps published between 2007 and 2014 in which eye tracking methodology was applied. See table 4. Searches were carried out in Google Scholar, Web of Science, Scopus, and ERIC in order to find publications in which eye tracking was used to study all kinds of concept maps. As stated previously in the section on methodology, we have used the most common terms both for the concept of “concept map”, with the keywords “concept map”, “knowledge map”, “graphic organizer”, and “node-link maps”, as well as the concept “eye tracking”, with the keywords “eye tracking” and “eye movement” in their various forms. We later used bibliographical references from articles to find some non-indexed documents such as statements in congresses, PhD dissertations, postgraduate theses, or technical reports.

The amount of literature regarding the application of eye tracking methodology in concept maps is somewhat scarce and the sources are dispersed and difficult to locate, despite the fact that eye tracking methodology lends itself naturally to the study of concept maps.

The end result was a total of 15 publications comprising two PhD dissertations, five congress presentations, one technical document, and seven articles. The first reference was published in 2007 and the most recent in 2014. 80% of the documents are indexed in Google Scholar, 66% in Scopus, and 40% in Web of Science.

The works published are scattered and do not tend to cite each other. If we do not include the articles which are self-cited, there are only four remaining works which are cited in other documents within this group:

- Van-Amelsvoort et al., 2013 are cited by P. L. Liu, 2014.

There are two factors that highlight the lack of research in this area: only 40% of the works published are indexed in the Web of Science database and only one of them (Amadieu et al., 2009) has received a significant number of citations: 40 in Web of Science, 46 in Scopus, and 106 in Google Scholar.

Most of the works use the terms “concept map” or “graphic organizer” and cite Novak in a generalized way. It is surprising that no publications were located dealing with the line

Table 4. Different lines of work published previously on eye tracking cited in those studies where this methodology is applied to concept maps

<table>
<thead>
<tr>
<th>Eye tracking applied to</th>
<th>Main authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multimedia and graphs</td>
<td>Hyönä, 2010; H. C. Liu; Lai; Chuang, 2011; Mayer, 2010; Ozcelik; Arslan-Ari;</td>
</tr>
<tr>
<td></td>
<td>Cagiltay, 2010; Ozcelik; Karakus; Kursun; Cagiltay, 2009; She; Chen, 2009;</td>
</tr>
<tr>
<td></td>
<td>Van-Gog; Scheiter, 2010</td>
</tr>
<tr>
<td>Reading comprehension</td>
<td>Findlay; Gilchrist, 2003; Rayner et al., 2006; Rayner, 1998; Frenck-Mestre;</td>
</tr>
<tr>
<td></td>
<td>Pynte, 1997; Frenck-Mestre, 2005</td>
</tr>
<tr>
<td>Problem solving</td>
<td>Crowe; Averbeck; Chafee; Anderson; Georgopoulos, 2000; Epelboim; Suppes;</td>
</tr>
<tr>
<td></td>
<td>2001; Grant; Spivey, 2003</td>
</tr>
</tbody>
</table>

Register for free at https://www.scipedia.com to download the version without the watermark

El profesional de la información, 2016, enero-febrero, v. 25, n. 1. eISSN: 1699-2407 65
of work involving knowledge maps (McCagg; Dansereau, 1991), especially when considering that scientific production in this field is focused on learning with the aid of map reading.

There are three more items of research analyzing concept maps by means of eye tracking which have not been included in this selection, because they correspond to lines of research with theoretical grounding in the field of information visualization and are used for different reasons when confronted with creating concept maps and comes to the conclusion that, although they apply some similar strategies, both groups of users follow different patterns in the processing and development of concept maps. Amadieu explores this learning process by consulting concept maps and considering two variable factors: the degree of prior knowledge of the students and the structure of the concept maps (hierarchic or network). The results showed that those learners with very little previous knowledge were able to assimilate the same level of factual knowledge using hierarchic maps or networks, but the hierarchic maps achieved better results in conceptual knowledge. Those learners with greater prior knowledge, however, achieved a higher mark in factual learning using network maps, but overall obtained the same results in conceptual concepts using both kinds of maps.

Concept maps are graphs that we read, and eye tracking has been used successfully both in graph reading and reading comprehension. The works by Ponce (2014a, 2014b) and Liu (2011, 2014) compare the differences in behavior of learners faced with the task of reading a text alongside a map. It could be argued that, as a rule, it is likewise unadvisable to draw general conclusions from these publications when applying them to the task of reading a text alongside a map. In this case, it is more realistic to compare map reading, which is far more complex than simple map visualization.

