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A residual type a posteriori error estimator for finite elements is analyzed using a new
technique. In this case, the error estimate is the result of two consecutive projections
of the exact error on two finite-dimensional subspaces. The analysis introduced in this
paper is based on a probabilistic approach, that is, the idea is to assess the average
value of the effectivity index (the ratio estimated error over exact error) by assuming
the randomness of the exact error. The average value characterizes the mean behavior
of the estimator and it is found to be related with some geometric properties of the
subspaces. These geometric properties are obtained from the standard matrices of the
linear systems arising in the formulation of the finite element method.
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1. Introduction

A posteriori error estimators are needed to perform practical finite element (FE)
computations and to control the quality of the numerical solution. They are also
required to drive adaptive procedures leading to optimal meshes.®

The analysis of a posterior: error estimators for finite elements is usually per-
formed in terms of finding lower and upper bounds of the effectivity index” which
is the ratio of the estimated error and the exact error. This may be seen, in fact, as
an a priori analysis of the a posterior: error estimator. This kind of analysis is used
to ensure a good behavior of the estimator in the asymptotic range. Nevertheless,
the practical application of an error estimator to an FE computation is usually far
from this asymptotic range and, consequently, this analysis does not furnish any
clue about the actual behavior of the estimator in a current case.
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This work introduces a new approach to the analysis of error estimators using a
probabilistic viewpoint. Instead of finding pessimistic bounds of the behavior of the
studied error estimator under certain assumptions, the exact error is assumed to be
a random function. This analysis is applied to a specific residual type error estimator
based on the approximation of an A-refined reference solution.® In the analyzed error
estimator the error is undervaluated, i.e. the (measure of the) estimated error is
lower than the (measure of the) exact error and, consequently, the effectivity index
is lower than one. The effectivity index is therefore a random variable that ranges
from zero to one. If the expected value of this random variable is close to one, the
estimator shows a good average behavior.

Let us introduce some notation. The finite element method (FEM) is used to
solve a PDE with an unknown solution u, which belongs to a functional space
V. The FEM provides an approximate solution up, lying in a finite-dimensional
interpolation space V},. The interpolation space V}, is generated by a mesh of finite
elements with characteristic size h. A reference mesh of characteristic size » (h much
smaller than k) is introduced: the associated reference solution uj; € V3, is much
more accurate than uj and the reference error, e := up — uy, fairly approximates
the exact error, e := u — uy,. The approximate solution, up, is the projection of the
exact solution, u, on V), following the energetic scalar product that appears in the
weak form of the problem. In the following, this scalar product is denoted by (-,-)
and the induced energy norm is denoted by || - ||.

In order to assess the efficiency of any error estimator, the obtained estimate,
er,, should be compared with the exact error. This is usually done in terms of the
effectivity index, v, introduced by Zienkiewicz and Zhu'® and defined as

estimated error ez || N ler||  estimated error

(1.1)

exact error Ilell - llex,| " reference error

The exact error e is unknown and the definition given in the left-hand side terms
of the previous equation is often replaced by the approximation given by the right-
hand side terms.

Thus, the estimator can be seen as a function from V; to V;, mapping the
reference error function ej into the estimate ez. In the following, the value of the
effectivity index defined in Eq. (1.1) is denoted by v(ej), e, is assumed to be a
random vector in Vj;. This is developed in detail in Sec. 2. The idea is to assess the
average value of v(ej), which is understood as a random variable defined over V;,
for a given choice of the probability distribution of e;. This idea has already been
introduced,* however the goal of this paper is to provide a theoretical framework
for this probabilistic analysis.

The error estimator introduced by Diez et a is based on the idea of ap-
proximating a reference error e by local low-cost computations. A reference mesh
is built up assembling a set of elementary submeshes discretizing each of the ele-
ments of the computational mesh. Thus, two different subspaces of V; are defined:
Vic V; associated with the interior of the elements and VP c V; associated with
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subdomains covering the element edges denoted patches. The projection of ef, on
V1is the interior estimate e and the projection of ep on VP is the patch estimate
1. Moreover, the patch estimate, 7, is forced to be orthogonal to the interior es-
timate, . The complete estimate is ez, := & + 1. Thus, the complete estimate is
computed through two projections, the first is free (interior estimate, projection on
V1), the latter is restricted with an orthogonality constraint (7 is the projection on
VT orthogonal to £). This process is denoted as multiprojection strategy.
For analysis purposes, the error estimation process is split into three phases.

