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Abstract. This paper presents an extension of the Proper Orthogonal Decomposition method 
(POD) to nonlinear dynamic analysis of reinforced concrete multistory frame structure where 
the material nonlinearity is modeled by the multi-fiber section. To test the effectiveness of this 
approach, we first perform a nonlinear dynamic analysis under a seismic excitation using a 
direct implicit time integration scheme. Then, based on structural response observations, POD 
modes were extracted and used to reduce the structural system subjected to different 
earthquakes. A comparison was made between full model and reduced model analysis in order 
to assess the effectiveness of this technique. 
 
 
1 INTRODUCTION 

This paper presents an extension of the Proper Orthogonal Decomposition method (POD) to 
nonlinear dynamic analysis of reinforced concrete multistory frame structure where the material 
nonlinearity is modeled by the multi-fiber section. 

The multi-fiber section model consists of dividing the structural element cross section into a 
set of longitudinal fibers. Each fiber is made up of a single material and has the potential to 
undergo nonlinear inelastic longitudinal deformation according to the uniaxial stress-strain 
behavior of its corresponding material [1-2]. The layered shell element consists of dividing the 
2D structural element into layers along its thickness. Each layer is made up of a single material 
and can behave nonlinearly in 2D [3-5]. When dealing with nonlinearities, nonlinear solving 
techniques should be adopted. The classical and mostly used nonlinear solvers are the Newton-
Raphson method and its derivatives, displacement control approach and the arc length 
technique. 

Dynamic excitations in structures are usually studied using direct integration time history 
analysis. In this approach, temporal discretization is considered and the direct time integration 
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is conducted using implicit methods like Newmark-𝛽 [6], Wilson 𝜃 [7], HHT-𝛼 [8] or explicit 
methods like central difference and Runge-Kutta. The main concern in using the direct time 
integration analysis for linear and nonlinear models is its high computational cost especially 
when applied in structural seismic analysis. In fact for seismic analysis, the structure is 
subjected to dynamic excitations at its base. These excitations are generally based on the 
accelerograms of previously recorded quakes in the region. In order to cover all probable 
scenarios, the structure should be subjected to multiple accelerograms vibrating in all different 
directions which greatly increases the time cost of this analysis technique. 

Due to this setback, several model reduction techniques have been proposed to decrease the 
time cost of the dynamic time history analysis. For linear systems, modal truncation can be used 
to define the most influential mode shapes of the structure and then this truncated modal base 
is used to reduce the dynamic equation of the structural system [9-10]. For nonlinear structures, 
research based on the work of [11] has been conducted to determine an analogy between 
nonlinear normal modes and linear ones. However, this nonlinear modal analysis is not widely 
used due to the limitation when non-smooth nonlinearities are present in the structure [12]. 

The Proper Orthogonal Decomposition (POD) is a data driven method based on the statistical 
Principal Component Analysis (PCA) of observations dataset. In other words, data obtained 
from observations at different time intervals (snapshots) are analyzed to determine the optimal 
subspace that can be used to recreate the entire dataset with minimum errors. This subspace is 
later used to reduce the model under consideration in calculation. The POD method dates back 
to the 1930’s and today is applied in fluid mechanics for model reduction of turbulent flow, 
model reduction of structural dynamics, damage detection, reduction of dynamic models for 
microelectromechanical systems and in lots of other domains. 

Seismic analysis considering nonlinear material behavior of reinforced concrete structures 
is classically conducted by two approaches. The first one is the pushover analysis which is a 
static nonlinear approach that tries mimicking the dynamic behavior of the structure by 
considering it to respond dynamically according to its fundamental mode shape only. 
Horizontal loads are distributed on the structure proportionally to this fundamental mode shape 
vector and are increased progressively while nonlinear material behavior is taken into account.  
This approach is limited to structures where the fundamental mode shape is the dominant mode 
of vibration and thus limiting it to regular low-rise buildings where no response in function of 
time is required (only maximum values are provided). For other cases, the previously mentioned 
direct integration nonlinear time history analysis is used. 

