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STABILIZED FINITE ELEMENT APPROXIMATION OF THE
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Abstract. In this paper we present a stabilized finite element formulation to solve the Oseen
equations as a model problem involving both convection effects and the incompressibility restriction.
The need for stabilization techniques to solve this problem arises because of the restriction in the
possible choices for the velocity and pressure spaces dictated by the inf-sup condition, as well as the
instabilities encountered when convection is dominant. Both can be overcome by resorting from the
standard Galerkin method to a stabilized formulation. The one presented here is based on the subgrid
scale concept, in which unresolvable scales of the continuous solution are approximately accounted for.
In particular, the approach developed herein is based on the assumption that unresolved subscales
are orthogonal to the finite element space. The motivation of the method is fully described. It is
also shown that this formulation is stable and optimally convergent for an adequate choice of the
algorithmic parameters on which the method depends.

Key words. Convection-dominated flows, inf-sup condition, stabilized finite element methods,
orthogonal subscales
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1. Introduction. This paper deals with a finite element formulation to solve
second order boundary value problems with two main features: the presence of (dom-
inant) first order terms with the physical meaning of convection and the inclusion of
constraints in the solution space, in our case incompressibility. The simplest linear
model that contains both ingredients is the Oseen problem, which consists of finding
a pair [u,p] as solution of the equations

(1.1) —vAu+a-Vu+Vp=f inQcR:
V:-u=0 in Q,
(1.3) u=0 on 9N,

where u is the velocity field, p is the pressure, v is the viscosity, a is the advection
velocity, f is the vector of body forces, Q is the computational domain, assumed to
be bounded and polyhedral, and d is the number of space dimensions. For the sake of
simplicity, we have considered the simplest Dirichlet condition (1.3). Likewise, several
simplifying assumptions will be made for the advection velocity a. In particular, we
will take it in CO((2), weakly divergence free and with derivatives of order up to k+1
locally bounded by the maximum of |a| (see assumption H2 in subsection 3.1).

The Oseen problem stated above can be thought of as a linearization of the
stationary incompressible Navier-Stokes equations. It also appears as one of the
steps of some multilevel methods for these equations (see, e.g., [25]), or may result
from a time discretization of the transient Navier-Stokes problem if the advection
velocity is treated explicitly. This is why it is often used as a first step towards the
analysis of the full nonlinear problem, both to obtain a priori (as in [16, 17, 26]) and
a posteriori (see, e.g., [1]) estimates.

*A preliminary version of this paper was presented in a plenary lecture and published in the
proceedings of the CEDYA99 Conference, held in Las Palmas de Gran Canaria, Spain, in September
1999, and organized by the Spanish Society of Applied Mathematics (SEMA)
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Let us introduce some standard notation. The space of square integrable functions
in a domain w is denoted by L?(w), and the space of functions whose distributional
derivatives of order up to m > 0 (integer) belong to L*(w) by H™(w). The space
Hj(w) consists of functions in H'(w) vanishing on dw. The topological dual of H} ()
is denoted by H~'(Q2), and the duality pairing by (-,-). A bold character is used to
denote the vector counterpart of all these spaces. The L2 inner product in w (for
scalars, vectors or tensors) is denoted by (-,-),, and the norm in a Banach space

X by [||lx. This notation is simplified in some cases as follows: (e = (),
[l z2¢qy = IIll, for m integer (positive or negative) H-HH,,,(Q) = ||l,,,, and if K is the
domain of an element (see below) Ml L2y = Il e -1l 2y = Ml 1

Using this notation, the velocity and pressure finite element spaces for the con-
tinuous problem are Vp := H§(Q), Qp := L*(Q)/R, Wy := Vo x Qp. We shall be
interested also in the larger spaces V := H'(Q), Q := L2(Q), W := V x Q.

Let U = [u,p] € Wo, V = [v,q] € W,. The variational statement for problem
(1.1)~(1.2) can be written in terms of the bilinear form defined on Wy x Wy as

(1.4) B(U,V) :=v(Vu,Vv) + (a - Vu,v) — (»,V-v)+ (¢, V- u).

Problem (1.1)—(1.2) with the homogeneous Dirichlet condition consists then in finding
U € W, such that

(1.5) B(U,V) = (f,v), VV €W,

The standard Galerkin approximation of this abstract variational problem is now
straightforward. Let Pj denote a finite element partition of the domain Q. The
diameter of an element domain K € P}, is denoted by hx and the diameter of the
finite element partition by h = max{hx | K € P;}. For simplicity, we assume that
all the element domains are the image of a reference element K through a polynomial
mapping, affine for simplicial elements, bilinear for quadrilaterals and trilinear for
hexahedra. On K we define the polynomial spaces Ry (K) where, as usual, Ry = P,
for simplicial elements and Ry = Q}, for quadrilaterals and hexahedra. From these
polynomial spaces we can construct the conforming finite element spaces V), C V and
Qnr C Q in the usual manner, as well as the corresponding subspaces V4 o and Q.
In principle, functions in V}, are continuous, whereas functions in 9, not necessarily.
Likewise, the orders k of these spaces may be different.

The discrete version of problem (1.5) is: find U, € Wh,o such that

(16) B(Uh: Vh) = <f)’vh>a vvh € Wh,O-

The well posedness of this problem relies on the ellipticity of the viscous term and
the inf-sup or Babugka-Brezzi condition (see [6]), which can be shown to hold for
the continuous problem. The first property is automatically inherited by its discrete
counterpart. However, the inf-sup condition needs to be explicitly required. This
leads to the need of using mixed interpolations, that is, different for w and p, and
verifying
(1.7) inf  sup (Qh’v—vh) >B>0,
€90 vyeVy o |anlllvnll,

for a constant 3 independent of h.

From the computational point of view, and also when equation (1.1) is generalized
to include for example zero order terms in u, it is convenient to use the same inter-
polation for the velocity and the pressure. This choice turns out to violate condition
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(1.7). This is why many of the so called stabilized formulations have been proposed
to approximate problem (1.5). The idea is to replace (1.6) by another discrete varia-
tional problem in which the bilinear form B is replaced by a possibly mesh dependent
bilinear form Bj, with enhanced stability properties. Examples of these type of meth-
ods are those of Brezzi & Pitkéranta [8], Brezzi & Douglas [5], Douglas & Wang [15],
the Galerkin/least-squares (GLS) technique of Hughes, Franca et al. [18, 19, 24] and
first-order system least-squares methods (see e.g. [3] and references therein).

The second source of instability in the approximation of the Oseen equations
arises because of the convective term. When it dominates the viscous one, the sta-
bility the latter provides is not enough to have control on the numerical solution and
spurious oscillations may appear. Several strategies have been devised to overcome
this problem, starting with the classical upwind discretizations. One of the most
popular methods to stabilize convection in the finite element context is the so called
SUPG method [10]. Variants of this stabilization mechanism, which also allow to use
equal velocity—pressure interpolation, can be found in [11, 16, 28, 29]; see also [26,
Chapter IV].

