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Abstract This paper presents a new computational technique for predicting the onset and evolution
of fracture in a continuum in a simple manner combining the finite element method (FEM) and the
discrete element method (DEM). Once a crack is detected at an element side in the FE mesh, discrete
elements are generated at the nodes sharing the side and a simple DEM mechanism is considered to
follow the evolution of the crack. The combination of the DEM with simple 3-noded linear triangular
elements correctly captures the onset of fracture and its evolution, as shown in several examples of
application in two and three dimensions.
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1 Introduction

The development of a fracture within a continuous medium is a topic of much interest in the strength
analysis of brittle and ductile materials. One of the most recent methodologies to simulate the fracture
process is the discrete element method (DEM) [7, 10, 21, 26, 27]. However, the inherent difficulty for
calibrating the material parameters in the DEM, as well as the need for a large number of discrete
elements for solving practical problems question it effectiveness for large scale fracture mechanics
analysis, even though the qualitatively results of the DEM for predicting fracture patterns are pretty
good.

Much research has been invested in recent years in the development of the finite element method
(FEM) for modelling the onset and propagation of cracks in frictional materials [3–5, 8, 13–15, 17, 18].
However, FEM procedures for crack prediction use sophisticated element formulations and often
require to remesh in the vicinity of the possible cracks paths [8, 15].

The approach followed in this paper uses the FEM to model a continuum whose fracture is
described by means of discrete elements when it appears. The FEM-DEM transition is done without
remeshing. Although several of the ideas on which this paper is based have been studied previously
[9, 16, 28], the current development has enabled a new and promissing approach to solving the problem
of fracture propagation in a continuum.

The paper describes the basis of the simple FEM-DEM procedure proposed. The method extends
a well defined crack opening methodology termed Element Elimination Technique (EET) [9, 16, 28]
that creates discrete elements at the crack lips. Some important aspects inherent to the formulation
here presented guarantee the good results obtained like a smoothed stress field, mass conservation
and the use of a simple algorithm to ensure the post-fracture contact. The FEM-DEM approach
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proposed is applied to a collection of benchmark problems in two (2D) and three (3D) dimensions
which evidence the good performance of this numerical technique.

2 Basic theory

2.1 Analogy between DEM and FEM

The main feature of the DEM versus the FEM is its ability to generate a fracture in any direction by
selectively breaking the bonds between the individual discrete elements. A time explicit integration
scheme and the adequate definition of the DEM material parameters at the contact interface between
the discrete elements are the key ingredients of most DEM procedures [21].

Despite the many advantages of the DEM, the material parameters used at the contact interface
between discrete elements are not able to represent properly all the properties of a continuous domain.
Additionally, and perhaps most importantly, the simple law that defines the crack appearance at the
contact interface of discrete elements is not comparable to the sophisticated failure criteria proposed
in fracture mechanics. As a consequence despite recent progress in this field [21], it is difficult to
define the stress state on the continuum via the cohesive bonds of discrete elements.

On the other hand, the FEM defines correctly the stress state in a continuum, which facilitates
the implementation of a variety of constitutive equations and failure criteria, allowing to model in a
easy way the linear and non linear behavior of a wide number of materials.

In view of above facts the question arises: Is there any way to define conditions at the particle
interface in the DEM so that they yield the same displacement field as in the FEM?. Figure 1 shows
that the answer is yes for 3-noded linear triangles. The stiffness matrix of a linear triangular element
can be defined using Green’s theorem in terms of integrals along the element sides [19, 20, 29]. The
integration over each element side ij yields the stiffness that each cohesive link must have in the
DEM.

In this way, the stiffness required by a cohesive link in the DEM to represent a continuum via the
FEM can be defined. However, if both approaches are identical, what is the advantage of using discrete
elements?. Obviously, the finite element formulation is more complete and flexible. The displacement
field is defined over the entire domain. Even more, the stress field in the FEM is more accurate and
easier to obtain. It is also possible to prove convergence and stability for the numerical solution.
However, there are distinct features in the DEM that make it a powerful numerical technique for
modelling multifracture situations in materials and structures.