According to the authors’ knowledge, the POD method was never used for reducing the 
direct integration nonlinear time history analysis of a Reinforced Concrete (RC) structure where 
material nonlinearity is modelled by the multi-fiber section approach. This paper presents a 
nonlinear multi-fiber RC multistory frame structure subjected to seismic excitations at its base 
and the POD is used to reduce the direct integration time history analysis cost. Section 2 
presents the modeling of material nonlinear behavior for a RC beam element using the multi-
fiber section approach. Section 3 is dedicated to the dynamic analysis of a RC element with 
material nonlinearities using classical and reduced POD procedures. Section 4 presents an 
application of the POD reduction method on the multistory frame structure under consideration 
while comparing the results with full model analysis. Section 5 summarizes the conclusions and 
future perspectives. 
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2 MULTI-FIBER BEAM MODEL 
The concentrated (lumped) plasticity is the simplest and most popular approach to model 

material nonlinearity in structural elements. However, this technique is based on the assumption 
that nonlinear material behavior occurs only at specified concentrated points of the structural 
member (which is a major simplification). In addition, interaction between bending moments 
and varying axial forces at the plastic hinge is not taken into account. Moreover, the plastic 
hinges behavior is defined by characteristic curves (Moment versus Rotation or Force versus 
Displacement) provided by the seismic codes. These curves are based on rough estimations and 
assumptions which reduce their accuracy. On the other hand and as we will detail in this section, 
the multi-fiber beam model assures the distribution of nonlinear material behavior all along the 
structural element length and all over its cross section (distributed plasticity approach). In 
addition, this technique takes into account the interaction between bending moments and axial 
loads and can be applied to elements having non-typical cross sections. The fiber model 
approach is more computationally demanding than the concentrated plastic hinge technique 
however it remains efficient and very beneficial especially for wall elements modeled by the 
equivalent beam approach. 

Since 2D finite elements are not addressed in this paper, the multi-fiber beam approach is 
adopted in this work to model the nonlinear material in 1D finite elements (beams, columns, 
equivalent beam model for walls) while considering the Euler-Bernoulli hypothesis (planar 
sections before deformation remain planar and perpendicular to the element’s center line after 
deformation). 

As already mentioned, the multi-fiber beam approach consists of dividing the structural 
element cross section into a set of longitudinal fibers. As a consequence, using this modeling 
technique requires a 3 level analysis. 

Fibers are the fundamental level of analysis. Each fiber is made up of only one single 
material: for reinforced concrete members, the fibers can be made of steel reinforcements, 
confined or unconfined concrete. The fiber axial stress 𝜎!"#$% and the longitudinal tangent 
Young modulus 𝐸&	!"#$% are determined in function of the longitudinal fiber axial strain 𝜀!"#$%. 

 
Figure 1: Multi-fiber reinforced concrete section 

The element’s cross section is the second level of analysis. Applying the Euler-Bernoulli 
hypothesis will result in perfect bond conditions between fibers (no sliding of a fiber with 
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respect to another is allowed). In 2D structural analysis, for a fiber having its centroid located 
at the ordinate y in the section reference, the axial longitudinal strain in the fiber 𝜀(𝑦) can be 
determined in function of the section’s uniform axial strain along x axis 𝜀( and the section’s 
curvature along z axis 𝜙) 

 𝜀(𝑦) = 𝜀( − 𝑦𝜙) = {1 −𝑦} 0
𝜀(
𝜙)1 (1) 

since in nonlinear analysis the calculation is done by increments and we get 

 ∆𝜀(𝑦) = ∆𝜀( − 𝑦∆𝜙) = {1 −𝑦} 3∆𝜀(∆𝜙)
4 (2) 

this axial strain increment of the fiber ∆𝜀(𝑦) causes an increment in the section’s internal axial 
force ∆𝑁 and bending moment along 𝑧 axis ∆𝑀). 

