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Abstract. The gridless Particle-In-Fourier method where particles are directly deposited onto a Fourier
basis features excellent energy and momentum conservation properties, but is computationally expensive
due to the global nature of its basis functions. In this paper, we investigate analytically and numeri-
cally how well a back-filtered spectral Particle-In-Cell method can approximate the Particle-In-Fourier
method. The study is extended to a recent variational spectral PIC method which has a discrete Hamil-
tonian structure.

1 Introduction

In a recent article [2], a general framework was proposed for spectral electromagnetic particle schemes
that preserve certain key properties such as Gauss’ laws, the total momentum, or a discrete Hamiltonian
structure. A particular feature of this framework is that it encompasses both the Particle-in-Fourier (PIF)
method [7, 1] which is based on a gridless particle-field coupling, and spectral Particle-in-Cell (PIC)
methods [5] where the coupling is done through an DFT grid.

In this article we investigate how well spectral PIC schemes may approximate gridless simulations,
provided a proper back-filtering is used in Fourier space as suggested in [6, 2]. In Section 2 we recall
the main steps of both methods and revisit a classical a priori error estimate in Section 3. This estimate
is then assessed numerically by considering errors in individual modes in Section 4, and global errors
in the electromagnetic field energy in Section 5. In Section 6 we finally study the spectral fidelity of
the different solvers in a single-mode electrostatic oscillation. This allows to verify the anti-aliasing
properties of smoothed particle shapes in spectral PIC methods, and to highlight the superior accuracy
of back-filtered PIC schemes.
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2 Particle-in-Fourier and spectral PIC methods

A common feature of spectral particle methods is to solve Maxwell’s equations in Fourier space
− d

dtEk+

(
2iπk

L

)
×Bk = JS

k,

d
dtBk+

(
2iπk

L

)
×Ek = 0

for k ∈ J−K,KK3 (1)

and to push the N particles along trajectory equations of the form
d
dtXp = Vp,

d
dtVp =

qp

mp
(ES(Xp)+Vp×BS(Xp))

for p ∈ J1,NK. (2)

Here, the coupling current coefficients JS
k are obtained from the particle current

JN(t,x) :=
N

∑
p=1

qpVp(t)δ(x−Xp(t)), (3)

and the coupling fields ES and BS are obtained from the spectral fields

EK(t,x) := ∑
k∈J−K,KK3

Ek(t)e
2iπk·x

L and BK(t,x) := ∑
k∈J−K,KK3

Bk(t)e
2iπk·x

L . (4)

The coupling also involves a shape function S of compact support and normalized integral, typically a
scaled B-spline or a Dirac mass if no smoothing is needed. How the coupling terms are precisely defined
then characterizes the numerical method at the semi-discrete level.

2.1 Particle-In-Fourier coupling

In the gridless Particle-In-Fourier method, the coupling current terms are given by the Fourier coeffi-
cients of JS

N := S∗JN , namely

JS
k := Fk(S∗JN) = σkFk(JN) = σk ∑

p=1···N
qpVp

(
1
L

)3

e−
2iπk·Xp

L , (5)

where we have set σk := L3Fk(S), and denoted by

Fk(G) :=
(

1
L

)3 ∫
[0,L]3

G(x)e−
2iπk·x

L dx (6)

the k-th (continuous) Fourier coefficient of a function G. The coupling fields are then defined as
ES(Xp) =

∫
[0,L]3

EK(x)S(x−Xp)dx= L3
∑

k∈J−K,KK3

σkEke
2iπk·Xp

L

BS(Xp) =
∫
[0,L]3

BK(x)S(x−Xp)dx= L3
∑

k∈J−K,KK3

σkBke
2iπk·Xp

L .
(7)

Here we note that the particle shape S essentially amounts in a specific Fourier filtering in the coupling
terms. In particular for a Dirac shape S = δ we have σk = 1 for all k ∈ Z3.
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2.2 Particle-In-Cell coupling with smooth shapes

In spectral PIC methods, the coupling involves a grid (of M cells) where the continuous Fourier coeffi-
cients (6) are approximated by discrete ones,

FM,k(G) :=
(

1
M

)3

∑
m∈J1,MK3

G(mh)e−
2iπk·m

M with h =
L
M
. (8)

The current source terms are then given as

JS
k := FM,k(S∗JN) (9)

which amounts to first depositing this current on the grid,

Jpic
m := (S∗JN)(mh) = ∑

p=1···N
qpVpS(mh−Xp) for m ∈ J1,MK3

and then performing a Discrete Fourier Transform (DFT),

JS
k =

(
1
M

)3

∑
m∈J1,MK3

Jpic
m e−

2iπk·m
M for k ∈ J−K,KK3.