(1) From e to ej, (from an infinite-dimensional problem to a finite-dimensional one).

(2) From ey, to the projection of ej, on VI4 VP, denoted by ef. This phase accounts
for the effect of the remaining hidden points.

(3) From the latter to ez, (pure multiprojection).

None of these phases correspond to the practical computation of the estimate.
However, all of them are projections and the undervaluation introduced in each
may be analyzed separately. In fact, the analysis of each of these phases is carried
out using different techniques.

(1) The first phase can be studied using a priori error estimates and Richardson
extrapolation to obtain an explicit expression:
1/2

s, — wnl = lleg) = 1—(%) el (12)

where p stands for the degree of the interpolating polynomial. That is, if % is
one fourth of ~ and p is one, the reference error, ej, is 97% of the exact error e.

(2) The second phase is, in fact, a cancellation of a small amount of degrees of
freedom. It accounts for the effect of the points where the error estimate is
forced to be zero. This can be seen as a single projection (from V; onto VILVE)
and the undervaluation introduced in this phase is assessed in Sec. 3.1.

(3) The third phase contains the essence of the multiprojection strategy: the as-
sessment of the efficiency of this phase is carried out in Sec. 3.2.

2. Probabilistic Analysis

In the following the randomness of the error is characterized in the simplest way.
Then, without any previous consideration, the probability distribution of the error
is assumed to be uniform. This is the main assumption used in the probabilistic
assessment of the error estimator. Of course, this may be improved in further works
by assuming more realistic probability distributions for the error (related with su-
perconvergence properties). Thus, in the remainder of the paper e; is a uniformly
distributed random vector in a finite-dimensional space.

Notice that, for any real number 3 (5 # 0), v(fe;) = v(e;), i.e. the value of
the effectivity index does not depend on the “size” of the error but only on the



P. Diez & J. J. Bgozcue

“direction” of e; (if e; is seen as a vector). Then, in order to study the mean
behavior of the effectivity index, the norm of vector e; is taken constant, ie. ej
is assumed to yield in a hypersphere Sr(V;) := {e; € V; such that |lej| = R} of
radius K. Thus, the mean value of v(e;) is defined as

1
b= m/g}%(vﬁ) v(ep)ds, (2.3)

where meas(Sg(V})) stands for the measure of Sg(V;) and the density of probability
of e is assumed to be uniform over Sz(V;). The measure of Sg(V;) depends on
the dimension of the ambient space V;, n, and may be analytically computed?:

27r)n/2
R”_l(— for even n
meas(Sg) = 24 (n=2) (2.4)
g1 2200708
35 9 or odd n.

Since the error estimator is a combination of error projections, the obtained
estimate undervaluates the exact error and, consequently, ¢ is lower than one. In
fact, if ¢ = 1, the projection strategy is said to be optimal because for every e;,

ezl = lle|l. Usually the squared norms of the error magnitudes are easier to
handle. Consequently, it is convenient to introduce the mean value of [v(e;)]?,
1
1/)::7/ vie;)]?ds . 2.5
meas(SR(V;L)) SR(V};)[ ( h)} ( )

The definition of % is introduced because the expressions for 1) are much simpler
than the expressions for ¢ (see Sec. 3). In fact, both ¢ and ¥ can be used to evaluate
the average underestimation and the optimality of the projection strategy is also
equivalent to ¥ = 1.

3. Analysis of the Average Behavior of the Estimator

This section deals with the assessment of the main undervaluation introduced in
the transformation from e; to er. Attending to the three steps of the analysis
introduced in Sec. 1, this transformation is split into two partial transformations:
from e;, to e;‘i and from ef to er, := e + 1. The first one is a single projection from
the space V; to the space VI+ VP (recall that VI + VF Vi) and, therefore,
the average efficiency of the projection depends only on the dimensions of V; and
VI4+ VP, The second one is more complex because ¢ is a single projection of e;fz on
VI but 7 is obtained via a restricted projection on V.

