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Abstract. This research work deals with the efficient Design of Experiments (DoE) for the 

hybrid variant of the sensitivity analysis method RBD-FAST called Hyprid FAST RBD (HFR). 

RBD-FAST is a combination of the Random Balance Design (RBD) and the Fourier Amplitude 

Sensitivity analysis Test (FAST). Commonly, sensitivity analyses are used to determine 

whether input parameters have an influence on a target value or not. Currently, there is only 

little research to be found for the HFR method. The HFR method separates the input parameters 

into groups. Different constraints must be met for an optimal grouping. Theoretically, for every 

square number an optimal grouping exists, but only for squares of primes an optimal grouping 

is known to exist. An experiment with any number of input parameters needs as many samples 

as an experiment with the next higher square of a prime number as the number of input 

parameters. In this research work optimal groupings for squares of non-primes for the HFR 

method are found using a brute force algorithm. 
 

 

1 INTRODUCTION 

A key aspect of science is to test hypothesis with the aim to confirm or deny a hypothesis. 

Hypothesis can be tested by analysing experiments and experimental data. While trivial 

experiments can easily be analysed, non-trivial experiments using numerical simulation models 

can be analysed using a sensitivity analysis method (Iooss B. et. al. [1]). For an efficient 

sensitivity analysis, as few experiments as possible should be required without degrading the 

quality of the output. If it is possible to use fewer trials for a sensitivity analysis, while keeping 

the same evidence, there is a real improvement in sensitivity analysis. In this research work, an 

improvement of the HFR method by new group formation is presented. 

In FAST, experiments are performed in such a way that the effects can be calculated using 

a Fourier transformation. Every input parameter is associated with a unique frequency (Cukier 

et al. [2]). All input parameters can be transformed using the unique frequency in a one-

dimensional space while the multi-dimensional space of input parameters is fully covered. With 

a multi-dimensional Fourier transformation main effects and interaction effects of input 

parameters can be calculated. In addition, total Sobol indices can be calculated using FAST 

(Saltelli et al. [3]). The chosen frequencies and transformations influence the results directly 

(Saltelli et al. [4]). For more than 10 input parameters the result will be biased. (Tissot et al. [5]) 
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If a lot of input parameters are to be observed, the one-dimensional space must be sampled 

more often. The number of samples increases linearly with the square root of the number of 

input parameters (Saltelli [6]).  

In contrast to FAST, RBD-FAST uses one frequency, although it is based on FAST 

(Tarantola et al. [7]). With RBD-FAST, multi-dimensional space of input parameters can be 

partially sampled. To do this, the values of the input parameters are randomly permuted. To 

calculate the main effect, the output values will be sorted by one input parameter at a time. The 

interaction effects cannot be calculated, but it is comparatively easy to choose a frequency, as 

there are mostly no constraints and 1 Hz can be used as a frequency (Mara et al. [8]). 

Within HFR, input parameters are divided into groups with most equal cardinality. Within 

one group, the FAST algorithm is used, which means each input parameter is associated with a 

unique frequency within a group. But between the groups, RBD-FAST is used because several 

input parameters have the same frequency. HFR combines the calculation effort advantage of 

RBD-FAST with the calculation of first-order interaction effects of FAST. HFR benefits from 

optimal grouping of the input parameters, so that less experiments are needed for the analysis 

while maintaining the same evidence. Tissot [5] describes a specific optimal grouping for 

specific numbers of input parameters. This research work tries to find more optimal groupings, 

that are yet to be documented in science. It describes how to find valid groupings, the reliability 

of results that can be expected and the computation time needed. 

2 EFFICIENT DESIGN OF EXPERIMENTS USING RBD-FAST 

As already stated, in HFR, all the input parameters are separated into groups. Within these 

groups each input parameter is allocated to a unique frequency without interferences to a certain 

degree. If two input parameters are in the same group, the first-order interaction effects can be 

estimated. To estimate all first-order interaction effects, the input parameters have to be 

allocated to different groups. This is done via multiple experimental designs. All the 

experimental designs are called grouping within this research work. A grouping is valid and 

optimal, if it follows three rules stated by Tissot [5]:  

1. Each of the experimental designs consist of 𝒒 groups with 𝒒 input parameters. 

2. Each group in a new experimental design should contain one input parameter from 

each group in the first experimental design. 