In the next section, one of such stabilized formulations is described. It is based on
the subgrid scale approach introduced by Hughes in [22, 23] for the scalar convection—
diffusion equation (see also [2, 7] for related methods). The particular version analyzed
here was presented in [12] and is briefly recalled. The basic idea is to approximate
the effect of the component of the continuous solution which can not be resolved by
the finite element mesh on the discrete finite element solution. An important feature
of the formulation developed herein is that the unresolved subscales are assumed to
be L? orthogonal to the finite element space. It turns out that for the Stokes problem
(that it, when convection is absent) this method reduces to the one presented in
[13], which was motivated by a completely different reasoning. After having stated
two different variants of the proposed formulation, a complete numerical analysis of
these is undertaken, showing its stability and convergence properties. Optimal a
priori convergence estimates are proven for the h-version of the method. A third
formulation, which is only intended to stabilize the pressure, is also analyzed.

2. Description of the method.

2.1. The subgrid scale approach. Using Cartesian coordinates z1, ..., 24, the
Oseen equations (1.1)—(1.2) are a particular case of the general system of convection-
diffusion-reaction equations

d d
0 0 oU ,
LU) := E o2, (A;U) — g a—ﬂJi(Kija—a;j)-l-SU:F in Q,
i=1

=

where U = [u, p] and F = [f,0] are vectors of D := d + 1 components and A;, K;;
and S are D x D matrices (¢,7 = 1,...,d), defined as

o I/Id 0 o aiId €;
Kl’l._l: 0 0]7 Al_l:ezt O )

fori=1,...,d,and K;; = 0for ¢ # j, S = 0 (matrix S is not zero when Coriolis forces
or permeability effects are introduced). In this expression, I, is the d x d identity
matrix and e; is the vector whose j-th component is ;.
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The bilinear form of the problem in this general case is

B(UV)_Z/V (A;U) dQ+Z/ ”a dQ+/V SU df.

i,j=1

The contribution from the pressure in the convective term A;U can be integrated by
parts to recover exactly the bilinear form in (1.4), although this is irrelevant when
boundary condition (1.3) is used.

Let W =W, ®W, where W is any space to complete YWy, in W. We may think of
W and W as finite dimensional, with a large dimension. Once the final method will
be formulated, we will see that the resulting space approximating ¥/ can in fact be
identified with a vector space of finite dimension (cf. Remark 2.1 below). Likewise,
let Wo = Who® );Vo, with W, any complement of W), o in Wy. The space Wo will be
called the space of subgrid scales or subscales.

The continuous problem is equivalent to find Uy € W o and U € W), such that

B(U, Vi) +B(U, V) = (F, V) YV € Who,
(2.2) BUL,V)+B(U,V)=(F,V) VYV eW,.

where (F', V') = (f,v) in the case of the Oseen equations. Integrating by parts within
each element in (2.1)—(2.2), it is found that these two equations can be written as

B(U,, V) + / i Ky —2 aV" dr
1,j= 1 K VOK a

(2.3) Z U LX(VR)dQ = (F, V),

ZZ anKK”aa (Uh+UdF+Z V.- L(U)d0
K

(2.4) =" [ V. [F-L(U)de,

where ) . stands for the summation over all K € Py, n; g is the i-th component of
the unit normal exterior to 0K, and L£* is the formal adjoint of £, given by

d
(2.5) LX(V}y) = —ZA,Favfl - Z 9 (Kt ‘W”) + 5V,

dz; Yo

Since exact diffusive fluxes must be continuous across inter-element boundaries, the
first term of (2.4) vanishes. This equation is equivalent to:

(2.6) LO)=F ~LUL) +Vhore inKEPh, YVhor €Wy,

which must be satisfied together with boundary conditions on K that are unknown,
but who must ensure in particular the continuity of the diffusive fluxes across inte-
rior boundaries. It is important to remark that (2.6) holds for any element Vj o
orthogonal to Wy. Here and below, orthogonality is understood with respect to the
L? product, unless otherwise specified.
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The idea now is to approximate the solution of (2.6) with the appropriate bound-
ary conditions by

(2.7) U=71g [F — ,C(Uh)] + TKVh,ort in K € Py,

where T g is a matrix of algorithmic parameters depending on K and the coefficients
of the operator £. This approximation for U is intended to mimic the effect of the
exact subscales in the volume integral of (2.3), whereas the integral over the element
faces will be neglected. The lack of analytical knowledge in the design of 7x will
be substituted by the convergence analysis, which will establish whether a particular
form of this matrix is adequate or not.

2.2. Orthogonal subscales. The starting point of our developments have been
the decompositions YW = Wy, @W and Wy = Wy, 0®Wp. If = denotes an isomorphism
between two vector spaces, we have that W = Wf; NW and Wy = W}JL"O N Wy.

Nevertheless, there are many possibilities to choose W and Wy. The particular one
adopted in this work is to take precisely

(2.8) W=Witnw.

To obtain a feasible numerical method we need to introduce some approximations.
The first concerns the choice for Wy. First, we assume that functions in W already
vanish on 89, and thus Wy ~ W. Additionally we assume that Wi-rNnW =~ Wi, which
can be thought of as a non-conforming approximation for the subscales. Altogether,
this amounts to saying that

(2.9) Wo = W = Wit
With this approximation, it follows from (2.6) that
(2.10) Vhort € Wo & Wi,
(2.11) U e Wo~ Wi,

which means that V' o is a finite element function and therefore numerically com-
putable. We refer to this particular choice for the space of U, motivated by the election
(2.8) and the approximation (2.9), as the space of orthogonal subscales.

Imposing condition (2.11) in expression (2.7) for U we have that

0= (U,Vy)
(2.12) = Z(TK[F — [,(Uh)], Vh) + Z(TKVh,ort, Vh), YV, € Wh.
K K

Let us assume that matrices Tx are all symmetric and positive-definite. From (2.12)
it follows that Vo is the projection of the residual L(Up) — F onto the finite
element space with respect to the L*? inner product weighted element by element by the
matrices of algorithmic parameters Tx. We denote this weighted inner product and
its associated norm by

(2.13) (X,Y), =Y (g X,Y)k =Y (X,7xY)k,
K K

(2'14) “Y”‘r =V (Yay)r-
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In these expressions, the functions X are Y need not being continuous for the local
L? products to make sense. The inner product (2.13) will play an essential role in the
analysis of the following section.

Equation (2.12) now becomes

(2.15) (F = L(Uy), Vi)r + (Vh,ort, Vi)r =0, VYV, €W

If we call II; the projection onto W}, associated to the inner product (2.13), hereafter
referred to as 7-projection, we see that

(2.16) Vot = =1L [F — L(Uy)],

Likewise, we will denote by II; o the 7-projection onto Wh o and HTl = I —1II,, where
I is the identity in Wj,.
From (2.7) and (2.16) it follows that

U =1xIIL[F — L(U})] in K € P

If this expression is now introduced in (2.3) and, as already mentioned, the integrals
over the interelement boundaries are neglected, we finally obtain the modified discrete
problem: find U}, € Wy, o such that

(2.17) Bp(Un, Vi) = (F, Vi) = (I (F),L*(V}1))r, ¥YVi € Why.
where the stabilized bilinear form By, is
(2.18) By(Un, Vi) = B(Up, Vi) — (ITE[LUL)], L (V1))

The hope is that the stability properties of (2.17) are much better than those of the
original discrete problem (1.6).