The pushing fields are defined by a discrete convolution,

ES(Xp) := h3
∑

m∈J1,MK3

EK(mh)S(mh−Xp), BS(Xp) := h3
∑

m∈J1,MK3

BK(mh)S(mh−Xp), (10)

which in practice is performed by applying similar steps as for the current, but in a transposed order: first
compute the field values (4) on the grid with an inverse DFT, then gather them on the particles with the
shape function S.

In contrast to the PIF case, here it appears that the shape function S should be smooth. First because the
above coupling is only well-defined for a continuous shape S, and more importantly because of the anti-
aliasing properties of smooth shape functions. Indeed, DFT is inherently associated with aliasing errors,
due to high-frequency modes of the continuous source that get folded into the computational range. As
they amount in a low-pass filtering of the source before the DFT is applied, smooth shapes reduce these
high frequency modes and hence the aliasing errors.

A common choice is to use a (periodic) B-spline of degree κ≥ 1 scaled to the grid,

S(x) := ∑
r∈Z3

Sh
κ(x+rL) where Sh

κ(x) :=
(

1
h

)3

∏
α∈J1,3K

Ŝκ

(xα

h

)
, (11)

with cardinal univariate B-splines defined as Ŝ0(x) := 1[− 1
2 ,

1
2 ]
(x) and Ŝκ(x) :==

∫ 1
2
− 1

2
Ŝκ−1(x− y)dy for

κ≥ 1. Then the convolution by S amounts to a filtering in Fourier space with coefficients

σk := L3Fk(S) =
3

∏
α=1

(
sinc

(
πkα

M

))κ+1

where sinc(θ) :=
1
θ

sinθ. (12)
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2.3 Variational Fourier-GEMPIC scheme and back-filtering techniques

In [2] the PIC coupling has been revisited and a new method has been derived from a variational prin-
ciple based on a discrete Lagrangian functional for the Vlasov–Maxwell system. In this derivation the
particle-field coupling is described by projection operators on the discrete Fourier spaces, that commute
with the differential operators involved in the de Rham sequence. As a consequence of this variational
derivation, the resulting Fourier-GEMPIC method possess a discrete Hamiltonian structure and preserves
the discrete Gauss laws associated with the de Rham commuting diagram. It may thus be seen as a spec-
tral extension to the GEMPIC scheme [4] based on spline Finite Elements and point particle shapes. The
standard PIC coupling described above can be seen as a variant which is not variational but preserves the
total momentum.

An interesting feature of the variational derivation (and its momentum-preserving variant) is that it allows
general Fourier filters in the coupling terms. For the gridless PIF method where the coupling (5)–(7) reads

J
S,pif
k = σk ∑

p=1···N
qpVpFk(δXp)

ES,pif(Xp) = L3
∑

k∈J−K,KK3

σkEkFk(δXp)

BS,pif(Xp) = L3
∑

k∈J−K,KK3

σkBkFk(δXp)

(13)

with filter coefficients σk := L3Fk(S), this just amounts in a free choice of the shape function S. For
spectral PIC methods, this allows to use additional filter coefficients γk, leading to coupling terms of the
form 

J
S,pic
k = γk ∑

p=1···N
qpVpFM,k(SXp)

ES,pic(Xp) = L3
∑

k∈J−K,KK3

γkEkFk(SXp)

BS,pic(Xp) = L3
∑

k∈J−K,KK3

γkBkFk(SXp).