 ∆𝑁 = 𝐸&	!"#$%𝐴!"#$%∆𝜀(𝑦) (3.a) 

 ∆𝑀) = −𝑦∆𝑁 = −𝑦𝐸&	!"#$%𝐴!"#$%∆𝜀(𝑦) (3.b) 

for a single fiber, the resulting increment of internal forces in the section is 

 {Δ𝐹*$+,"-.} = 3 ∆𝑁∆𝑀)
4 = 𝐸&	!"#$%𝐴!"#$% ;

1 −𝑦
−𝑦 𝑦/ < 3

∆𝜀(
∆𝜙)

4 (4) 

for all the fibers, the entire resulting increment of internal forces in the section is 

 {Δ𝐹*$+,"-.} = 3 ∆𝑁∆𝑀)
4 = ∑ 𝐸&	!"#$%	"

.!"#$%
"01 𝐴!"#$%	" ;

1 −𝑦"
−𝑦" 𝑦"/

<
>??????????@??????????A

[3&]

3∆𝜀(∆𝜙)
4 (5) 

where 𝑛!"#$%is the total number of fibers in the section and [𝐾&] is the section’s tangent stiffness 
matrix. 

The entire element is the third level of analysis. Linear shape functions are considered for 
longitudinal translation and Hermite cubic shape functions are used for bending. Applying the 
principle of virtual work we get 

 {𝐹".,} = ∫[𝐵(𝑥)]& 3
1
−𝑦4 𝜎!"#$%(𝑥, 𝑦)𝑑𝑉 (5) 

 [𝐾&] = ∫[𝐵(𝑥)]& 3
1
−𝑦4𝐸&	!"#$%(𝑥, 𝑦){1 −𝑦}[𝐵(𝑥)]𝑑𝑉 (6) 

where {𝐹".,} is the internal nodal force vector of the element, [𝐾&] is the element’s tangent 
stiffness matrix and [𝐵(𝑥)] is the gradient operator containing the derivatives of shape 
functions. 

The volume integral required for the calculation of {𝐹".,} and [𝐾&] is split into a surface 
integral on the cross section and a 1D integral along the longitudinal axis of the element. Since 
the element’s cross section is already divided into fibers, we substitute the surface integration 
by the summation of fiber areas. Next, the longitudinal 1D integration is done by Gauss points. 
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3   FULL AND REDUCED DYNAMIC MODELS 
As already mentioned, the classical time costly approach for capturing the nonlinear seismic 

response of a structure in function of time is the full model implicit direct integration nonlinear 
time history analysis. The Newmark-𝛽 method [6] is one of the famous implicit direct 
integration techniques used for linear and nonlinear time history analysis. For this method, 
knowing the structural system state at instant 𝑡" (displacement, velocity and acceleration 
vectors) and assuming a variation pattern for acceleration between instants 𝑡" and 𝑡"51 (i.e. 
constant average acceleration) makes it possible to express the dynamic equation of the 
structural system at instant 𝑡"51 with only one unknown (the displacement vector at instant 𝑡"51) 
and thus solving easily the system. 

The proper orthogonal decomposition POD also known as the Principal Component 
Analysis PCA and the Karhunen-Loève Decomposition KLD is a statistical analysis of 
observation data. Let’s consider a data matrix [𝑋] containing 𝑛 observation vectors [𝑋] =
[{𝑋1} ⋯ {𝑋.}] and each observation vector is made of m dimension 

 [𝑋] = [{𝑋1} ⋯ {𝑋.}] = O
𝑥11 … 𝑥1.
⋮ ⋱ ⋮

𝑥61 … 𝑥6.
S (7) 

{𝑆"} = {𝑥"1 ⋯ 𝑥".} is row 𝑖 in matrix [𝑋] and represents all the data collected on 
dimension 𝑖. If data set {𝑆"}	∀	𝑖 has a zero mean, the variance of {𝑆"} becomes 

 𝜎/({𝑆"}) =
1

.71
×∑ Y𝑥"8 −𝑚𝑒𝑎𝑛({𝑆"})]

/ =.
801

1
.71

×∑ (𝑥"8)/.
801 = 1

.71
{𝑆"}{𝑆"}& (8) 

and the covariance of {𝑆"} and ^𝑆9_  becomes 

 𝐶𝑂𝑉Y{𝑆"}, ^𝑆9_] =
1

.71
× ∑ Y𝑥"8 −𝑚𝑒𝑎𝑛({𝑆"})] b𝑥98 −𝑚𝑒𝑎𝑛Y^𝑆9_]c.