Remark 2.1. Equation (2.7), together with (2.10) and (2.11), indirectly determine
the approximation to the space ¥V in which the discrete solution is sought. This space
is W, enlarged with piecewise discontinuous functions generated by functions in Wj,
as indicated by (2.7). We could have started the developments by identifying W with
this finite dimensional vector space.

2.3. Application to the Oseen equations. The previous developments are
applicable to any linear system of convection-diffusion-reaction equations. Our pur-
pose now is to apply it to the particular case of the Oseen equations. First of all, note
that the adjoint (2.5) in this case is given by:

—vAvy —a - Vv, — Vg

L(Va) = -V vy

The following assumptions will lead to the first of the methods proposed in this paper,
the analysis of which is presented in the following section:

1. The matrix of stabilization parameters T is taken within each element do-
main K € Py as

(2.19) T = diag(T1,x,72,x), Ti,k =T1.x14,
-1
v Cz|¢1|oo K
2.20 = [ g 2]
(2.20) LK {h% hik ]

(2.21) To, Kk = C3V + Ca|@|oo, k Ik,
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where c¢; are constants (i = 1,2, 3,4), on which precise conditions will be given later
on, and |a|e, k is the maximum of the Euclidian norm of @ in the element domain K.
Obviously, matrix (2.19) is symmetric and positive-definite, a requirement needed for
(2.13) to be an inner product.

2. II}(F) = 0, which means that the force vector belongs to the finite element
space W), (or it is approximated by an element of this space).

3. Second order derivatives of finite element functions within element interiors
will be neglected. They are exactly zero for linear elements and for higher order
interpolations disregarding them leads to a method which is still consistent (in a
sense explained later; cf. Remark 3.1).

Under these conditions, the second term in the RHS of (2.17) vanishes and the
stabilized bilinear form (2.18) reduces to

Br(Un, Vi) = B(Un, Vi) + (I (a - Vup + V), a - Vo, + Vau) s,
(2.22) + 15 (V- up), V- o),

where B is defined in (1.4). Here and in what follows, the symbols I, I, o and I,
are used for the projections onto Vy, Vi o and V,f—, for i = 1, and onto Qp, Qp and
Qp, for i = 2. These projections are associated to the inner products (-, -),,, defined
as in (2.13) but using the elementwise value of the scalar algorithmic parameters ;
(¢ = 1,2) instead of matrix 7. We will use the term T;-orthogonality to refer to the
orthogonality with respect to (-,-),.

Once arrived to (2.22) it is observed that what the present method provides with
respect to the standard Galerkin method is a least-squares control on the component
of the terms a - Vuy + Vpp, and V - uy, orthogonal to the corresponding finite element
spaces with respect to the appropriate inner product.

There is a simple modification of the bilinear form (2.22) which leads to another
stabilized method with slightly better stability properties. The idea is to control
separately the components of a - Vuy and Vpy, Ti-orthogonal to Vj,. The bilinear
form associated to this method is

Bri(Un, Vi) = B(Un, Vi) + (I (a- Vug),a - Vo),
(2.23) + (I (Vpw), Van)ry, + (T (V - us), V - vp)sy.

Dropping the orthogonal projections HTLl and Hﬂ;, the method reduces to a general
version of that analyzed in [11], which has a consistency error that makes it only
applicable with P; elements.

Remark 2.2. Both methods I and II could be slightly modified by projecting
onto Wh o in (2.15) instead of projecting onto W). This would simplify the analysis
presented in the following section, since the stability condition (3.8) stated there
would not be needed, and all the results to be presented carry over to this case.
However, even though the global convergence is optimal, projecting onto W, o leads
to spurious numerical boundary layers, similar to those found for the pressure in
classical fractional step schemes for the transient problem (see for example [21]).
Further discussion about this point can be found in [13].

2.4. Matrix form of the discrete problem. In order to highlight the modi-
fications of the stabilized methods I and II (associated to the bilinear forms Br and
By, respectively) with respect to the standard Galerkin method, we consider here
the matrix form of all these formulations.
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The matrix form of the Galerkin method is

o 3P -[E]

where U and P are the arrays of nodal velocities and pressures, respectively, K is the
matrix arising from the viscous term, A from the advection term, G from the pressure
gradient, D from the velocity divergence and F is the resulting vector of nodal forces.
Here and in the following we assume that the modifications on the first equation to
account for the boundary conditions have not yet been performed.

Let us consider now Method I, for simplicity with 71,k = 71 constant for all the
elements and 75 k = 0. The practical way to compute the orthogonal 71-projection
IT} is to compute II,, and then use I} = I —1I,. Therefore, if we call &, the
T1-projection of a - Vuy + Vpy onto V,, (which for 7; constant is equal to the L2-
projection) Method I consists in fact of three discrete variational equations which
allow to find [un, pn, €] € Vho X Qno X Vi, namely,

v(Vun, Voi) + (a - Vup,vp) + (Vps, vs)

+7i(a-Vup +Vpp — € a - Vo) = (f,vn),
(an, V - up) + 11 (Van,a - Vuy + Vp, — €,) =0,
(@ Vup + Vpr,m,) — (€4,m5) =0,

which must hold for all [vs,gs, )] € Vio X Qh,0 X Vp. If we denote by a subscript a
the matrices arising from terms weighted by a - Vv, (which suggests ‘derivative with
respect to a@’) and by subscript d the matrices arising from terms weighted by —Vgj
(suggesting the ‘divergence’), it is easy to see that the matrix version of the previous
equations is

K+A+7mA, G+71G, —mM, u F
(224) D = TlAd —TlGd T1 Md P = 0 5
A G -M = 0

where M is the Gramm matrix of the finite element interpolation, and thus M, and
Mg the matrices obtained by replacing the test function N, by a- Vv, and —Vqy,
respectively.