(14)

Here the situation is quite different, because as was previously recalled, the shape functions are used
before the DFT, whereas the γ-filtering is used afterwards. In particular, this opens the possibility of
using the γ-filter as a back-filtering technique to compensate for the smooth shape functions S. The
motivation for such a strategy is twofold:

• First, it allows to revisit the (back-filtered) PIC coupling as a high-order approximations to the
gridless PIF coupling.

• Second, it leads to a better modelling of the high modes within the computational range, despite
the smoothing effect of the particle shapes.

In the next sections, we will validate these properties by a priori estimates and numerical experiments.
Since the antialiasing and back-filtering techniques can also be applied on the variational Fourier-GEMPIC
method, we chose to perform this study on this latter method. We note, however, that similar results were
obtained with the momentum-preserving scheme. For lack of space we do not report them here.
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3 A priori error estimate

In this section we present an a-priori error estimate for the approximation of continuous Fourier coeffi-
cients by discrete ones. This estimate essentially follows similar results established in [9], see also [8],
where this approximation procedure is described as a Nonequispaced Fast Fourier Transform. We state
it for univariate shape functions, as the generalization to tensor-product ones is straightforward.

Lemma 1 Let Spif be an arbitrary shape, and let Spic be a periodic B-spline (11) of degree κ ≥ 1 and
step-size h = L

M . Then the discrete Fourier transform of Spic
Xp
(x) = Spic(x−Xp) with filter coefficients

γk :=
Fk(Spif)

Fk(Spic)
= LFk(Spif)

(
πk/M

sin(πk/M)

)κ+1

for |k| ≤ K ≤ M−1
2

(15)

converges at order κ+1 to the continuous Fourier transform of Spif
Xp
(x) = Spif(x−Xp). Specifically,

max
|k|≤K

sup
Xp∈[0,L]

|Fk(S
pif
Xp
)− γkFM,k(S

pic
Xp
)| ≤ 2‖F (Spif)‖`∞

(
K/M

1−K/M

)κ+1(
1+

1−K/M
κ

)
(16)

holds for all K ∈N and all M ≥ 2K +1, with ‖F (Spif)‖`∞ = supk∈Z|Fk(Spif)|.
Remark 1 This estimate indeed gives a κ+1 convergence order, since we have(

K/M
1−K/M

)κ+1(
1+

1−K/M
κ

)
≤
(

2K
M

)κ+1(
1+

1
2κ

)
for all K ≤ M

2
,

however (16) is better for smaller values of K/M. We also note that it readily applies to the case of a
point-particle PIF shape Spif = δ, where Fk(Spif) = 1

L for all k.

Proof. We recall and adapt the core estimate of [9, Th. 4.2]. Expressing the periodic B-spline (11) as a
Fourier series

S(x) = ∑
`∈Z

c`e
2iπ
L `x with c` := F`(S) =

1
L

(
sinc

(
π`

M

))κ+1

, (17)

we rewrite the discrete Fourier coefficients as

FM,k(Sxp) =
1
M

M−1

∑
m=0

S(mh− xp)e−
2iπ
L k(mh−xp) = e−

2iπ
L kxp

1
M

M−1

∑
m=0

∑
`∈Z

c`e
2iπ
L (`−k)(mh−xp)

= e−
2iπ
L kxp

1
M ∑

`∈Z
c`e−

2iπ
L (`−k)xp

M−1

∑
m=0

e
2iπ
M (`−k)m = e−

2iπ
L kxp

(
ck + ∑

r∈Z∗
ck+rMe−

2iπ
L rMxp

)

where we have used that ∑
M−1
m=0 e

2iπ
M (`−k)m = M if `−k ∈MZ, and = 0 otherwise. This formula essentially

expresses the well-known aliasing phenomenon. As for the continuous Fourier coefficients, we have