801  (9.a) 

 𝐶𝑂𝑉Y{𝑆"}, ^𝑆9_] =
1

.71
× ∑ (𝑥"8)Y𝑥98].

801 = 1
.71

{𝑆"}^𝑆9_
& (9.b) 

High value of 𝜎/({𝑆"}) indicates high action on dimension 𝑖 and vice versa. High value of 
𝐶𝑂𝑉Y{𝑆"}, ^𝑆9_] indicates high similarity between the actions on dimension 𝑖 and dimension 𝑗. 
On the other hand,  𝐶𝑂𝑉Y{𝑆"}, ^𝑆9_] = 0 indicates zero resemblance (total independence) 
between the actions on dimension 𝑖 and dimension 𝑗. 

If data set {𝑆"}	∀	𝑖 has a zero mean, the covariance of matrix [𝑋] becomes 

 𝐶𝑂𝑉([𝑋]) = 1
.71

[𝑋][𝑋]& (10.a) 

 𝐶𝑂𝑉([𝑋]) =

⎣
⎢
⎢
⎡ 𝜎/({𝑆1}) 𝐶𝑂𝑉({𝑆1}, {𝑆/}) ⋯ 𝐶𝑂𝑉({𝑆1}, {𝑆.})
𝐶𝑂𝑉({𝑆/}, {𝑆1}) 𝜎/({𝑆/}) ⋯ 𝐶𝑂𝑉({𝑆/}, {𝑆.})

⋮ ⋮ ⋱ ⋮
𝐶𝑂𝑉({𝑆.}, {𝑆1}) 𝐶𝑂𝑉({𝑆.}, {𝑆/}) ⋯ 𝜎/({𝑆.}) ⎦

⎥
⎥
⎤
 (10.b) 

Determining the principal components of data matrix [𝑋] starts by finding a new 
orthonormal reference [𝑁]. The initial data matrix [𝑋] is expressed in this new reference as 
[𝑋′] = [𝑁]&[𝑋]. For [𝑁] to be containing the principal components of the data observation, 
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𝐶𝑂𝑉([𝑋′])	 should be a diagonal matrix. In other words, we have zero similarity between 
actions on different new dimensions in reference [𝑁] (𝐶𝑂𝑉Y{𝑆′"}, ^𝑆′9_] = 0	𝑓𝑜𝑟	𝑖 ≠ 𝑗).  

Since 𝐶𝑂𝑉([𝑋]) is made up of [𝑋][𝑋]& so it is a symmetrical matrix and thus has real 
eigenvalues. 

 [𝑋][𝑋]&[∅] = [∅][𝜆]  (11) 

where [∅] is the eigenvectors matrix and [𝜆] is the diagonal matrix containing the eigenvalues. 
Eigenvectors are orthonormal vectors and we can demonstrate that the new reference [𝑁] we 
were talking about in the previous paragraph is in fact the eigenvectors matrix ([𝑁] = [∅]) of 
[𝑋][𝑋]&. In fact for [𝑋′] = [∅]&[𝑋] we get 

 𝐶𝑂𝑉([𝑋′]) = 1
.71

[𝑋′][𝑋′]& = 1
.71

[∅]& [𝑋][𝑋]&[∅]>??@??A
[∅][;]

= [𝜆] (12) 

𝐶𝑂𝑉([𝑋′]) is a diagonal matrix and 𝜎/({𝑆′"}) = 𝜆". We notice that the higher 𝜆" is the more 
we have actions on dimension 𝑖 in the eigenvectors reference. As a conclusion, principal 
components of the data set [𝑋] are the eigenvectors of [𝑋][𝑋]& and modes with high eigenvalues 
are the most influential in representing [𝑋]. 

