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I n t r o d u c t i o n  

This paper reviews various methods for coupling a mechani- 
cal finite element model to an inEmite external acoustic 
domain discretized using boundary-element techniques. The 
associated physical problem is that of a three-dimensional 
structure submerged in an acoustic fluid, and impinged 
by a pressure shock wave. 

Three coupling methods for advancing the dynamic 
calculations are described: field elimination, simultaneous 
integration, and partitioned integration. Variants of these 
techniques have been tried on the case problem over the 
past seven years. 

The three methods are assessed from experience gained, 
and their advantages and disadvantages noted. Some 
generalizations to more general FE/BE coupling systems are 
then offered. 

T h e  p r o b l e m  

The specific problem used as a case study in this paper is 
illustrated in Figure 1. A linear or nonlinear three- 
dimensional structure is submerged in an infinite acoustic 
fluid. A pressure shock wave propagates through the fluid 
and impinges on the structure. The structure and fluid are 
discretized through finite element (FE) and boundary 
element (BE) methods, respectively. 

Before proceeding to the governing equations, two 
practical considerations of  relevance to this problem should 
be mentioned. 
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First, the structural response (and most especially the 
structure's survivability) is of primary concern, whereas 
what happens in the fluid is of  little interest. 

Second, the FE and BE meshes on the 'wet surface' are 
not necessarily in one-to-one correspondence, as illustrated 
in the two-dimensional sketch of Figure 2. Rather, a 'fluid 
BE' typically overlaps several structural elements. This ties 
up with the first consideration in the sense that determina- 
tion of structural deformations and stresses demands a freer 
subdivision. 

Structural response equations 
The governing matrix equation of motion for the 

dynamic response of  a discrete structure is: 

3.f~ + Cs~ + Ksx = f + N (1) 

where x = x( t )  is the structural displacement vector, 3I=, C s 
and K s are the structural mass, damping and stiffness 
matrices, respectively,.fis the external force vector, 
N = N(x) is a nonlinear pseudo-force vector, and a dot 
denotes temporal differentiation. 

For excitation of a submerged structure by an acoustic 
wave,/is given by 

f = - a, li(pl + ps) (2) 
where PI and Ps are nodal pressure vectors for the wet- 
surface fluid mesh pertaining to the (known) incident wave 
and the (unknown) scattered wave, respectively, A f is the 
diagonal area matrix associated with elements in the fluid 
mesh, and G is the transformation matrix that relates the 
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structural and fluid nodal forces. Introduction of this 
matrix takes care of the FE/BE 'mesh-mismatch' noted 
previously (cf. Figure 2). 

Fluid equations 
The response of the fluid is modelled by the Doubly 

Asymptotic Approximation (DAA) of Geers I'2 

M f[~s + pedfps  = pe~lf(*s (3) 

where ttS is the vector of scattered-wave fluid-particle 
velocity normal to the structure's wet surface, p and c are 
the density and sound velocity of the fluid, respectively, 
and M/- is the symmetric fluid mass matrix for the wet- 
surface fluid mesh. This matrix is produced by a boundary 
element treatment of Laplace's equation for the irrotational 
flow generated in an infinite, inviscid, incompressible fluid 
by motions of the structure's wet surface; it is fully popu- 
lated with nonzero matrix elements. When transformed into 
structural coordinates, the fluid mass matrix yields the 
added mass matrix, which, when combined with the struc- 
tural mass matrix, yields the virtual mass matrix for motions 
of a structure submerged in an incompressible fluid. Details 
of the calculation procedure may be found in DeRuntz and 
Geers. 3 

The approximate pressure-velocity relation (3) is called 
'doubly asymptotic' because it approaches exactness in 
both the high-frequency (early-time) and low-frequency 
(late-time) limits. For high-frequency motions, I/~sl >> IPsl, 
so that (3) approaches the relation Ps = pats, which is the 
correct limit for short acoustic wavelengths. For low- 
frequency motions, I/~sl.'~ IPsl, so that (3) approaches the 
incompressible-flow relation d f P s  = ~Ifdts, which is the 
correct limit for long acoustic wavelengths. 

For excitation by an incident acoustic wave, u is related 
to structural response by the kinematic compatibility 
relation: 

G ~c = u /+  Us (4) 

where the prime superscript denotes matrix transposition. 
Equation (4) expresses the constraint that normal fluid- 
particle velocity match normal structural velocity on the 
wet surface of the structure. The fact that the transforma- 
tion matrix relating these velocities is G'  follows from the 
invariance of  virtual work with respect to either of  the 
wet-surface coordinate systems. 