The algebraic problem (2.24) can be effectively solved by using a block iteration
algorithm segregating the calculation of = from that of U and P (see below). Moreover,
if M is approximated by a diagonal matrix (using for instance a nodal quadrature rule)
it is numerically feasible to condense = from (2.24), yielding the system

K+A+7 (A, —M,;MA) G+7-1(Ga—MaM_lG)] [u] _ [FJ

225) 1" b4 (MM = Ay) n(MiM™16-Gy) | |P|= o

Let us consider now Method II, which consists of finding (W, Phs€p 15 €ns] €
Vh,o X Qh,o X Vi X V}, such that

v(Vun, Vor) + (@ - Vun,vp) + (Vpr, vp)
+1i(a - Vup — €, 1,a - V) = (f,vs),

(ar, V - un) + 711(Van, Vo — &5, 5) = 0,

(a- vuh:nh,l) - (5h,17"7h,1) =0,

(Vphﬂ?h,z) - (Eh,mTlh,z) =0,
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for all [vh,qn, M4 1,Mh 2] € Vo X Qro X Vi X Vi The matrix version of this discrete
variational problem is

K+A4+ 1A, G —11M, 0 U F
D —TlGd 0 T1 Md P _ 0
(2.26) A o M o ||=]|"|o]|
0 G 0 —-M s 0
and the condensed counterpart is
(2.27) K+A+ 7 (A, — M;MA) G ul] _[F
' D n(MgM™1G =Gy | [P| ~ |0

The difference in the terms introduced by methods I and II is clearly observed by
comparing (2.24) and (2.26) or (2.25) and (2.27). It is seen that Method II introduces
less terms, but two projections onto V), need to be performed.

Although it is not the purpose of this paper to discuss in detail the implementation
aspects of the methods analyzed here, let us briefly comment about this point and
consider again the matrix form of Method I given by (2.24). The first possibility is
to treat this algebraic system in a monolithic fashion. This of course is practically
unaffordable in large 3D calculations and the condensed form of the algorithm (2.25)
is to be preferred. However, as it has been already mentioned, dealing with M~ is
only possible if M is approximated by a diagonal matrix or an iterative scheme is used
to solve (2.25), case in which a system of the form MY = Z needs to be solved every
time a matrix—vector product has to be computed. In either case the computational
cost is high. Perhaps the best option is use an iterative coupling for dealing with
(2.24), replacing this system by

K+A+mnA, G+71G, 0 u" F+T1Ma5n_1
D - 1A —711Gy 0 P" | = —TlMdE"_l 3
A G -M =n 0

where the superscript refers to the iteration counter. Observe that the system ma-
trix remains unaltered during the iterative process. We have found this option very
efficient in both 2D and 3D calculations. The cost induced by the need to iterate is
small compared to the overall cost of the calculation.

Similar considerations apply to Method II and the method analyzed in subsec-
tion 3.4.

3. Numerical analysis.

3.1. Preliminaries. In this section we prove that methods I and II are stable
and optimally convergent. We will consider also a slight modification of these meth-
ods that is only intended to stabilize the pressure, and therefore with poor stability
properties for convection dominated flows. However, this method allows us to prove
convergence in a finer norm than for methods I and II.

Let us state now some properties of the family of finite element partitions F :=
{Pn | h > 0} that we will use. First, we assume that F is non-degenerate, and there-
fore the inverse estimate

C’inv
(3.1) IVun|lx < lonllx, K € P4,
hx

holds for any finite element function vy (see, e.g., [4]).
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The precise conditions we will need for the constants ¢; in (2.20) and (2.21) can be
written in terms of the constant Cji,, in the inverse estimate (3.1). These conditions
are

(3.2) ¢ =a?C2

oy €2 =aCiny, with a>1,

with 0<o <1.

(3.3) c3=0, c4= aC’

We shall restrict our attention to interpolations of degree k for both the velocity
and the pressure, although the extension to different velocity—pressure interpolations
offers no difficulty, provided the pressure interpolation is continuous. We will need the
standard approximation property, namely, for any function v in H*+! (Q) there exists
a finite element interpolant 9y such that

Hv_'&h“m)]( S Clh?(_mllvlln,1(> OSﬂSk-‘rl, OSmSn) Kelpha

where C7 is a positive constant.

We will also need a rather technical condition on the family F, also encountered in
[14]. For each h > 0, let AV}, be the set of nodal points of the partition Pj. Scalar finite
element functions are uniquely determined by its values at the nodes in A/},. Likewise,
we denote by N the set of nodes in an element domain K € Pr. We say that F is
continuously graded if there exists a mapping {hx | K € Pr} = {hs | a € N}} such
that

Sy

(3.4) max ( max
hk

KeP, \aeNgk

) <(h), with lim p(h) = 0.
h—0

A natural way to construct the mapping from the set of element sizes to obtain
nodal values from them is the following simple weighted average. Let M, be the
macroelement obtained from the union of the elements to which a node a belongs.
Then, we may define

h —; Z meas(K)hg.

h, =
“ " meas(M,) ot

The parameters h, constructed this way do not necessarily satisfy condition (3.4),
unless some mild conditions hold for F. For example, local mesh refinement is per-
mitted, but provided the ratio between the sizes of the elements sharing a fixed nodal
point decreases as the mesh is refined.

In our analysis, we will always assume that JF is continuously graded.

From the set of nodal values {h, | @ € N} } we may construct as well a set of
algorithmic parameters {7, | @ € Ny, i = 1,2}, where 7;, is simply defined by
replacing in (2.20)—(2.21) the element size hx by h, and |a|e,x by the Euclidian
norm of a evaluated at node a € NV},

To prove stability (cf. Theorems 3.2, 3.6, 3.8), we will need in particular to take
the velocity test function close to 71, xII,, o(€,) within each element domain K (for
certain £;,). Unfortunately, these functions are discontinuous, and therefore we will
need to approximate them by continuous functions, belonging to the finite element
space. We construct these approximations as follows. Let N,(z), = € Q, be the
standard shape (basis) function associated to node a € AV},. A finite element function
vy can be thus written as

'Uh(IIZ)lK = Z Na(m)lKv“, K € Py,
a€ENK
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where {v® | a € Nk} is the set of element nodal parameters of v;,. From {Tia | a €
Nh, 1= 1,2} and {Ti,K I K e Ph, 1 = 1,2} we define

(35) T OVp by TO’Uh(CIJ)IK = TI(Uh(m)‘K:
(3.6) Tov, by To vh(m)[K = Z Na(m)'Kﬁzv“.
aENK

Here and in the following result 7 may be either 7 or 7:

LEMMA 3.1. Assume that the family F of finite element partitions is continuously
graded. Then, for any finite element function vy, the functions Tovy, and Tovy, defined
in (3.5) and (3.6), respectively, satisfy

(3.7) I7ovn — 7 owpllx < Trep(R)||vn|k,

where 1(h) — 0 as h — 0.
Proof. For any piecewise continuous finite element function wy, we have that

d/2 d/2
Crhi 2 lwnllpon aey < Iwnllgaaey < Cobllwnll o ),

where C; and Cy are positive constants. The first inequality is an inverse estimate
valid for non-degenerate F (see [4]) and the second is obvious. Using this we obtain

—13—d/2
02 lhK / ||TOUh —Tovh||L2(K) < ”Touh — T°Uh”L°°(K)

- ” > (7 — 7a) Na(@)0"

a€ENF Le=(K)
< Tk Inax :T“( — 1‘ ’ aEX./\;K |No(z)v?| —
<Crx Dax % = 1 lvllpes k)
< Crx max 7% — 1| T R lomll o ey

for a positive constant C. From the continuity assumed for the advection velocity a
and the assumption that F is continuously graded, we have that 7, — 7% as h — 0.
The result follows taking ¢ (h) = CCy ' Co maxgep, (Maxqen, 11— Ta/7x]|)- O

This result and definitions (3.5) and (3.6) are also valid when v} is a vector
function. We have thus constructed a continuous function 7 ¢ v, that approximates
7 o vy when the mesh diameter goes to zero.