The orthogonal eigenvectors obtained are called POD modes and the corresponding 
eigenvalues are called proper orthogonal values. The POD modes can be used to reconstruct 
the initial data matrix [𝑋]. The higher the eigenvalue of a POD mode is, the more essential this 
mode is in recreating [𝑋].  

By considering the most important 𝑠 POD modes (𝑠 < 𝑚) and placing them in [𝑇] ∈ ℝ6×=, 
the {𝑋,} snapshot vector previously expressed in 𝑚 dimensions can now be approximated in 
the lower 𝑠 dimensions 

 {𝑋,}x
∈ℝ'×)

≅ [𝑇]z
∈ℝ'×*

{𝑄,}x
∈ℝ*×)

 (13) 

where {𝑄,} contains the coordinates of the snapshot vector in the new reference [𝑇]. The choice 
of the number 𝑠 of POD modes to consider in the reduced new reference should satisfy 2 
conditions: 

1- The representation in the new reference should be accurate so the error should be minimal. 
The higher 𝑠 is, the more accurate the approximation is. 

 𝑒𝑟𝑟𝑜𝑟 = ∑ |^𝑋,"_ − [𝑇]^𝑄,"_|
.
"01  (14) 

2- For the dimensions reduction to be efficient, the number of chosen POD modes 𝑠 should 
be relatively small. 

In order to balance between accuracy and efficiency, an energy criterion is considered to 
determine the optimal value of 𝑠. The Proper Orthogonal Value of a mode gives an indication 
on the energy carried by this mode. Generally, the first 𝑠 POD modes carrying at least 99% of 
the total system energy are considered for the new reduced reference. 

 ∑ ;"
*
"+)

∑ ;,'
,+)

≥ 99% (15) 
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In structural dynamics, the POD reduction can be applied on the direct integration time 
history analysis for linear or nonlinear structures. In order to get the observation data required 
for the POD, we initially do a classical implicit direct integration time history analysis of the 
full structural finite element model subjected to a specific base excitation. Let’s consider a 
nonlinear structural system with 𝑚 degrees of freedom and 𝑛 snapshots were taken. We 
calculate the POD modes and proper orthogonal values of the data matrix [𝑋] and then choose 
the subspace [𝑇] ∈ ℝ6×= containing the first 𝑠 POD modes satisfying the 99% energy criterion. 
The dynamic equation of the system is 

 [𝑀]^�̈�(𝑡)_ + [𝐶]^�̇�(𝑡)_ + 𝑅({𝑋(𝑡)}) = {𝐹(𝑡)} (16) 

By replacing {𝑋(𝑡)} and its derivatives by [𝑇]{𝑄(𝑡)} and multiplying both sides of the 
dynamic equation by [𝑇]& we get 

 [𝑇]&[𝑀][𝑇]>??@??A
[A%]∈ℝ*×*

^�̈�(𝑡)_ + [𝑇]&[𝐶][𝑇]>??@??A
[B%]∈ℝ*×*

^�̇�(𝑡)_ + [𝑇]&𝑅([𝑇]{𝑄(𝑡)})>????@????A
C%([&]{F(,)})∈ℝ*×)

= [𝑇]&{𝐹(𝑡)}>??@??A
{I%(,)}∈ℝ*×)

 (17) 

The previously 𝑚 degrees of freedom dynamic system is reduced to 𝑠 degrees of freedom. 
However, the nonlinear restoring force 𝑅([𝑇]{𝑄(𝑡)}) cannot be reduced and always needs to 
be calculated in the full coordinate model which makes this step the most time consuming part 
of the entire process. In this case, the most effective direct time integration technique to adopt 
will be the one with the least recurrence for the expensive nonlinear restoring force calculation. 

Implicit direct time integration techniques are usually used in conjunction with the Newton-
Raphson approach for solving nonlinear systems. In order to reach convergence with this 
approach, multiple iterations are required at each time step and for every iteration we need to 
calculate the tangent stiffness matrix, its inverse and the nonlinear restoring force which are all 
time costly. Using the constant stiffness Newton-Raphson approach will save us the need for 
the tangent stiffness calculation and its inverse but will increase the number of iterations 
required for convergence. 