2.2 From FEM to DEM

The DEM is a very powerful tool when it is used for analysis of granular materials. Its main advantage
when applied to a continuous domain is it capability for predicting random cracking paths, which is
useful for reproducing correctly the fracture behavior of materials such as soils, rocks, ceramic and
concrete, among others [21]. Thus, the rationale of the FEM-DEM approach proposed in this work is
to apply the DEM methodology for modelling the onset and evolution of a crack to the standard FEM
formulation. The direct application of the FEM (or the DEM) using the stiffness matrix described
in Figure 1 holds as long as no cohesive link is removed. The problem arises when there is a need to
remove (or break) a cohesive link, coinciding with an element side. The stiffness matrix of a finite
element is obtained as the balance of internal forces of the element. Hence by eliminating the stiffness
contributed by a link, the forces between the two nodes involved are unbalanced which affects the
entire finite element mesh, or all neighboring particles in the DEM. The right way to eliminate the
cohesive bond is by calculating the stiffness loss associated to the removal area. In other words, by
eliminating the area between the two nodes sharing the broken side and the centroid of the element,
as shown in Figure 2.

The stiffness of the element zone to be eliminated is a function of the original element area (or
volume in 3D) and is easily found in terms of the displacements of the element centroid (which
coincides with the integration point in linear triangles). Thus, for a broken bond at a side ij the
stiffness matrix linking nodes i and j to be eliminated is
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Fig. 1: a) Equivalence between a linear triangle and a cohesive link of three discs in the DEM. b)
Stiffness matrix for the linear triangle computed as the sum of three stiffness matrices involving the
side nodes only.

Fig. 2: Equivalence between the stiffness matrix of a linear triangle with a broken bond in a side and
a cohesive link in the DEM

Kij =
1

3
K(e) (3)

where K(e) is the full stiffness matrix for the 3-noded triangle.
Once the side ij (and the corresponding element area)is removed, the remaining stiffness of the

element is

K̂
(e)

= K(e) −Kij (4)

In order to eliminate properly a cohesive bond it is necessary to define a failure criterion. Many
references can be found on this subject [3–5, 14, 17, 18]. However, it is important to note that cohesive
bonds are assumed to be placed at the element sides and not at the integration point whithin the
element. Recalling that the stress field is discontinuous between elements, a smoothing procedure is
needed to evaluate the stresses at the element edges and, subsequently, the failure criteria chosen at the
edges. The smoothing procedue selected is the key point to have an accuracy stress field. In our work
we have followed the superconvergent patch recovery (SPR) method proposed by Zienkiewicz, and Zhu
[31] which overcomes the need to add stabilization terms to the stress field as in alternative procedures
[3–5]. The failure criterion chosen is the maximum tensile stress, or Rankine criterion, typically used
for predicting the onset of fracture in brittle materials [4, 13]. During failure an exponential damage
law is considered to progressively degrade the material stiffness [6].
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Fig. 3: Characteristic length definition at a side shared by two elements. Equivalent rectangular prism
where fracture is localized

In order to define properly the fracture energy consumed in breaking a side the material volume
assigned to the side (V = 1

3 (Ae + Ae
′
)t) can be made equal to a rectangular prism of dimensions

l × h × t, where t is the prism thickness (Figure 3). Considering that the fracture is governed by a

critical value of the maximum principal stress σI, the prism volume is defined as l̂× ĥ× t were l̂ lays
on the principal stress direction. In this case a smooth variation for l̂ is proposed between h ≤ l̂ ≤ l.
Therefore, l̂ is defined in terms of the angle α given by the principal stresses direction and the side
ij (Figure 3) as

l̂ = l − [1 − cos(2α)]

[
l − h

2

]
with h =

Ae +Ae
′

3l
(5)

Considering the effect of damage, the remaining stiffness of the element due to the contribution
of its three sides is:

K(e) = (3 − d1 − d2 − d3)
1

3
K(e)
o or K(e) = K(e)

o − K̂
(e)

(6)

where K(e)
o is the original (undamaged) stiffness of the linear triangle, di is the damage index corre-

sponding to the ith side, computed as
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where σI is the maximum principal stress at the side, σf is the tensile strength, G is the fracture
energy and Eo the undamaged Young modulus of the material [14, 17, 18].