Fk(Spif
xp
) =

1
L

∫ L

0
Spif(x− xp)e−

2iπ
L kx dx = Fk(Spif)e−

2iπ
L kxp = γkcke−

2iπ
L kxp ,
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which allows us to bound the error as

|Fk(Spif
xp
)− γkFM,k(Sxp)|=

∣∣∣γke−
2iπ
L kxp ∑

r∈Z∗
ck+rMe−

2iπ
L rMxp

∣∣∣≤ |Fk(Spif)| ∑
r∈Z∗

∣∣∣ck+rM

ck

∣∣∣.
Using that

∣∣ ck+rM
ck

∣∣= ∣∣ k/M
k/M+r

∣∣κ+1, we then estimate as in [9, Th. 4.2],

∑
r∈Z∗

∣∣∣ck+rM

ck

∣∣∣≤ 2
L

(
|k|/M

1−|k|/M

)κ+1(
1+

1−|k|/M
κ

)
≤ 2

L

(
K/M

1−K/M

)κ+1(
1+

1−K/M
κ

)
which ends the proof. �

4 Numerical validation of the estimate

We first perform a numerical verification of the error estimate (16) by using a set X of 10,000 particles
distributed uniformly, on which we compare the PIF and PIC modes using a Dirac shape for the PIF
coupling, Spif = δ, and a B-spline shape of degree κ for the PIC coupling on a grid of size M. Thus, for
a given mode k ≤ (M−1)/2, we compute the error

error(M,κ,k) := max
Xp∈X
|Fk(δXp)− γkFM,k(S

pic
Xp
)|, (18)

with back-filtering coefficients given by (15), namely

γk =
Fk(δ)

Fk(Spic)
=

1
LFk(Spic)

=

(
sinc

(
πk
M

))−(κ+1)

. (19)

Figure 1a shows the error in the first mode, error(M,κ,1), as a function of the grid size M ranging from
23 to 214, for shape degrees κ ranging from 1 to 7. It can be seen that the predicted convergence rates
(in dashed lines) are nicely reproduced by the numerical results. Figures 1b and 1c show the errors in
the second and third mode, i.e. error(M,κ,2) and error(M,κ,3), respectively. For comparison, the errors
in the mode k = 1 are shown in Figure 1d for γk = 1, that is when no back-filtering is used. It can be
seen that in this case the convergence with respect to M is of order two, independent of the degree for the
shape function.

5 Global convergence in the time evolution

As Lemma 1 indicates that the PIC coupling (14) with proper back-filtering can be seen as a high or-
der approximation of the PIF coupling (13), in this section we perform a numerical validation of this
global convergence property. Specifically, we compare the results obtained with smoothed Fourier (sf)
PIC schemes corresponding to γk = 1, and back-filtered Fourier (bff) PIC schemes corresponding to
(19). Again we note that the results shown here are for the variational GEMPIC method as explained in
Section 2.3.

To do so we consider a reduced 1d2v model with the same Weibel and two-stream instablity test cases
as in [2]. In this test, we restrict ourselves to the linear phase, i.e. we simulate these test cases over 200
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(d) error for first mode without back-filtering

Figure 1: Convergence of the approximation of the Fourier transformation of the delta function by a
discrete Fourier transform of a spline of various degree κ (times the inverse of the Fourier transform of
the centered spline function for (a)-(c)).

and 30 time units, respectively. We use 10,000 particles for the Weibel test case and 100,000 particles
for the two-stream instability. In all cases, we use a Hamiltonian splitting for the time discretization with
a fourth order operator splitting and a time step of ∆t = 0.1.

In Figure 2 we first compare the time evolutions in the relevant energies (namely, the magnetic energy
‖B3‖2

2 for the Weibel test case in Panel 2a, and the electric energy ‖E1‖2
2 for the two-stream instability in

Panel 2b. There, the top curves show the time evolution of the energy as computed in a PIF simulation
with K = 4 modes, while the other curves show the errors corresponding with the various PIC simula-
tions, using a fixed grid with M = 64 points and different spline degrees and back-filtering techniques.
As previously explained we have chosen to show the errors corresponding to the variational GEMPIC
scheme, but results with the momentum-conserving PIC schemes are similar. From these curves we can
see that the error decreases when the degree of the spline is increased for the back-filtered (bff) method,
while it remains almost constant for the smoothed Fourier (sf) method, which is in line with our previous
convergence results.
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In Figure 3 we next assess some global convergence properties of the back-filtered method as the grid
resolution M increases. Panels 3a and 3b show the maximum errors in energy over time (as compared
with the PIF solution), whereas Panels 3c and 3d show the momentum conservation errors for the re-
spective time ranges, using B-spline shapes of degree κ from 1 to 7. Overall, these results show that
the accuracy increases with the degree of the spline shape function, with convergence rates that follow a
κ+ 1 trend. Some deviations can be seen however, which are likely due to the nonlinear nature of this
convergence experiment. In particular, the convergence region is clearly not reached on the coarse grids
for linear splines and there is a roundoff error problem for the finer grids with splines of degree 5 and 6.