On the other hand and for explicit direct time integration techniques, the popular central 
difference method requires only one iteration per time step and no expensive calculation of the 
tangent stiffness matrix and its inverse are needed (only the nonlinear restoring force is 
required). However, the central difference approach is conditionally stable and needs to satisfy 
the following stability condition 

 ∆𝑡 < /
J'-.

 (18) 

where ∆𝑡 is the time step and 𝜔6K( is the largest natural pulsation of the system. Generally, the 
full model of the structure has a relatively large number of degrees of freedom and will result 
in high natural pulsations (for high modes) hence requiring small time steps to maintain 
calculation stability and consequently increasing the computational cost. Nevertheless, when 
working with a reduced structural model, significantly fewer number of degrees of freedom are 
considered and thus the reduced system will have smaller natural pulsations which makes it 
possible to use larger time steps while maintaining numerical stability. For this reason, in this 
work the central difference method is considered to be the most effective direct time integration 
technique for reduced models.  
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    Various applications for this POD nonlinear dynamic model reduction are possible. As 
already mentioned for the dynamic seismic analysis, the structure is studied for a range of 
possible earthquakes and is analyzed and checked for each excitation (earthquake record) 
separately. Since we need to conduct an analysis for each excitation, we start with the classic 
full model implicit direct integration nonlinear time history analysis for the first excitation. By 
collecting snapshots from this initial analysis, we can determine the essential POD modes and 
use them to reduce the dynamic model in the analysis of the remaining excitations. [13] 
proposed this approach and applied it on a small scale steel frame in addition to using it for 
studying seismic base isolators. In the current article, we will use this approach and extend it 
on a reinforced concrete multistory frame structure while the material nonlinearity is modeled 
by the multi-fiber section technique. 

4    APPLICATION  
At first we need to consider the base vibrations to use. The following 4 earthquake recordings 

obtained from the Center of Engineering for Strong Motion Data CESMD 
(www.strongmotioncenter.org) were considered (refer to Table 1 and Figure 2). 

 

Earthquake  Location Date Magnitude Measurement 
station 

Vibration 
direction 

Total 
duration  

Time 
step 

Northridge  
Los 

Angeles, 
USA 

01/17/1994 6.4 ML 
Newhall LA 
county fire 

station 
0° 60s 20ms 

Elcentro  California, 
USA 05/18/1940 6.9 Mw Elcentro 0° 53.74s 20ms 

L’Aquila L’Aquila, 
Italy 04/06/2009 6.3 Mw 

L'Aquila  
V.Aterno  

Centro Valle 
90° 60s 20ms 

Chile  

Off the 
coast of 
central 
Chile 

02/27/2010 8.8 Mw Constitucion 
city 90° 120s 20ms 

Table 1: Considered earthquakes. 

The structure is a 2D Reinforced Concrete (RC) multistory frame made up of 10 stories and 
5 spans with a 3 m story height, a 5 m span length, a 1T/m linear load is considered on beams 
and the structural self-weight is neglected (refer to Figure 3). All concrete columns and beams 
are divided into 1 m length finite elements and considered to have the same square cross section 
40x40 cm with four 20 mm High Bond HB reinforcing bars at both top and bottom sides. The 
cross section is divided into 4 concrete fibers and 2 steel fibers. Rayleigh damping was used to 
get a 5% damping ratio for the first two eigenmodes (more than 90% of the total mass is 
participating in the first two eigenmodes). The energy criteria for POD modes selection is set 
to 99.99%. 
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Figure 2: Earthquakes accelerograms 