Thus, the degraded stiffness matrix for the element K̂
(e)

is computed as:

K̂
(e)

=
1

3
(d1 + d2 + d3)K(e)

o (8)

A key issue in this approach derives from analyzing in detail Eq. (8). As it can be seen in Figure 4,
when an element has two fully damaged edges according to Eq. (8) (and also Eq. (4)) the remaining
stiffness is one-third of the original one. However, the fact is that a crack has already appeared within
the element and, therefore, when two sides of an element are fully damaged the whole element can
be considered to be as fully damaged as well.

Consequently with the above conclusion, the damaged stiffness matrix for an element can be
obtained as:

K̂
(e)

=
di + dj

2
K(e)
o (9)

where di and dj are to the two maximum values of the damage parameters for the three element
sides.

Note that when a side is damaged, it affects all the elements that share the side, as shown in
Figure 4.
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Fig. 4: Three-noded triangle with two sides damaged. Effect on the adjacent triangles sharing the
damaged sides.

Remark. The removal of a cohesive bond at a side does not give an indication of the cracking
direction. The fracture patterns can be identified from the distribution of the broken bonds at the
element sides, as it is usually done in damage models for frictional materials [14–18]

2.3 Generation of discrete particles

When a cohesive bond is fully removed (i.e. the side stiffnes is neglegted) two discrete elements
(or particles) are created at the disconnected nodes. In our work we have used circular discs (for
2D problems) and spheres (for 3D problems) for representing the discrete elements. The mass of
each new discrete element corresponds to the nodal mass and its radius will be the maximum one
that guarantees the contact between the adjacent discrete elements without creating any overlappings
between them. Indeed, this is not the only algorithm that can be used for generating discrete elements
[10, 11] but it has been proved to be a very effective procedure, as the main idea is to avoid that the
new discrete elements created generate spurious contact forces.

Once an discrete element is created, the forces at the contact interfaces are used to define the
interaction of the element with the adjacent ones. These forces are due only to the contact interaction
in the normal and tangential directions. At the contact point, the minimum radius of the particles in
contact are used to evaluate the contact forces [21].

In our work we have used a local constitutive model for the normal and tangential forces at the
contact interfaces between discrete elements as proposed in [21].

For 2D problems the normal contact force Fn at a contact point between two discs is given by:

Fn = EoAεn = 2Eort

(
un

ri + rj

)
with r = min (ri,rj) (10)

where un is the normal overlap between the two discrete elements.
The tangential force Fs at the contact point is a function of the relative tangential displacement

us between the two particles in contact, and is defined in a regularized way as

Fs = min

{
2rt
(

us

ri+rj

)
Eo

2(1+ν)

µFn
(11)

were µ is the friction coefficient and ν is the Poisson’s ratio.
The extension of Eqs. (10) and (11) to the 3D case can be seen in [21, 30].
Some interesting facts are derived from this approach. Since the number of discrete elements gen-

erated in an analysis is only a fraction of the number of nodes of the mesh, the searching algorithm for
evaluating the contact interactions between discrete elements does not consume much computational
resources, as in the case of using discrete elements only. Additionally, the generated particles undergo
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Fig. 5: Normalized tensile test of a concrete specimen. Finite element meshes and dimensions according
to the ASTM D638 norm [1]

relatively small displacements (due to the time increments used in the explicit integration scheme)
so the list of possible contacts does not require a constant updating.

3 EXAMPLES

Three examples are presented to demonstrate the good behavior of the FEM-DEM approach described
in the previous sections. The first example is the 2D study of a normalized tensile test in a concrete
specimen. The second one is the 2D analysis of a mixed-mode fracture benchmark in a concrete beam.
Finally, an indirect tensile test widely used in concrete and rock mechanics is analysed in 2D and 3D
using the FEM-DEM technique proposed.

All the examples have been solved using an explicit dynamic technique for the time integration of
the governing equations for each individual particle, as it is typically done in the DEM [21, 22, 26, 27].