The final assumption is the most delicate one. We will assume that there is a
constant B9 > 0 such that

1
(38) “zh”ﬁ < %“HTLO(Z’I) + H7J—_1 (zh)”Tl? zp=a- Vo, + vqha

for all [vs,qn] € Vho X Qp,0. This condition means that a bound for the norms of
IT;, o(zx) and II% (z4) is enough to bound the whole norm of vector zp, which in
turn implies that the component of z; in V), which is T1-orthogonal to Vo is not
independent of the other two components, II,, o(zx) and II% (25).

We will not pursue a detailed study of this condition in this paper. The as-
sumption that it holds will be one of the hypothesis of the analysis presented below.
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Nevertheless, let us mention that exactly the same analysis as in [13] can be applied
here. This is based on a generalization of the macroelement technique to check the
classical inf-sup condition, which is described for example in [27], and leads to a con-
dition that can be effectively checked for a given family of finite element partitions JF:
Assume that for every h the set of macroelements {M, | a € Np}, with M, defined
as above, is a covering of Q. Then, if for all z,, continuous on M,, the assertion

(3.9) Z 7'1,1(/ zp - wpd =0 VYwy € V) vanishing on M, —> z, =0
KCM, K

holds true, F satisfies (3.8). The way to prove this fact consists basically of two
steps—first it is shown that (3.9) implies that a condition analogous to (3.8) holds
with the integrals restricted to the macroelements; then it is shown that this is in fact
enough for (3.8) to hold.

To give an idea of how to check condition (3.9), let us consider the case of Py inter-
polations. In this case, Vv, and Vgj, are piecewise constant within each macroelement
M, under consideration. The condition that z is continuous implies that in fact both
Vwy, and Vg, must be constant over M, if h is sufficiently small, and thus zj, = z is
a continuous function which does not depend on h. It is clear then that (3.9) holds
true if A is small enough.

For z,, = V - v;, (now a scalar), and replacing 71,k by T i, it is trivially verified
that (3.8) always holds with 8, = 1, since v, = 0 on 80 implies that V - vy has
zero mean, and therefore Il,, o(V - v,) =I1,,(V - v3). However, to keep the notation
compact, we will use also (3.8) in this case.

To close the discussion on this condition, let us mention that it would not be
needed introducing the modification discussed in Remark 2.2.

The stability condition (3.8) completes the set of assumptions that will be used
in the following. For future reference, let us collect them:

H1. The advection velocity a is in C°(Q) and weakly divergence free.

H2. There is a constant Cp such that the k + 1 derivatives of @ within element
K are bounded above by Cpla|eo i, K € Py

H3. The family F of finite element partitions is continuously graded.

H4. The stability condition (3.8) holds.

H5. The algorithmic parameters 7 i and 75 ;¢ are given by (2.20) and (2.21),
respectively, with the constants ¢; given by (3.2)-(3.3).

H6. The exact velocity components are in H*1(Q) and the exact pressure in
H*(Q).

Assumption H6 will only be needed to prove that convergence is optimal when
finite element interpolations of degree k are used. We will call

(3.10) () = 3 (il Wi el g oy + 75 el )
K

The ultimate purpose of the analysis below is to show that this is the error function
(in norms to be defined) of the different methods considered.

In what follows, C' denotes a positive constant, independent of the mesh size h
and of the coefficients of the differential equation. The value of C may vary in its
different appearances.

3.2. Method I. The problem in this case is to find U, € Wh,o such that
Bi(Un, V) = (f,vs) for all V, € Wh,o, with By defined in (2.22). We prove
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now that this method is stable and convergent in the mesh dependent norm
31D Vallr = lwn, anllr = v 2|V onll + lla - Vor + Vaullr, + IV - vallr,-

THEOREM 3.2 (Stability of Method I). Under assumptions H1, H3, H} and H5,
there is a constant B; > 0 such that, for h sufficiently small and o in (8.2)-(8.8) large
enough,

Bi(Un, Vi)

(3.12 inf sup —————— > B
) UL v TN IVl

Proof. Fix Up, = [up, pr] € Wh o, arbitrary, and let us introduce the abbreviations
&, =a-Vuy + Vpp, 6, =V - up. From the definition of By it follows that

(3.13)  Br([wn,pal; [un, pa]) = vl[Vual® + I (€,)112, + 1T (8n)112,

Clearly, By is not coercive in the norm (3.11). All we can expect is stability in the
form given by (3.12). If now we take [vs,qn] = [r1 0 Iy, ,0(€,), 72 © I, o(63)] it is
found that
Br([un, pal, [r1 0 Iy 0(€4), 72 © Iy, 0(61)]) = v(Vun, Vr o 1L, o(€,)])
(Eh»Tl ° HTl, (Eh)) (€h771 © HT1>O(£h) —TLo HT1,0(£h))

+(72 0 I, 0(01), 0n) + (12 © 111, 0(0n) — 72 0 I, 0(81), O1)

+(a - Vir oIl 0(€4)], 117 (€4)ry + (V]2 011, 0(04)], IT5 (€4),
(3.14)  +(V - [r1 Iy 0(&4)], Iz, (88))rs -

Note that
(€nr oM 0(6)) = Y 71,k (En Ty 0(€4)) = (€ Try 0(E4))ry = 1Ty 0 (ER)IIZ,
K

and, similarly, (3 o I, ,0(0n),0n) = ||T,0(6,)||%,. Using this, Schwarz’s inequality
and the inverse estimate (3.1) in (3.14) we get

Clnv
Bi([wn, pa]; [r1 0 Iry 0(€R), 72 © Iy, 0(61)]) > — T —— V||Vl k|lm o Iy, 0(€4) |1 x
I 0 (ERIE, = D lIénllxlim 0 ry 0 (€h) =71 oll 0(€y)llK
K
e 00117, = D _lIonllxll72 © TLry 0(6h) — 7 © Iy, 0 (S8) ||
K

oI o (€n)llx |17, (€)1

_Z L

Z mvﬁ i Iz T, 0 (On) 1k [1TI7; (€)1 ¢

(3.15) —Zﬁ“{vm,xllﬁ o Ty, 0(€p) Ik ITLS, (61) ] -

The bounds (3.2)—(3.3) assumed for the constants ¢; in the definition of 71,k and 7y g
imply

Cinv 1/2 ]- —1/2 Cmv 1 1 Cmv 1/2 1/2 1
—V ; a < T_ , < —.
h >Nk hx I |oo K 1,K hK T1,kTe,k = o
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Using these inequalities, Lemma 3.1 (which in particular implies that ||7ovs||x <
Tie (1+1¢(h))||vn|| i), and the arithmetic-geometric inequality, it can be readily checked
that