Generally, G is a rectangular matrix whose height greatly 
exceeds its width, inasmuch as the number of structural 
DOF usually considerably exceeds the number of fluid 
DOF, as noted previously. Typical numbers: 5000 struc- 
tural DOFs and 160 fluid DOFs. 

hzteraction equations 
The introduction of equation (2) into (1) and (4) into 

(3) yields the interaction equations: 

m , ~  + c ~  + E , x  - N  = - GA1(pz + Ps) 

~fCPs + pcAcps  = pe~t¢(q'~ - az) (5) 
The computational structure of these coupled systems is 
very different. As can be expected, the FE (structural) 
system is usually large but sparse. The BE (fluid) system is 
typically small but dense. It is therefore of interest to 
design solution methods that exploit these attributes to 
maximum advantage 

Solu t ion  approaches  

Three approaches to solving the coupled FE/BE system (4) 
are reviewed here. They are presented in chronological 
order, i.e., in roughly the same sequence as they have been 
tried and evaluated over the past seven years. 

Field elhnhzation 
The first approach tried is now known as 'field elimina- 

tion', where the term 'field' refers to one of the physical 
components of the coupled system (structural and fluid in 
our case). As noted previously, the structural response is 
of primary interest. It is therefore natural to think of 
eliminating the scattered-pressure vector Ps from the 
coupled equations of motion (5). If G is the identity matrix, 
this results in the following third-order ODE system for the 
structural displacements x :  

= r(A:,  ~t:, Pz, tii, N )  (6) 

where the right hand side vector r accommodates incident 
pressure and incident fluid-particle velocity boundary 
conditions, and nonlinear effects. If G is not the identity, 
as invariably happens in realistic three-dimensional prob- 
lems, the coefficient matrices in equation (6) become con- 
siderably more complex, because the generalized inverse of 
G enters the elimination process. 

The structural response x(t)  can now be determined by 
numerically integrating equation (6). 

This was in fact the first approach attempted to solve 
the time-integration of the coupled system; cf. Felippa et 
al. 4 Although moderately successful for the first problem 
series (submerged shells of  revolution, linear structural 
behaviour), from the current perspective it can be properly 
characterized as a poor strategy that eventually leads to a 
'computational horror show' for more general problems, 
for the following reasons: 

(1) The order of  the reduced differential system is raised 
(in this example, from two to three). The appearance of 
higher derivatives can be the source of many difficulties, 
the worst of which is noted next. 
(2) Proper treatment of initial conditions is complicated 
by the increased ODE order. In our case study, it turned 
out that (6) had to be integrated once (yielding an integro- 
differential system) so as to regularize the treatment of 
wavefront-induced singularities. Time integrals of forcing 
terms had then to be carried along in the calculations - a 
considerable burden. 
(3) Sparseness and symmetry attributes of  the original 
matrices are adversely affected by the elimination process, 
as can be observed in (6) for an identity G. For a general 
transformation matrix, all left hand matrices become 
unsymmetric and dense. 
(4) The development of  specialized software is required. 
For example, available software for dealing with the un- 
coupled problems (structural dynamics and acoustic shocks) 
separately is not likely to be of much use in solving the 
reduced system (6). 

Simultaneous integration 
In this approach equations (5) are viewed as a single 

second-order system: 

384 Appl. Math. Modelling, 1981, Vol. 5, October 1981 



Interfacing finite element and boundary element discretizations: C. A. Felippa 

[ o x 

o.,,,,, ,o .,jA , , , . , . ,w  

=l ";~/fuI I (7) 
This approach removes many of the objections raised 

lgainst the field elimination technique. Inasmuch as the 
3DE order is not raised, initial condition difficulties do not 
lrise and better use can be made of  existing software for 
=lealing with second order ODE systems. 

The computational burden for realistic three-dimensional 
problems, however, can be prohibitive. Note that the coeffi- 
cient matrix of higher-derivative terms is singular, which 
means that the implicit integration is required to construct 
a marching scheme in time. 

But the assembly and formation of the implicit coeffi- 
cient matrix was found to pose enormous computational 
demands because of the presence of BE/FE coupling terms 
that can extend across thousands of equations. For example, 
it was estimated that the factorization of that matrix for 
a 5000-DOF problem would require 3 hours on a Cyber 175 
computer. Carrying out a nonlinear transient response 
analysis of a realistic model was then judged to be 
infeasible. 

P a r t i t i o n e d  in tegrat ion  

In the partitioned integration approach, the solution 
state is advanced over each of the two subsystems: FE 
structural model and BE fluid model, in a staged fashion. 
Interaction terms are treated as 'forcing' actions that have 
to be judiciously extrapolated. 

What is now called the staggered solution procedure is a 
specific partitioned-integration method originally formu- 
lated for the system (5) by Park e t  al. s A version of this 
procedure was implemented in a production-level com- 
puter program described by DeRuntz et  al. 6 

The success of this method led to further applications 
and eventually the development of a general theory of 
partitioned time integration; see Park, 7 Park and Felippa. a 
A state-of-the-art review of formulation aspects has been 
provided in a recent survey by Felippa and Park. 9 

The staggered solution procedure was found to offer 
two important advantages: enhanced software modularity 
and computational efficiency. 