3.1 Normalized tensile test

The first example corresponds to the fracture analysis of a flat concrete specimen under tensile stress.
The geometry is defined according to the norm D638 of the American Section of the International
Association for Testing Materials (ASTM) [1] as shown in Figure 5 where the three meshes of 3-noded
triangular elements used and the boundary conditions can be seen. A constant displacement field is
imposed in the entire shadow area.

The study has been performed using the 2D FEM-DEM technique previously described. In order
to localize the fracture, only one band of elements is allowed to break at the failure stress level
corresponding to the tested material, using the linear damage model previously described. The results
obtained are analyzed by plotting the horizontal displacement of points PA and PB shown in Figure
5.

The Young modulus, the Poisson ratio and the density are respectively E0 = 30 GPa, ν = 0.2 and
γ = 1.0 × 103N/m3. The tensile strength is σf = 10 KPa. Two fracture energies will be considered
G1 = 0.0 J/m2 and G2 = 7.5 × 10−3 J/m2.

The specimen deforms by applying a constant velocity displacement of 0.5× 106m/s. at the right
tip of the specimen. Figure 6 shows the relationship between the imposed displacement and the load
level for the brittle fracture case ( G1 = 0.0 J/m3 ). The behavior is exactly the same for the three
meshes used and in agreement with the expected result. Figure 7 shows the damaged geometry.
Note that where fracture appears, discrete elements are created at the crack lips as explained in the
previous sections.



A simple FEM-DEM technique for fracture prediction in materials and structures 7

Fig. 6: Normalized tensile test of a concrete specimen. Load-horizontal displacement curve at the
specimen tip using G1 = 0.0 × 10−3 J/m2

Fig. 7: Normalized tensile test of a concrete specimen. Cracked zone with the discrete particles
generated for the three finite element meshes considered.

When the numerical experiments are carried out using a fracture energy of G2 = 7.5× 10−3 J/m2

the displacement of points PA and PB situated at the right and the center of the specimen, respectively
(Figure 5) are tracked in order to evaluate the crack opening. Figure 8 shows the load-displacement
relationship at these points. For the three meshes considered the displacement evolution is very similar
and in agreement with the expected results.

Since the fractured elements have a different size for each mesh, the displacement of point PB in
the elastic region becomes smaller as the element size is reduced. However, once the crack initiates, the
displacement of point PB is ruled by the elastic energy stored in the specimen. Beyond the limit load
value, the displacement of the point follows the continuous branch of the theoretical static problem.
As the problem has been solved in a dynamic fashion, the change in slope progresses gradually and
has small fluctuations around the theoretical result. The crack pattern for this case is very similar to
that shown in Figure 7.

3.2 Four-point bending beam

The following example is the failure test of a double notch concrete beam analyzed under plane stress
conditions. This is a good example of mix-mode fracture. The beam is supported at two points and
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Fig. 8: Normalized tensile test of a concrete specimen. Load-horizontal displacement curve at points
PA and PB of the specimen using G2 = 7.5 × 10−3 J/m2

Fig. 9: Double notched concrete beam. Dimensions and boundary conditions

is subjected to bending by applying an imposed displacement at the two points depicted in Figure 9
where the beam dimensions are also shown.

The beam has two singular points at the tip of the two notches were the tensile stresses are high
and damage begins in this area. The material properties are: Eo = 30GPa, ν = 0.2, γ = 103 N/m3,
σf = 2MPa and G = 100 J/m2. The problem has been solved with the 2D FEM-DEM technique
explained. Figure 10 shows a detail of the three meshes used of 1165 nodes and 2202 linear triangular
elements (coarse mesh), 1847 nodes and 3480 elements (intermediate mesh) and 5747 nodes and 11206
elements (fine mesh).

Figure 11 shows the crack path for the three meshes analysed which coincide with the numerical
experiments of Cervera et al. [6]. Figure 12 shows the relationship between the reaction and the
imposed displacement at any of the two points depicted in Figure 9. The graphs are in good agreement
with the results obtained in [6].