Br([un, prl; 1 0 Try 0(€n), 72 0 Iy 0(0n)]) 2 —%[1 + (W) V|

1= o2+ )]~ ]I, 0 €A

[+ Y EIE, — Su el
1= o+ 9]~ ]I 062,
(316)  — 51+ YIS @RI, — So I,

Let us call v = up + 71 01l 0(€L), @) = qn + 72 011, 0(6r). Adding up (3.13)
and (3.16), taking h small enough and « large enough (a > 3/2) so that

L= (L) - 58(R) > G >,

and using the stability condition (3.8), we obtain

1
By (fun,pal, [08, @2)) 2 Cuvl|Vunl* + [B3C1 — 58] [ll€al, + loall2, ],
and therefore, if A is small enough,

(3.17) Bi([un, pal; [vh, ar)) > Clllwn, palll7-

On the other hand, using repeatedly the inverse estimate (3.1), the definition of 7;
and 72, Lemma 3.1 and the fact that the norm of projection operators is < 1, it follows
that

im0 s, 0(€4), 72 © Try 0 (60)]II7

C'an
<> O+ 92| (v i + 2Nale i i+ 7o ) ITLry 0 (En) %
K K

271,173 1 Wz 0 (B
<o(lial’, +llli2,)
< Cllfun, pa]I3,
and therefore,
o, ahllz < Hlwn, palllr + Nirs © T 0(€4), 72 © Ty 0(68)Jlr < Cllfun, palr.

The theorem follows using this in (3.17). O
Let U be the solution of the continuous problem. It verifies B(U, V') = (f,vp)
for all Vi, € Wh 0, and therefore
Br(U,Vy) = (f,vn) + (Hi1 (a-Vu+Vp),a- Vo, + Van)r,
+ (H;(V . u), V- 'Uh)7—2
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Since Br(Up, Vi) = (f,vp) it follows that
Bi(U ~ Uy, Vi) = (I (a- Vu+ Vp),a - Voi + Vau)r,
(3.18) + (5 (V- u),V - 03)ry,

from where we see that the method is not consistent in the classical variational sense,
since the RHS of (3.18) is not zero. However, the consistency error can be bounded
as follows:

LEMMA 3.3 (Bound for the consistency error of Method I). Suppose that hypoth-
esis H2, H5 and H6 hold. Then, there is a constant C such that

(3.19) Bi(U = Up, Vi) < Ce() |V illr

for all Vi, € Who.
Proof. From (3.18) we have that

Bi(U = U, Vi) < Clla-Von + Vaullr, i@ Vu + Vp) - I, (@ - Vu + Vp)||-,
+CIV - vallr, 1(V - w) = Oy (V- w)l,
< Clllvn, aalllz (lla - Vu =1L, (a - Vu)ll7, + ([Vp = I, (VD) |-,
HI(V-w) =T (V- u)llr),

for all Vi, € Whyo. Let v € H5(Q), 0 < s < k+ 1, and let 9, be its finite element
interpolant. Due to the best approximation property of the 7-projection II, (r=mn
or 73) with respect to the norm ||-||-, we have that

(3.20) o =T (@)l < o = onllr < CS 7R vll g s
K

The result follows now from this, the boundedness of the derivatives of @ and the
bounds (3.2)(3.3) assumed for the constants c;, which imply that 71 x behaves as
hieTo k- u

Remark 3.1. Thereis a possible way to formulate the present method in a manner
that it can be viewed as consistent. Indeed, if we introduce

By ([un, Py &ns On; [V, an, My, a)) == B([wn, prl, [vh, an])
+(a-Vup +Vpy —&,,a-Vor + Vg, —n)r +(V-up —0h, V- vp — Y1) rg,

the discrete problem is equivalent to find [wn,pp,&,,0s] € Vho X Qpo X Vi X Qp
such that By ([wn,pn,&n, O, [Vh, @hy My Y]) = (F,va) for all (v, g, 1, 74] € Vo X
Qho X Vi X Qp. This problem is consistent in the sense that B¥([u,p,a- Vu +
Vp,V -, [vn, qn, My, v0]) = (F,vn) for smooth enough solutions [u, p] of the contin-
uous problem.

Remark 3.2. Apart from the fact that the use of the weighted L? inner product
defined by (2.13) and its associated projection arises naturally from the orthogonality
condition (2.12), it turns out to be essential to establish the best approximation
property used in (3.20).

The final result we need prior to proving convergence is:

LEMMA 3.4 (Estimates for the interpolation error of Method I). Let U = [u, p] be
the solution of the continuous problem and f]h = [Un, Pr] the finite element interpolant
of U, and assume that H1, H5 and H6 hold. Then

(3.21) Bi(U = U, Vi) < CeWVillr, YVi € Wi,
(3.22) IU = Tallz < Ce(h).
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Proof. Let &, := u — 4y, and é, := p — Py be the finite element interpolation
errors for the velocity and the pressure, respectively, which for all K satisfy ||&,]|x <
ChHlIlul]HHl ) and [|é[[x < ChKHpHHk (k)- From the definition (2.22) of By we
have that

Br(U — U, Vi) = v(Véw, Vou) + (- Véu,vn) — (65, V -v) + (qr, V - &4)
+ ([} (a-Véy +Véy),a- Vo + Vau)r, + (I5 (V- 4),V - vh)r,.

Let us check that each of these terms satisfies estimate (3.21). For the first we have

v(Véy, Von) < 1/1/2I|Vvhllz:'f”2 ey - eullx < CIVllrY i Neullx-
K

Adding up the second and the fourth terms and integrating by parts we get
(a-Veéy,vp) + (qn,V - éy) = —(éu,a - Vvp + V)
< CZn lla - Vou + Vanller el < 0|||vh|u12ﬁ}{/2||eu||f<.

The third term can be bounded as

~ 1/2 —1/2 —-1/2
~(p, V- vn) < CY eIV - vnllers i el < UVl 71 éll .
K K

Using the fact that the norm of projection operators is < 1 we obtain the following
bound for the fifth term

(I} (@ - Véu + Véy),a - Vou + Vau)r

Cinv . Cinv | .
< Clla- Ton-+ Yl Al (1ol G2 el + 52 e )
K K
—-1/2 —1/2
<IValrY (2 Neullx + 75,2 Npllx)
K

Likewise

(05 (V- &4),V - vp)r, <[V - 'Uh”TzZTzl/I? mv|| allx < CUVllrY i lleull,
K

which completes the proof of (3.21). Estimate (3.22) can be proved in a similar
manner, using the inverse estimate (3.1) and the expressions of 71 x and 7 k. O
Now we are ready to prove the convergence result:
THEOREM 3.5 (Convergence of Method I). Under assumptions H1 to H6, for h
small enough there is a constant C such that