The first advantage results from the fact that relatively 
few modifications to programs available for processing the 
uncoupled systems are necessary. Given current costs in 
software development, augmentation and maintenance, 
this is an important virtue of this approach. For our specific 
problem, a BE fluid analysis module was written, and data- 
coupled to existing large-scale structural analysis codes such 
as NASTRAN, SPAR and STAGS. 

An obvious advantage of 'plug-in' modularity is the free- 
dom afforded the analyst as regards the selection of a 
structural analysis code that best fits the problem at hand; 
for example, the nonlinear analyser STAGS when plasticity 
or f'mite displacements had to be considered. Moreover, if 
there is a choice among structural analysers that can do 
almost the same thing, the user can select the one he or she 
is most confortable with. 

As regards computational efficiency, the cost per time 
step is roughly the same as adding up those incurred in 
processing the FE and BE models as isolated entities. This 
is because the overhead introduced by the flow ofinforma- 

tion (which consists primarily of  computational vectors) 
among the two analysis modules becomes comparatively 
insignificant, in large-scale problems. It follows that the 
staggered integration procedure appears as economically 
attractive should time stepsize considerations be excluded 
from consideration. 

Unfortunately, the latter assumption was not easy to 
realize in practice. The high computational efficiency per 
time step is counteracted by the fact that satisfactory 
numerical stability properties are hard to achieve; in fact, 
the practical feasibility of this technique hinges almost 
entirely on the stability analysis. The reader is referred to 
the cited sources for additional details. Suffice it to say 
that a specific integration algorithm of unconditional 
stability was found for (7) when tile BE equations were 
suitably modified through an 'augmentation' technique. 

Conclus ions  

The case study deals with a dynamic problem as we have 
used boundary-element techniques primarily for transient 
response analysis of coupled mechanical systems. In particu- 
lar, wave propagation, solid-fluid impact and re-entry 
studies. This has provided a body of experience comple- 
mentary to that gathered by investigators dealing with 
static problems. 

It should be noted that the computer implementation 
of dynamic and nonlinear-static analysis shares many 
common facets. In fact, using the dynamic relaxation con- 
cept, nonlinear static analysis can be viewed as finding 
steady-state solutions of pseudo-dynamical systems, and 
much of the discussion on time-marching algorithms applies 
when nonlinearity is confined to the finite element mesh. 

Our experience has been that BE techniques are primarily 
useful for discretizing unbounded homogeneous domains 
governed by linear equations. For linear problems in 
bounded homogeneous domains, they have not proved to 
be competitive with properly written finite element codes, 
and the latter are far easier to extend to nonhomogeneous 
regions, transient dynamics, and nonlinear behaviour. 
Advertised reductions in mesh preparation efforts are 
largely illusory in these days of powerful pre-processors 
complemented by inexpensive interactive graphics. 

But boundary-element methods come on their own for 
treating unbounded linear media, most particularly when 
their internal response is of little interest. The model- 
description effort is greatly reduced, and the construction 
of 'quiet boundaries' is simplified. Interfacing boundary 
and f'mite element discretization for complex interior- 
exterior problems becomes quite attractive. 

The computer implementation of the interface should 
be as 'loose' (in the software sense) as possible. This goes 
along with the philosophy of maximizing software modu- 
larity. A facet of this philosophy says that the analyst 
ought to have the freedom of selecting FE and BE meshes 
independently according to the physics of the problem and 
the response-resolution requirements. In our case study, for 
instance, it would have been inadvisable to have the BE fluid 
mesh constrained by the presence of internal structural 
stiffeners. 

The analysis of fluid-solid impact and similar problems 
requiring moving and sliding interfaces provide further 
ammunition on tire argument for a high degree of inde- 
pendence in FE/BE mesh definitions. 
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Nontrivial FE and BE programs tend to be fairly complex 
beasts even when taken separately. And the complexity o f  a 
monolithic marriage can easily escape anybody's  control. 
There are many things that can go wrong and (true to 
Murphy's law) wiU: modelling, numerics, machine problems, 
data management, result interpretation. Nonlinear dynamics 
problems, for example, are particularly vulnerable to many 
trouble sources. Experience has shown that keeping modular 
interfaces not  only reduces the chances for trouble, but  also 
makes their resolution more prompt.  

For our problem, modularity and computational effi- 
ciency requirements demanded the development o f  a new 
solution approach: partitioned analysis procedures. The 
success or failure o f  this approach, however, is contingent 
upon implementation details of  the time advancing process. 
This has been the main theme o f  two recent survey 
papers. 9,t° 
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