3.1. Analysis of the efficiency of a single projection

Let us denote by n the dimension on V; and by n — m the dimension of Vipve,
Thus, m dimensions are lost in the transformation from ey to e;‘i‘ The average ef-
ficiency of this transformation is obviously a function of n and m. The expression
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of ¢ as a function of n and m is explicitly found using a set of generalized hyper-
spherical coordinates.>* It is worth noting that the expression for ¢ depends on
the parity of n and m and that it is cumbersome.*
On the contrary, the expression for ¥ (recall Eq. (2.5)) is much simpler and does
not depend on the parity on n and m:
m

p=1-——. (3.6)

n

Recall that the dimension of V;, n, is directly related with the number of nodes
in the reference mesh generating V;. On the other hand, m is related with the
number of points where the estimate ez, is forced to vanish. Thus, the values of
n and m are determined by simple node (i.e. degrees of freedom) counting. Once
n and m are known, ¢ and 2 are obtained in the expressions presented in Ref. 4
and Eq. (3.6), respectively. Using simple numerical experimentation it can be found
that, for large values of n (n > 100), ¢ is very similar to /% (less than 1% error),
that is, the variance of v, given by ¥ — ¢2, is small.

Thus, two main conclusions may be extracted from the study the mean effectiv-
ity of the single projection. First, it is worth noting that analytical expressions are
available for the expected value of the efficiency of the single projection. Second,
the resulting analytical expression for 2 is much simpler than the expression for ¢.
As it is shown in Sec. 3.2, this stands also for the evaluation of the efficiency of
the multiprojection strategy and, consequently, v is preferred to measure the mean
undervaluation of the complete multiprojection.

3.2. Analysis of the efficiency of the multiprojection

The main goal of this section is to describe the expected behavior of the multi-
projection strategy and to relate it with some properties of the subspaces VI and
VP, These properties are measured by a set of magnitudes that may be interpreted
under a geometric viewpoint and that can be evaluated for given subspaces. Then,
once the values of these magnitudes are known, they are used to compute the ex-
pected value of the (squared) effectivity index 1 and to assess the performance of
the error estimator.

Let us study first a very particular case of multiprojection. For this purpose
we set dimV! = 2, dimVF = 2 and dim V! + VP = 3, i.e. V! and VF may be
seen as two planes in a three-dimensional space. Then, the multiprojection may
be seen as a way to approximate a vector ef in R? by the sum of two vectors,
e;z =~ ey, := & + 7. The first, ¢, is the projection of ei on the plane V! and the
second, 7, is the projection of e}fl of the straight line in VF orthogonal to e, see
Fig. 1. The aim is to characterize the main value, ¢, of [lez||/||e; || or, alternatively,
the main value, v, of ||eL||2/||e;iL||2 for e ranging in the unit sphere.

It is worth noting that, in this case, the relative position of the two planes V!
and VT is characterized by the diedric angle o and, consequently, the values of 3
and ¢ are functions of o. In the limit case & = 0, V! and V¥ are the same plane
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The values of ¢ plotted in Fig. 2 have been numerically computed using a stan-
dard quadrature over the sphere because we did not find any analytical expression
for ¢ as a function of a. On the contrary, it can be easily found as a particular case
of the developments showed in the following, that i has a very simple expression:

1/)=1—%cosa. (3.7)

Of course, for o = 0 the value given by Eq. (3.7) coincides with Eq. (3.6) for n =3
and m = 1. The variance of v (recall Eq. (1.1)) is ¢ — ¢? and must be positive,
consequently 1/) > ¢ > ). This is valid for all the cases and not only for this
particular case with geometric interpretation. However, in this case the relative
position of the subspaces V! and VFis controlled by only one parameter, the angle
a, and the relationship 1/% > ¢ > % may be easily illustrated in Fig. 2.

From this example we can conclude that, in this particular case, the average
behavior of the multiprojection process (i.e. the values of ¢ and v) is directly related
with the angle o that describes the relative position of VI and V'F. Moreover, while
¢ requires to be computed using a numerical quadrature, 1 has a very simple
analytical expression.