IU = Usllr < Ce(h).
Proof. The proof is standard: from Theorem 3.2 and using Lemmas 3.3 and 3.4
(estimate (3.21)), there exists V', € Wy o such that
BilUw = UnlilVallr < Bi(Un = U, V) + Bi(U = Uy, Vi) < Ce(h)|Vllr,

and therefore ||, — Up|l; < Ce(h). The result follows now from Lemma 3.4 (esti-
mate (3.22)) and the triangle inequality. O
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3.3. Method II. Now the problem consists of finding U, € Wy, ¢ such that
Bri(Up, Vi) = (f,vp) for all Vi, € Wy o, with By defined in (2.23). The norm in
which we will prove stability and convergence is now

(3:23)  WValir = Mwr, anllier == Mwn, anllir + 107 (@ - Vo)l + (1T (Van) 7, -

It is observed that this norm is slightly finer than ||-||;. Now we will have control over
the orthogonal component of both the convective derivative of the velocity and the
pressure gradient. However, we still do not have control over all the components of
these two vectors separately (see the following subsection).
THEOREM 3.6 (Stability of Method II). Under the same assumptions as in The-
orem 3.2, there is a constant Brr > 0 such that
Bri(Un, Vi)

inf sup ————— > 7.
Un€Wno VueWn o IURIII IV rllrz

Proof. Let us proceed exactly as in the proof of Theorem 3.2. Using the inequality
a® +b% > (a® + b*)/3 + (a + b)?/3, it is found that instead of (3.13) we now have

1
Bri([un, pa]; [un, pa]) > v|[Vunl + gllﬂi1 ElI7, + 1Tz, (6n)117,
1 1
+ gllﬂf1 (@ Vun)ll?, + EHHi_I(VPh)”zl'

Once again, the bilinear form By is not coercive in the norm (3.23). If now we take
[Vh, qn] = [11 0101, 0(€,), 72 111, 0(0n)], an expression similar to (3.14) is found. Only
the sixth and seventh terms of the RHS of this inequality are different. They and
their bounds in (3.15) have to be replaced by

(CL ' V[Tl < HT1 ,0(£h)];H7J—_1 (CL : vuh))n T (V[TQ < HTz,O(‘Sh)L Hi} (vph))n

C.
2 _Z - Ia’|00,KT1,K”TI OHTI,O(Eh)||I(||H7+1 ((L . Vuh)||K
K

hi
Cinv 1
—Zh—ﬁ,KHTz o Tlr, 0(9n) |l [ITLz, (Von) Il k.
K K

Calling again v$ = up + 71 oI, 0(€1), ¢) = qn + 72 011, 0(63), it is found now that

Br((un, i, 0%, ) > [1— 1+ w(A)]] vV

1 [ 9] = ()] M0 (€I, + SIS €12, — SoIEAlE,

+[.:1; _ %{1 + (]I (a - Va2, + [% - %[1 + WIS (Vou)I2,
1= L4 9]~ ()] M0 (50,

1 1
+[1 = o[+ M G2, - Sl
From this and (3.8) it follows that for A small enough there is an a > 1 for which

BII([uh;ph]a [U?u Q}(-)L]) > CI” [Uh,ph] "]%I
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Similar bounds to those employed in Theorem 3.2 yield

Iy © Iy 0 (&), 72 © Ty 0 (G)M7r < C (I1€RNIZ, + 110nlI7,) < Clllwn, palllZr,

and the proof concludes as in Theorem 3.2. ad
The consistency error of Method II is

Br(U —Up, Vi) = (I} (@ Vu),a - Vog)r, + (IIL (Vp), Var)r
+ (H‘:J—; (V-u),V - vp)r,.

The bound (3.19) of Lemma 3.3 also holds for this case, as well as the estimates for
the interpolation error given in (3.21) and (3.22). The proof of all these facts follows
the same lines as for Method I, only with minor modifications. We give directly the
convergence result, whose proof is also straightforward:

THEOREM 3.7 (Convergence of Method II). Under the same assumptions as in
Theorem 8.5, there is a constant C such that

U - Up|lrr < Ce(h),

where €(h) is the same error function as for Method I, given by (3.10).

3.4. Viscous dominated case. Both in methods I and II the stability result
obtained shows that a - Vuy + Vpy is under control. However, we do not have explicit
bounds over these two terms (and their errors) separately. Nevertheless, there is the
possibility of bounding the pressure gradient making use of the control over the viscous
term, since

m,xlIVonllk < 1iklla - Vug + Vppl% + 1 xlla - Vu||%

aloo h
(3.24) < nlla- Vun + Voulfe + 0 (=) o

Let us introduce the dimensionless quantities

Re := M%L, ReK = MDO’TK}LK, Reh = max{ReK | K e 'Ph},
where L is a characteristic length of 2. These numbers may be called the global, cell
and mesh Reynolds numbers, respectively.

From (3.24) it is seen that we have control over 7 k||Vps||%, but with a constant
depending on the inverse of Reg. Therefore, this estimate is numerically meaningful
only for small values of Rex. However, if we allow our stability and error estimates to
depend on this parameter, it is not necessary to use neither Method I nor Method II,
but rather a simplified form of these which does not include the stabilizing term for
the velocity streamline derivative. This method consists of finding U, € Wy ¢ such
that B, (Up, V) = (f,vs) for all Vi, € Wy o, with B, defined as

(3.25) B,(Un, V1) = BUn, Vi) + (X (Vpr), Vau)r,

and with B given in (1.4). Clearly, the only purpose of this method is to stabilize the
pressure. The behavior in convective dominated situations will be similar to that of
the standard Galerkin method using div—stable velocity—pressure interpolations.
Except for the presence of the convective term in B, this formulation is the same
as that introduced in [13]. We will present here a different stability proof which
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furthermore will show the dependence of the stability and error estimates on Rej and
Re. For that, let us introduce the norm

1
(3:26) IV ally = llwn, anllls := v**[Vorll + -==—IIVanll- +

L1 gl
1+ Rey, 1+ Re p1/2 148l

in which the analysis of the method will be performed. Now the parameters 7x, which
correspond to 71,k of the previous methods, can be taken as

h2
(3.27) TK = K

202 2
a C1inv1j

and 7y g simply set to zero.