3. If two input parameters were already in the same group, then it is not allowed to 

define a group with both input parameters. 

It can be seen, that by meeting the first and the third requirement, the second requirement 

cannot be violated. But the second requirement can be used to simplify the complexity of the 

algorithm to find valid groupings. Tissot [5] stated the required number of experimental designs 

as follows, with 𝑝 as the number of input parameters and 𝑞 always as a prime: 

 

 



S. Wenzel, E. Slomski-Vetter and T. Melz 

 3 

1 + min 𝑞 

√𝑝 < 𝑞 

𝑞 prime 

for 𝑝 > 6 

(1) 

3 for 𝑝 = 4 or 5 
 

1 for 𝑝 ≤ 3 
 

A valid grouping with three experimental designs and five input parameters cannot be 

achieved without violating one of the requirements. In some cases, it might be more economical 

to violate one of the requirements but still be able to ensure the reliability of the results. In order 

to make it comprehensible, we will not consider this special case in the following. The required 

number of experimental designs is generalized and simplified as follows: 

1 + min 𝑞 

√𝑝 ≤ 𝑞 

𝑞 prime ∨ 𝑞 = 1  

for 𝑝 ≥ 1 

(2) 

In the following table the number of input parameters is compared to 𝒒. 𝒒 + 𝟏 is the number 

of necessary experimental designs. The number of necessary frequencies are equal to q. 

Table 1: number of input parameters associated with 𝑞, with 𝑞 as a prime. 

Number of input 

parameters 
𝑞 

1 1 

2-4  2 

5-9  3 

10-25  5 

26-49  7 

50-121  11 

122-169  13 

170-289  17 

… … 

As expected all 𝑞 are primes and therefore larger spacing occur between the values of 𝑞 

dependent on the number of input parameters. For example from 9 to 10 input parameters and 

from 49 to 50 input parameters the step in 𝑞 is 2 and 4, respectively. 

The number of necessary samples increases linearly with 𝑞, as more experimental designs 

are needed and within an experimental design the number of samples necessary for FAST 

increases with 𝑞 input parameters. The aim for the value of 𝑞 is to be as small as possible to be 

efficient. Tissot [5] only shows a solution for 𝑞 as primes, in this research work, more solutions 

are searched using a brute force algorithm. 

The grouping can easily be represented as a 3-dimensional matrix. The first index represents 

the position within a group. The second index represents the group number in a given 

experimental design and the last index is defined as the number of the experimental design. So, 

all the groups within an experimental design and all experimental designs within a grouping 

can be written in a 𝑞 × 𝑞 × (𝑞 + 1) -matrix. The analytic solution for all 𝑞, which are primes, 

is given in such a matrix 𝐺 with 𝑖, 𝑗, 𝑘 ∈ {1,2, … , 𝑞} as: 
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𝐺𝑖,𝑗,1 = 𝑖 + (𝑗 − 1)𝑞 (3) 

𝐺𝑖,𝑗,𝑘+1 = [𝑗 − 1 + (𝑖 − 1)𝑘𝑞] mod 𝑞2 + 1 (4) 

To obtain the experimental designs for non-squares of 𝑞, all the excess input variables should 

be replaced with dummy variables and should be ignored in the end, as stated by Tissot [5]. 

2.1 Transformations of valid groupings and shortcuts for computing 

An algorithm that tests all the combinations should be complex in the order of (𝑞2!)𝑞. Every 

input parameter is represented once in every experimental design. 𝑞2 input parameters are used 

for the optimal experimental design. In the first position all input parameters can be entered, in 

the second position all input parameters except for the one already in the first position and so 

on. So, for a single experimental design 𝑞2! possible combinations exist. With 𝑞 + 1 

experimental designs there are (𝑞2!)𝑞+1 possible combinations. With the help of mathematical 

transformations, the complexity can be reduced. 