In the remainder of this section this result is generalized for any dimensions of
the subspaces VI and VP . First, an extended definition of perpendicularity is given
that ensures optimality of the multiprojection strategy. Second, the general multi-
projection is analyzed in a proper basis in order to obtain an algebraic expression
for ¢ as simple as possible. Third, this expressions are related to geometric mag-
nitudes, analogous to the diedric angle «, that characterize the relative position of
the two subspaces.

Let us denote by n. the dimension of V! N VT and introduce the following
notation:

ne :=dim(VINVFP), n;:=dimV!—n, and n,:=dimV¥ —n,. (3.8)

Thus, dim(VI + VP) = n; + e + np. Let us build up a particular basis of VI
VP, B that simplifies the algebraic expressions in the following. We first select an
orthonormal basis, B, of VINVP. Then, two families of vectors B; and B, are given
such that B; UB, is an orthonormal basis of V! (B; completes an orthonormal basis
of V1) and B, U B, is an orthonormal basis of 743 (B, completes an orthonormal
basis of VP). Then, B := B; U B, U B, is a basis of VI 4+ VP such that the matrix

of the scalar product, {-,-}, in B has quite a simple shape:
I‘nz Onz XTe A
K'a >]3 = Onanq_ Inc OnCXnP s (3,9)
AT OnFch Inp
where for any value of n1 and ne, I, is the ny X ny identity matrix, On, xn, is the

n1 X ng null matrix, and A is a rectangular n; x n, which contains the cross scalar
products of the elements of the bases B; and B,. For the particular simple case with
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using the singular value decomposition (SVD),? where B and C are n; X n; and
np X np unit matrices and ¥ is an n; X ny, diagonal matrix with diagonal entries o,
i=1,...,min(n;,ny) such that

o of
o o2
¥y = and  2¥T = ) (3.17)
=3 o2
where the scalars o;, ¢ = 1,...,max(n;, np), are the singular values of A. Denoting

by 7 the rank of A, o; =0 for ¢ > r. Moreover, due to the definition of the basis B
(B; and B, are both orthonormal) the singular values o; are lower than 1. The set of
singular values, o;, 7 = 1,...,r, may be interpreted as the cosinus of a set of angles
describing the relative position of VI and VF. Indeed, for n; = n, = np = 1 we are
in the simple 3-D case previously introduced and, for a # 0, we have » = 1 and
o1 = cos a. If all the singular values are close to 0, the spaces VI and VT are nearly
“perpendicular”. The notion of perpendicularity between two vectorial subspaces
must be here understood in the sense of the following definition:

Definition 3.1. Two vectorial subspaces VI and VF are said to be perpendicular
if the orthogonal to the first, (V1)*, is included in the latter ((V1)+ c VF).

Remark 3.1. The orthogonal space is defined in the ambient space VI + VT ie.
(VHt = {x € VI4+ VP such that Vy € VF, (x,y) = 0}. (3.18)

Remark 3.2. The definition of perpendicularity is symmetric because
VHt cvP o (VY c v (3.19)

As it has already been stated for the simple case with geometrical interpretation,
perpendicularity implies optimality also in the general case.

Theorem 3.1. Let V! and VT be two perpendicular subspaces, then the multipro-
jection strategy is optimal, t.e. for every e;‘-z cVI4 VP, ei £0, y(e;‘-z) =1.

Proof. e is the projection of e;fl in VI Then, et := e;fl—e isin (V1)1 Using the per-
pendicularity condition, (V1)+ < V¥, it is found that e- € VF and, consequently,
n=¢eb. Then, ef, =e+1n= et and viet) = [ler|/[lei| = 1. O

As previously mentioned, the singular values of A are related to the relative
position of VI and VF and represent the cosinus of a set of generalized angles
between V! and V. In particular, if all the singular values are 0 (4 is a null matrix),
the spaces V! and VT are perpendicular. If all the singular values are close to one
(recall they must be lower than one), the angles between the subspaces are small,
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the spaces V! and VT are almost coincident and, consequently, the contribution
of the second part of the projection is small. In this case, the projection strategy
behaves almost as a single projection on the first space.