Material nonlinearity is considered to occur in the elements near the beam column 
connections at the first 5 stories (refer to Figure 4). The steel rebar is considered to have a 
bilinear backbone curve (initially linear elastic then plastic with strain hardening) with a 
yielding stress of 400 MPa, a yielding strain of 2‰, an elastic Young modulus of 200 GPa, an 
ultimate stress of 420 MPa and an ultimate strain of 2.5%. Under cyclic loading, if nonlinearity 
is reached, the steel material will undergo a kinematic hysteresis behavior (refer to Figure 5). 
Concrete is considered to be unconfined and modeled according to a simplified version of 
Mander model [14] that takes into account the damaging phenomena. The maximum concrete 
compressive strength is 25 MPa at a corresponding strain of 2‰, the ultimate compressive 
strain is 4‰, the maximum tensile strength is considered 2.5 MPa (10% of the compressive 
strength) at a corresponding strain of 0.1‰ and the elastic Young modulus is 25 GPa (refer to 
Figure 6). 

  

Figure 3:  RC frame geometry and loading. Figure 4: Position of nonlinear elements in RC 
frame. 
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Figure 5: Steel reinforcement axial stress-strain curve. Figure 6: concrete axial stress-strain curve 

 
    Northridge earthquake is considered as the initial vibration. Full Model (FM) implicit 
nonlinear time history analysis with a 20 ms time step was carried on for this earthquake. 50 
snapshots were taken for the resulting displacement vector during the first 15 seconds of the 
vibration (where most of the powerful exitation occurs) and at equally spaced time intervals. 
POD modes were extracted from the snapshot matrix and the dynamic system was reduced 
based on Northridge earthquake results. Then, Reduced Model (RM) explicit nonlinear time 
history analysis with a 20 ms time step was carried on for the remaining earthquakes (Elcentro, 
L’Aquila and Chile). 

It should be noted that for comparison purpose, FM implicit nonlinear time history analysis 
was conducted separately for Elcentro, L’Aquila and Chile earthquakes in order to have a base 
reference. Also RM analysis was performed for the Northridge earthquake for comparison with 
the initially calculated full dynamic model. 

For this structure, the reduced base is made of the first 4 POD modes  since they represent 
more than 99.99% of the system’s energy. As a result, this structure with initially 1140 degrees 
of freedom is reduced to only 4. 

 
Figure 7: Classic structural eigenmodes Vs POD modes 
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By comparing the POD modes with the classical eigenmodes of the structure, we can 
clearly see the nonlinearity effect in the POD modes at the first 5 stories of the structure 
especially for modes 2 and 3 (Figure 7). 

 
Figure 8: Structural top left corner horizontal displacement in function of time for Full Models (FM) and 

Reduced Models (RM) 

As we can see in Figure 8 the reduced models results are very close to the full models and 
at a fraction of the time cost, for further details refer to the following table 2. 

 

Earthquake  FM time RM time Time 
saving Speedup Average 

error 
Max horiz 

displacement 
Northridge  728.11 s 47.57 s 93.47% 15.3 2.07 cm 31.16 cm 
Elcentro  691.55 s 42.79 s 93.81% 16.2 0.53 cm 9.96 cm 
L’Aquila  740.68 s 48.15 s 93.50% 15.4 0.17 cm 12.05 cm 
Chile  1629.49 s 101.77 s 93.75% 16.0 1.01 cm 23.81 cm 

Table 2: Accuracy and time saving of the Reduced Model (RM) with respect to the Full Model (FM). 

We can clearly see the time saving benefits of the POD modes in reducing the nonlinear 
structural system. In addition, the POD modes extracted from the Full Model (FM) analysis of 
Northridge earthquake are working well in the reduction of the structural model subjected to 
other excitations (Elcentro, L’Aquila and Chile Earthquake). 

5  CONCLUSIONS AND PERSPECTIVES  
In this paper we extended the application of the POD to reduce nonlinear dynamic analysis 

of reinforced concrete multistory frame structure where the material nonlinearity was modeled 
by the multifiber section approach. We succeeded in reducing a 1140 degrees of freedom 
system to only 4 degrees while achieving a speedup of around 16 and maintaining an acceptable 
accuracy level. It was also shown that POD modes obtained from the analysis of a full structural 
model subjected to a certain base vibration were also convenient for reducing the same model 
when subjected to different base excitations. The key point here is having a well representative 
snapshot matrix of the dynamic system. 
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