3.3 Indirect tensile test

The Brazilian tensile strength (BTS) test is a very practical and simple experimental procedure to
evaluate the tensile strength of brittle materials. The concrete sample analyzed is a cylinder of 0.2m
diameter (D) and 0.1m thickness (t), which is a diametrically loaded by a press. The tensile strength
value is computed by the following relationship [2]:
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Fig. 10: Double notched concrete beam. Detail of the three meshes used in the vecinity of the two
notches.

Fig. 11: Double notched concrete beam. Displacement contours and crack path at the two notches
regions using three different meshes: a) Coarse mesh, b) intermediate mesh, c) Fine mesh. Detail of
the discrete elements generated at the cracks.

Fig. 12: Double notched concrete beam. Relationship betwwen the force and the imposed displacement
at any of the two points depicted in Figure 12. FEM-DEM results are compared with those given in
[6].
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Fig. 13: BTS test on a concrete specimen. Dimensions, boundary conditions and finite element meshes
of three noded triangles used.

Fig. 14: BTS test on a concrete specimen. Damage zone and discrete elements generated. a) Coarse
mesh, b) intermediate mesh, c) Fine mesh.

σmax =
2P

πtD
(12)

were P is the applied load.
The material properties are Eo = 21 GPa, ν = 0.2, γ = 7.8 × 103N/m3, σf = 10KPa and

G = 1 × 10−3 J/m2. This corresponds to a maximum load at failure of P = 314.16N .
Three meshes of 890, 1989 and 7956 linear triangular elements each were used for the analysis, as

shown in Figure 13. The sample is deformed by imposing a constant velocity displacement at the top
of the sample.

Figure 14 depicts the damaged geometry, as well as the crack and the discrete elements generated
at a certain instant of the analysis. It can be seen that the cracking pattern is similar for the three
meshes and in agreement with the expected result. Figure 15 shows the evolution of the vertical
load versus the horizontal displacement at the center of the specimen. The BTS tensile strength
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Fig. 15: 2D FEM-DEM analysis of BTS test on a concrete specimen. Force-displacement relationship
for the three meshes used.

obtained using Eq.(12) for each three meshes (coarse to fine) was 10587 Pa, 10506 Pa and 10481 Pa,
respectively, which yield a maximum of 5% error versus the expected value of σf = 10KPa.

The same example with identical geometry and mechanical propertities was solved in 3D using
an extension of the FEM-DEM technique presented in this work [30]. Three meshes were used with
9338, 31455 and 61623 4-noded linear tetrahedra. Results of the crack pattern obtained for each of
these meshes are depicted in Figure 16. The numerical results for the load-displacement curve are
presented in Figure 17. The values obtained for the BTS tensile strength are (coarse to fine mesh)
10693Pa, 10351Pa and 10235Pa which yielded a range of 6% to 2% error versus the expected value
of σf = 10KPa.

4 CONCLUSIONS

We have presented a simple FEM-DEM methodology for predicting the onset and evolution of the
crack path in materials and structures. Some advantages and differences with similar procedures such
as the EET [9, 16, 28] can be highlighted:

– The failure criterion is considered at the element sides using a smooth stress field which does
not need any additional considerations such as stabilization, or complex mixed finite element
formulations.

– Damaging the element sides implies that the two elements sharing the side reduce its stiffness
simultaneously.

– There is no mass loss by eliminating the associated finite elements. This ensures the conservation
of the domain mass during the fracturing process.

– The implementation of the FEM-DEM technique presented is extremely simple and has yielded
promising results, both qualitatively and quantitatively, for predicting the onset and propagation
of fracture in concrete samples.
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Fig. 16: 3D FEM-DEM analysis of BTS test on a concrete specimen. Damage zone and discrete
elements generated. a) Coarse mesh, b) intermediate mesh, c) Fine mesh.

Fig. 17: 3D FEM-DEM analysis of BTS test on a concrete specimen. Force-displacement relationship
for the three meshes used.
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Results presented in this work have been obtained using the DEMPACK code of CIMNE
(http://www.cimne.com/dempack) were the FEM-DEM procedure described has been implemented.
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