Thus, the expected value of the squared effectivity index, % is found to be?

p=1-1 igz B S [ef S(I, — £TE)H2¢, 2
7 — i meas(SR) ercdn Q?EETei +€?€c s

(3.20)

where n := n; + n, + n, is the dimension of VI+ VP and the variable ei of the
integral ranges in the hypersphere Sg, recall Eq. (3.11). The integral on the right-
hand side term of Eq. (3.20) is a function of A and, in particular, of its singular
values o;. However, this term is difficult to handle and we did not find any analytical
expression for it. In the simple 3-D case, setting o1 = cos o and using the proper
spherical coordinates, the expression of Eq. (3.7) is obtained from Eq. (3.20). Indeed,
in this case, the integral in Eq. (3.20) is such that

1 (el (1, — ZT%)H 2, ]2
meas(Sg) ezesn eINYTe; + ele,

1 [e; cos a1 — cos? 04)1/2{37_)]2
47 R? ezeSn cos? ae? + €2
1 1
=gcosa—g cos® o, (3.21)

recall that, in this case, n; =n, =n, =r =1and n =3.

Thus, in the general case, the right-hand side term of Eq. (3.20) is unknown.
Nevertheless we can use this equation to find an approximate expression for . Such
approximate expression of 1) must be valid for the limit cases that have already been
mentioned. For instance, if r = 0 (all o; = 0), ¥ = 1 (perpendicular subspaces).
Moreover, if r =np and oy =1,¢=1,...,n,p (VE ¢ V1), 4 must coincide with the
expression of Eq. (3.6) with n =n; + n, + np and m = np.

All these requirements are fulfilled if the following approximation is assumed:

T
¢%1_12@-. (3.22)
n
i=1

It must be remarked that the expression of Eq. (3.22) is not exact, le. the
integral of Eq. (3.20) has not been explicitly computed as a (simple) function of
the singular values of A. However, the very simple expression of Eq. (3.22) gives
quite a good answer to evaluate a number that must be greater than 1 — 7 and
lower than 1 — %2;1 c?. Especially if it is noticed that, for the simple 3-D case
with analytical expression, the exact answer is a particular case of this general
approximate expression.

Moreover, next section shows an example demonstrating that the approximate
evaluation fits in a general and realistic situation the exact value.
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4. Numerical Example

In this section the technique introduced above is used to a priori evaluate the ex-
pected value of the effectivity index of the studied estimator in a concrete problem.
This can be used to predict and, hence, to correct the estimate. The problem is
a standard example used in the validation of error estimators. The Poisson equa-
tion is solved in an L-shaped domain discretized with the mesh shown in Ref. 3.
The proper source term and Dirichlet boundary conditions are imposed to obtain
a given exact solution (in this case u(z,y) = 22 + y?). Thus, the exact error is
evaluated and the behavior of the error estimate may be studied and compared
with the exact error. This example has been used to demonstrate the robustness of
the studied error estimator.® The global effectivity index is found to be 91.9% and
the distribution of the local effectivity index (element by element) is quite uniform
(ranging from 82% to 95%).

As previously mentioned the analysis of the average undervaluation introduced
in the error estimation is split into three phases that are studied independently.

First, the effect of approximating the exact error by a reference error belonging
to a finite dimensional (even if fine) space is accounted for using Eq. (1.2). In this
case bilinear elements are used (p = 1) and the refinement factor is 4 (h/h = 0.25).

Thus,

”fj'” ~ [1 - 0.25% Y2 = 0.968. (4.23)

Second, the effect of the points where the estimate is forced to vanish is ac-
counted for. The number of free nodes in reference mesh is 1,425. The number of
points where the estimate is forced to vanish (center points of the interior edges of
the elements of the computational mesh) is 148. Then, the expected value of the un-
dervaluation introduced in this second phase is described either by $152° = 0.946628
or 11425 = 0.89614. Note that, as previously mentioned, the value of 1/4) = 0.946647
is very close to ¢. Up to the required accuracy (three significant digits) /% and ¢
may be considered equal. Thus, the undervaluation associated with this phase is

taken to be 0.947. That is,

llez
lle

~ 0.947. (4.24)

Third, the undervaluation introduced in the multiprojection strategy is assessed.