There are mathematical transformations that help to obtain a valid grouping and to 

randomize the outcome and to avoid bias. First of all, for all input parameters 𝑥𝑙 with 𝑙 ∈
{1,2, … , 𝑞2} the indices can be switched over the whole valid grouping. For example, the input 

parameter 𝑥4 can be defined as 𝑥5, if 𝑥5 is defined as 𝑥4. This means, the first experimental 

design 𝐺𝑖,𝑗,𝑘 for every 𝑞 can be set without loss of generality as follows: 

𝐺𝑖,𝑗,1 = 𝑖 + (𝑗 − 1)𝑞 (5) 

𝐺𝑖,𝑗,1 = [

1 2 ⋯ 𝑞
𝑞 + 1 𝑞 + 2 ⋯ 2𝑞

⋮ ⋮ ⋱ ⋮
(𝑞 − 1)𝑞 + 1 (𝑞 − 1)𝑞 + 2 ⋯ 𝑞2

] 

(6) 

The second mathematical transformation permutes the order of input variables within a 

group randomly, the groups within an experimental design, and the experimental designs inside 

a valid grouping. These transformations can transform every experimental design in a way, that 

the first element 𝐺1,1,𝑘 in every experimental design is always 1. Every element from group 1 

in 𝐺𝑖,1,1 can be put to the first position, so that every other experimental design but the first one 

has the following structure, with question marks marking the unknown input parameters: 

𝐺𝑖,𝑗,1 = [

1 ? ⋯ ?
2 ? ⋯ ?
⋮ ⋮ ⋱ ⋮
𝑞 ? ⋯ ?

] 
(7) 

With these simplifications, the possible groupings are decreased to [𝑞(𝑞 − 1)!]𝑞 groupings. 

By exploiting the second requirement, each input parameter at position 𝑖 in any group can be 

defined to be part of the 𝑖-th group in the first experimental design, still without loss of 

generality. This means, there are only 𝑞 possible input parameters at any position, as there are 

only 𝑞 input parameters in a group in the first experimental design. The number of possible 

groupings is therefore reduced to 𝑞!𝑞−1𝑞
. 

Another way to reduce the amount of possible grouping vastly, is to define another 

experimental design. Thus, the second experimental design is defined equally to the transposed 

first experimental design. 
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𝐺𝑖,𝑗,2 = 𝐺𝑖,𝑗,1
𝑇 = (𝑖 − 1)𝑞 + 𝑗 (8) 

𝐺𝑖,𝑗,1 = [

1 𝑞 + 1 ⋯ 𝑞(𝑞 − 1)  + 1

2 𝑞 + 2 ⋯ 𝑞(𝑞 − 1)  + 2
⋮ ⋮ ⋱ ⋮
𝑞 2𝑞 ⋯ 𝑞2

] 

(9) 

This reduces the number of possible groupings further to  𝑞!𝑞−1𝑞−1
. 

2.2 Brute force algorithm 

A brute force algorithm is an algorithm which goes through all possible groupings searching 

for valid groupings. As the number of possible groupings grows, it is necessary to keep the 

calculation at a minimum, because it doubles exponentially with 𝑞. Therefore, the algorithm 

builds up groupings, rather than trying out every possible grouping. This means, input 

parameters are entered one by one and every partial grouping is validated before continuing the 

process. 

The flowchart in Figure 1 illustrates the brute force algorithm used in the study. In the 

initialization, all the variables are predefined using values from chapter 2.1. The algorithm 

works with indexing, to remember the current position, and three matrices. The first matrix 

stores the actual numbers of the input parameters. The second stores pointers referring to an 

input parameter in a specific group in the first experimental design. Each input parameter at 

position 𝑖 in any group is defined as part of the 𝑖-th group in the first experimental design. The 

progress of the algorithm is stored this way. In some cases, invalid groupings can be detected 

without calculating the actual number of the input parameter. The third matrix stores the 

information whether two input parameters are together in the same group in any experimental 

design or not. This information is necessary to comply rule number three. At first, all matrixes 

and indexes are initiated. The second step consists of entering the loop to find a valid grouping. 

After the grouping is proved to be valid, it is examined for completeness. If it is incomplete, 

another input parameter is entered into the next position. The grouping is again tested for 

validity. 

If the grouping is found to be invalid, the last input parameter is deleted and another one is 

used. But, if all input parameters are invalid at that specific position, the input parameter on the 

prior position is deleted and another one is used. In the end, the algorithm examines if all 

possible combinations have been passed. 
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Figure 1: Simplified flowchart for the brute force algorithm to determine valid groupings. 
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2.3 Runtime and results 

For a growing number of parameters, the brute force algorithm deals with a double 

exponentially growing number of possible solutions, so some values are within reach and others 

are not. The runtimes shown in Table 2 were measured on a conventional laptop running on a 

i5-3320m processor. The algorithm was executed three times and the averaged computing time 

was calculated. 