THEOREM 3.8 (Stability of the viscous dominated case). Assume that H3 and
H/ hold, and the parameters Tx are given by (8.27). Then, for h sufficiently small
there is a constant B, > 0 such that

. Bu(Uhy Vh)
3.28) inf sup ————— > f3,.
( 0B v 0 TOWL IVl

Proof. The proof of this result is similar to the proofs of Theorems 3.2 and 3.6,
except for the presence of the L? norm of g in the definition (3.26). Now we have
that

(3.29) By ([un, pnl, [wn, pal) = vI[Vunl® + [T (Vor) |12,

and, using the same strategy as in Theorem 3.2,

By ([un,pr], [T © 11 0(VDpr),0]) = v(Vup, V[T o I1: o(Vpr)])
+(a - Vup, 7 oIl 0(Vpr)) + (Vpu, 7 o I o(Vpr))
+(Vpn, 701 0(Vpr) — 70 I, 0(Vpp))

(@]

> —;VﬁHVUhHKHTOHr,o(VPh)HK = ;|a|oo,1(||vuh||1<”T°HT,O(VPh)||K

+HITr o (VP2 = Y _IIVpallklim 0 Tr0(Vpn) — 7 0 Ty 0 (Vpn) |-
K

Noting that 7x|a|%, x = Rekv/(a’CZ,) < CRe} and using Lemma 3.1, it is not

mv
difficult to see that this last inequality can be written as

Bu([uhaph]a [T < HT,O(vph)a O])
(3.30) > CilMro(Van)lIZ = Cop ()| Vpall? — Cs(1 + Rej)vl| Vunl?,
where the constants C;, ¢ = 1, 2,3, do not depend neither on Rey nor on Re.
To introduce the L? norm of py, let us invoke the inf-sup condition for the con-

tinuous problem, namely, the continuous counterpart of condition (1.7). Since pp
belongs to L?(0), there exists a function v € V, such that

BllpellllVoll < [(pr, V - v)].

We have used the L? norm of Vv in the LHS since due to the Poincaré—Friedrics
inequality it is equivalent to the H' norm of v. We may thus normalize v so that
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IVo|| = [|pnll/v. Let now 9, be the finite element interpolant of v. Using the fact
that |a — b| > |a| — |b], we have:

By ([wh, pr], [01,0]) = [v(Vun, Vo) + (a - Vun, 1) — (pr, V - 04|
(3.31) > |(pn, V- 0)| = [(£n, V - (v = 94))| — [v(Vun, Vor)| — |(a - Vun, 1)

If C, denotes the constant of the Poincaré-Friedrics inequality and C; the constant
in the standard interpolation estimates, we have that

lv = ol < Crhk||Vollk,

N . i
IVOL|l < [[Vv = Vou|| + ||Vl < (Cr+1)||Vo|| = (Cr + 1);th||,
. R 1
1on]l < CLl|Vos|| < Cr(Cr+ 1);th“'

Integrating by parts the second term in (3.31) and using these bounds we obtain

B, ([wn,pa], [04,0])

1 ) X )
> ﬂ;llPth = Y NIVpallxcllv = dnllx — vl Vanl[[|Vn]| — |alool| Vaun ll|on]
K

1
> [3;||;0h||2 = Cry hx|IVorllk [Vl = (Cr + 1)||Vunl||pall
K

1
(3.32)  —la]eCL(Cr + 1) [IVunlllipall-

On the other hand, from Young’s inequality we have that

h ve C €
> il Vpnllxl Vol < Z[Z—lﬁ”VPhH%( + THV’U”%(] < ?”VPth + 5”%”2,
K K

for all € > 0. Using a similar inequality for the last two terms of (3.32), taking € small
enough and noting that since Cf, is proportional to L, |a|.Cy /v is proportional to
Re, we obtain

. 1
(3.33)  Bu([wn,pn], [04,0]) > C4;||19h||2 — Cs[|Vpall2 — Cs(1 + Re®)v|| Vs |,

for constants Cy, Cs and Cg independent of Rep, and Re. If now we take

A, "
1+ Re? o

A
1+ Rej,

(3.34) vh =up+ T oIl 0(Vpn) +

ah = P,
and add up (3.29), (3.30) and (3.33) multiplied by the corresponding coefficients, we
obtain

B, ([un, pnl, [0}, q3]) > [1 — C34, - C’(,-Ag] V||V |2
Cap(h) Ay Cs  As7,mL 2
+[1— — - — L= (V)7
s i o e LG
[ Gidr Op(h) Ay G5 Ay
1+Re} 1+ReiBo 1+Re?fBo

Ci_4s
v 1+ Re?

im0 (Von)IE2 + | [ pwl®
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where we have made use of the stability condition (3.8) (now with z, = Vpy). From
this, it follows that there are values of the constants A; and A, for which

By ([un, pnl, [vi, ah]) > Clllwn, palll7-

The theorem now follows after checking that

Ik, gl < Clllwn, pallly,

which is easily verified from the definition (3.34) of [v9,4¢)] and noting that (1 +
2?)71 <2(1+2)7! forall z > 0. a

The same strategy as for methods I and II can now be followed to prove conver-
gence. We omit the intermediate steps and simply state the final result:

THEOREM 3.9 (Convergence of the viscous dominated case). If assumptions H1
to H5 hold and the parameters Tk are given by (3.27), for h small enough there is a
constant C such that

IU = Unlly < G+ Ren) Y (ric il gows ey + v~ 2RIl ) -
K

This convergence estimate, as well as the stability estimate (3.28), deteriorates as
v decreases. Due to the dependence on Rey, and Re explicitly displayed by (3.26), it
is seen that control over the L2 norm of the pressure is rapidly lost as ¥ — 0, since in
this case Re — co. However, a somewhat stronger control is obtained on [|Vgy||-. We
may consider that the finite element mesh is sufficiently refined so as to maintain Rey,
(relatively) small. These results are similar to those obtained in [29] for the nonlinear
Navier—Stokes equations, even though the method analyzed in this reference is also
intended to stabilize convection.

Remark 3.3. In the absence of convection, the norm (3.26) in which stability
and convergence has been proven is even finer than for the Galerkin method using
div—stable velocity—pressure interpolations. This in particular allows to extend this
pressure stabilized method to the nonlinear Navier—Stokes equations and obtain ez-
actly the same results as for the Galerkin method (see [9, 20]). This extension is
analyzed in [14].

4. Concluding remarks. Three different stabilized finite element formulations
for the Oseen problem have been presented in this paper. Their main features are:

1. The original method (referred to as Method I in the paper) is directly based
on the subgrid scale concept, assuming that the subscales are orthogonal to the finite
element space. After some simple approximations, a stabilized formulation is obtained
with two major benefits with respect to the original Galerkin method: it allows the
use of equal velocity—pressure interpolations and it provides optimal control on the
streamline derivative of the velocity field.

2. The second method (Method II) is somewhat simpler, since it introduces less
coupling in the discrete velocity—pressure equations (although one more projection
needs to be performed). Furthermore, stability and error estimates have been shown
to hold in a norm finer than for Method I, since now it is possible to control the
orthogonal components of the convective term and the pressure gradient.

3. If only the pressure interpolation is to be stabilized, a simplification of meth-
ods I and II has been proposed and analyzed. The norm in which stability and
convergence has been proven depends explicitly on the mesh Reynolds number and
the global Reynolds number.
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Finally, even though no numerical examples have been presented, let us mention

that the accuracy of the formulation presented here is one of its most salient features,
both for Method I as for Method II (which yield very similar results). The order
of convergence is the same as in other stabilized formulations, such as the Galer-
kin/least—squares technique [16, 17], but it is less diffusive. This in particular leads to
a better treatment of the pressure near boundaries. See [12, 13] for further discussion
about this point and some numerical results.
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