In the considered case the dimension of V1 is n; + n, = 765, the dimension
of VP is np + ne = 802 and the dimension of the intersection, VIUVP isn, =
340. Thus, the A matrix is a 425 x 462 matrix. The study of the singular value
decomposition of this matrix and the corresponding application of Eq. (3.22) to
obtain an approximate value for the average underestimation is cumbersome and
computationally expensive. However, both V! and VF are generated as a sum of
vectorial spaces associated with (almost) identical meshes. Denoting by M the
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number of elements in the original computational mesh and by 3 the number of
patches (which coincides with the number of free nodes)

M M’
V=W and VF=EHVF, (4.25)
le=1 =1

where V;j is the interpolation space associated with the submesh discretizing the kth
element and V;P is the interpolation space associated with the submesh discretizing
the [th patch. The set of element spaces {V,cl};czi ..M is orthogonal as well as the
set of the set patch spaces {th};zi,,,,,Mr. Moreover, if the kth element and the Ith
patch are disjoint, ¥ and V;¥ are also orthogonal. On the other hand, the value
of 1) depends only on the “relative position” of V! and VF. The singular values of
A are interpreted as the cosinus of a set of angles describing precisely this relative
position. Due to the decomposition described in Eq. (4.25), the singular values are
different from zero, i.e. the angles different to the right angle, must correspond to
local spaces V! and V[P associated with an element and a patch which are non-
disjoint. These angles are essentially a function of the topology of the intersection
between the element and the patch and therefore will be the same for every couple
of local spaces V! and V¥ . In the following it is assumed that the singular values of
A are represented by the singular values arising in a much simpler problem related
with the sample spaces Vi and V, penerated by the mesh shown in Fig. 3. Note
that if the singular values of 4 are simply a repetition of the singular values of
the sample (and simple) problem, the result obtained applying Eq. (3.22) is the
same for the original problem and the simplified one.

Thus, in the following, the average undervaluation introduced in the multipro-
jection strategy is analyzed replacing V! and VF by Vi and V4, respectively. The
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Fig. 3. Sample meshes generating V] (nodes marked by circles) and V3 (nodes marked by
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squares). Measuring the “relative position” between Vi and V3 suffices to characterize the relative
position between V! and VF and, hence, the average behavior of the multiprojection strategy.
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dimension of V; is n; +n. =8+ 1 =9, the dimension of V5 is n, +n, =8+1=9.
Consequently, in this case, 4 is an 8 x 8 matrix. The analysis of the matrix shows
that the range is » = 3 and the corresponding singular values are

o1 =10.23932, o2 =0.11452 and o3 = 0.01276.

Recall that small singular values of A are associated with nearly perpendicular
spaces and a multiprojection strategy with a good behavior. The approximate ex-
pression of Eq. (3.22) yields

W = 0.978435.

In order to verify that the approximation introduced in Eq. (3.22) is acceptable, at
least in this simple case, 100,000 vectors are randomly generated on the unit sphere
of the 17 dimensions space Vi + V5. The effectivity index of the projection strategy,
v, is computed for each of these vectors and the mean value of v, ¢, and 2, ¢, are
evaluated. The obtained values are

¢ =0.990121 and <+ =0.980736.

Consequently, the variance of v is 0.019924 ~ 0.02. It is worth noting that the
predicted value of ¥ (0.978435) and the computed value (0.980736) are equal up
to the second significant digit, i.e. the error introduced in the approximation of
Eq. (3.22) is much less than the variance of v.

Thus, the predicted undervaluation in the transformation from e;fz to ey, is taken
as the square root of the predicted value for v, i.e.

llez |

~ 0.989. (4.26)

Resuming the results of Eqgs. (4.23), (4.24) and (4.26), an evaluation of the
expected value of the effectivity index is found:

ezl _ leall 10 llew |l g o65 ¢ 0.047  0.980 — 0.007. (4.27)

el llell llexll llez
Recall that, in this problem the obtained effectivity index is 0.919. If the prediction
on the behavior of the effectivity index is used to improve the error estimate, the
corrected estimate would be e7,/0.907. The new value for the effectivity index is
0.919/0.907 = 1.013. That results on improving the quality of the error estimate.
The original estimate has an error of 8.1% in the evaluation of the error. The “error
in the error” for the corrected estimate is 1.3%.
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