In some cases eye tracking was applied in a somewhat inefficient manner, setting excessively ambitious targets where this method is unlikely to yield realistic results. The maps used are large and contain very complicated structures. The users carried out difficult tasks involving too many unmanageable variables. It is more advisable to follow the model of concept maps devised by Rayner (1998; 2006), which are applied to the study of reading, where just one specific and exhaustive control of intervening variables is examined.

7. Conclusions

In this article we have analyzed the theoretical groundwork in concept maps while identifying the main lines of research, the most relevant theories, and the most common subject matter. Our examination is concerned with those basic theories where eye tracking methodology is applied to the study of concept maps. Fifteen published works were located, comprising two PhD dissertations, five congress presentations, one technical document, and seven articles. The conclusions drawn from analyzing these works are that they are dispersed and difficult to visualize. The previous references of these publications are investigations where eye tracking methodology was used for multimedia studies, graphs, reading comprehension, and problem-solving. It should also be pointed out that in some cases this methodology has not been applied efficiently and there is a lack of control in managing intervening variables: the maps are too large, the tasks are too long, and the targets set are overambitious.

Investigation into eye tracking methodology has generally been employed in studies involving learning or teaching (Lai et al., 2013). Since the nineties, however, a wide range of material has been published on concept maps which tend to focus on psychology in learning (Nesbit; Adesope, 2006, 2013). In contrast, there appear to be few works in which eye tracking has been applied in research about concept maps, despite its proven effectiveness (Rovira 2010). This methodology allows us to obtain evidence as to the cognitive process which users employ while interacting with this kind of tool, especially in terms of attention and perception. It is a surprising situation, as concept maps are basically graphs containing a significant amount of text, and are therefore graphs which we read. Eye tracking has been used successfully in studies on graph reading (Mayer, 2010) as well as reading comprehension, where it has a substantial track record over the years (Rayner et al., 2006; Rayner, 1998). Consequently, we can confidently predict that in the near future there will be many more works on this subject (Adesope; Nesbit, 2013). In fact, 40% of the entire research in this field has taken place over the last two years.

8. Bibliography

http://dx.doi.org/10.4018/978-1-59904-992-2

http://dx.doi.org/10.1016/j.learninstruc.2013.02.002

Amadieu, Franck; Van Gog, Tamara; Paas, Fred; Tricot, André; Mariné, Claudette (2009). “Effects of prior knowledge and concept-map structure on disorientation, cognitive load, and learning”. Learning and instruction, v. 19, n. 5, pp. 376-386.
http://dx.doi.org/10.1016/j.learninstruc.2009.02.005

Dogusoy-Taylan, Berrin; Cagiltay, Kursat (2014). "Cognitive

Lai, Meng-Lung; Tsai, Meng-Jung; Yang, Fang-Ying; Hsu, Chung-Yuan; Liu, Tzu-Chien; Lee, Silvia-Wen-Yu; Lee, Min-Hsien; Chiou, Guo-Li; Liang, Jyh-Chong; Tsai, Chin-Chung (2013). “A review of using eye-tracking technology in exploring learning from 2000 to 2012”. Educational research review, v. 10, n. 88, pp. 90-115. [http://dx.doi.org/10.1016/j.edurev.2013.10.001]

Molnari, Gaëlle; Sangin, Mirwetis; Nüssli, Marc-Antoine; Dillenbourg, Pierre (2008). “Effects of knowledge interdependence with the partner on visual and action transactivity in collaborative concept mapping”. In: 8th Intl conf of the learning sciences 2008 (ICLS 2008), v. 2, pp. 91-98. [http://dl.acm.org/citation.cfm?id=1599833&dl=ACM&cfid=571307025&cftoken=BS361407]

Ozcelik, Erol; Arslan-Ari, Ismahan; Cagiltay, Kursat (2010). “Why does signaling enhance multimedia learning? Eviden-

http://dx.doi.org/10.1007/978-3-540-87730-1_13

Digitalización enriquecida de fondo antiguo y patrimonial

Software de gestión para Bibliotecas, Archivos y Museos

Rercolector OAI-PMH

de metadatos de diversos proveedores

¡Con estándares internacionales para un mundo enlazado y abierto!

DIGIBÍS C/ Alenza, 4. Madrid. Tel.: 914 32 08 88. Email: digibis@digibis.com

www.digibis.com