Table 2: Runtime for several values of 𝑞. 

𝑞 runtime with one 

experimental design 

predefined 

runtime with two 

experimental designs 

predefined 

3 < 1s < 1s 

4 210s < 1s 

5 > 3h 5s 

6 > 3h 3094s 

7 > 3h > 3h 

Valid groupings were found for values of up to 5, when defined as a prime. For 5 < 𝑞 ≤ 20 

and 𝑞 as a prime no valid groupings were found within 3 hours. 

For 𝑞 = 2𝑛 a multitude of valid groupings can be found. Even for 𝑞 = 16 multiple valid 

groupings per second were found. For 𝑞 = 32 no valid grouping was found within 3 hours. For 

all other values up to 15 of q including other square numbers no valid grouping was found. 

These results do not change whether one or two predefined experimental designs were used. 

With one predefined experimental design, all possible valid groupings can be found in 

comparison to two predefined experimental designs. Here, the runtimes are a lot faster, but not 

all valid groupings can be found. In the case of q = 4 and one predefined design, valid groupings 

were found, which could not be transformed into valid groupings, that were found with two 

predefined designs. 

As a conclusion the number of required experimental designs can be updated as follows: 

1 + min 𝑞 

√𝑝 < 𝑞 

𝑞 prime ∨  𝑞 = 2𝑛 

for 𝑝 > 6 

(10) 

3 for 𝑝 = 4 or 5 
 

1 for 𝑝 ≤ 3 
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Table 3: input parameters associated with the number of experimental designs 

No. of input 

parameters 

No. of experimental 

designs 

   1-3 1 

4; 5  3 

4-9  4 

10-16  5 

17-25  6 

26-49  8 

50-64  9 

65-121  12 

122-169  14 

     170-256  17 

     256-289 18 

... ... 

The previous mentioned steps in the experimental designs between 9 and 10 input parameters 

and 49 and 50 are smaller than before. For 10 to 16 input parameters 5 instead of 6 experimental 

designs are necessary and for 50 to 64 input parameters, 9 instead of 12 experimental designs 

are necessary. This allows HFR to be used for 50 to 64 parameters without exceeding the limit 

of 10 parameters at which the underlying FAST becomes too unstable and biased. 

3 CONCLUSION 

A brute force algorithm was implemented to find unknown valid groupings for input 

parameters performing as described by Tissot [5]. It was possible to find valid groupings to 

have an optimal grouping with a specific number of input parameters where non optimal 

grouping was documented before. This means, with fewer samples the same evidence could be 

found. For more than 5 input parameters, the number of input parameters is square-rooted and 

rounded up to find 𝑞. 𝑞 determines how many samples are necessary, but if no valid grouping 

for 𝑞 is known, a larger 𝑞 must be chosen. Valid groupings were only known for 𝑞 as a prime. 

With a brute force algorithm valid groupings were found for 𝑞 = 2𝑛and 𝑛 ≤ 4.  

An optimal grouping is only known, if the number of input parameters is a square of a 

specific 𝑞. Tissot [5] recommended breaking constraints for a specific single number of input 

parameters. In this way, less samples were needed for the next optimal grouping. This can be a 

general rule for all 𝑞2 + 1 with a known optimal grouping for 𝑞2 Input parameters. Searching 

for an optimal grouping for non-square input parameters might also be for future research. 

The algorithm was not completed for any 𝑞 without finding a valid grouping. That is, it has 

not been shown for any value of 𝑞 that there are no valid groupings. So there is indication, but 

no proof, that there is a 𝑞 without valid groupings. 

As a conclusion, the RBD-FAST sensitivity analysis can be executed faster in some cases, 

dependent on the number of input parameters. As for example with 10 to 16 input parameters 

approximately 16.6 % less experimental designs are necessary, that directly translates to 16.6 % 

less samples. Also within the groups 20 % less input parameters are necessary. As groups are 

analyzed using FAST, another approximately 10 % less samples are needed. All in all, for 10 

to 16 input parameters approximately 25 % less samples are necessary, while maintaining the 
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same evidence. For 50 to 64 input parameters approximately 36 % less samples are necessary. 

Additionally this work shows new optimal groupings for HFR, that have not yet been 

documented.  
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