0 20 40 60 80 100 120 140 160 180

10
-15

10
-10

10
-5

(a) Weibel: (Error in) time evolution of ‖B3‖2
2.

0 5 10 15 20 25

10
-15

10
-10

10
-5

(b) TSI: (Error in) time evolution of ‖E1‖2
2.

Figure 2: Weibel instability (left panel) and two-stream instability (TSI, right panel): the top curves show
the time evolution of the relevant energies computed by a PIF scheme with K = 4 modes, and the other
curves show the time evolution of the errors for the GEMPIC methods with back-filtering (bff) or without
(sf), using a grid with M = 64 points and various degrees for the spline shapes, as indicated.

6 Finite grid instability

We end our study with a single-mode electrostatic oscillation problem used in e.g. [3] to investigate the
manifestation of finite grid instabilities in spectral PIC codes. Here the plasma consists of a uniform
ion background and kinetic electrons with a drift, that initially deviate from the equilibrium density by
a small sinusoidal perturbation. For such a problem the system should sustain a stable oscillation of
the perturbed mode, but the aliasing errors inherent to the finite grid coupling typically trigger spurious
oscillations in PIC simulations. In practice we use a deterministic sampling with particles positions
equidistantly distributed in [0,2π) and perturbed with δXp = εk−1 cos(kXp), and we set their velocity
to Vp = 0.01(1+ k−1 sin(kXp)), using a perturbation amplitude ε = 0.01 on the mode k = 9. In all the
simulations we use N ≈ 10,000 particles and a Fourier Maxwell solver with K = 16 modes. The time
scheme is a fourth-order Hamiltonian splitting with ∆t = 0.1.

In Figure 4 we show the evolution of the main modes present in the simulations. On the left the PIF
simulation exhibits a correct behavior with a regular pulsation of the single mode k = 9, whereas several
spurious modes (namely k = 3, 6, 12 and 15) quickly develop in the GEMPIC simulation shown on the
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(d) TSI: Momentum error.

Figure 3: Weibel instability (left panels) and two-stream instability (right panels): errors of back-filtered
variational GEMPIC schemes. Top and bottom panels show the maximum errors in the relevant energy
and in momentum conservation respectively, over the same time range than in Figure 2. Errors are plotted
versus the number of grid points M, using spline shapes of various degrees κ, as indicated. Dashed lines
indicate convergence orders of κ+1 for the corresponding color.

right, where quadratic splines are used on a grid with M = 33 points. We note that these spurious modes
are mostly triggered by the aliasing of the first harmonic k = 18 which is outside of the computational
range and is folded on the k = 15 mode by the DFT. This in turn triggers secondary spurious modes by
beating with the main one.

In Figures 5 and 6 we then present the results obtained by using spline shapes of higher degrees, namely
κ = 5 or 7, and grids with M = 33 or 39 points, which corresponds to a very mild oversampling. The
runs in Figure 5 have been obtained with a standard spline smoothing, and as expected we see that higher
spline degrees reduce the spurious modes to a significantly low level, in particular when a finer grid
is used for the DFT. This confirms the well-known anti-aliasing properties of the smooth splines. The
interesting observation comes from Figure 6 where an additional Fourier back-filtering (19) has been used
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in the particle-field coupling. There we see that the anti-aliasing effect is less pronounced, in particular
for the coarse grid M = 33. With the finer grid the spurious modes are reduced but slightly less than in
Figure 5 (which is not surprising, since back-filtering amplifies the higher modes in the computational
range J−K,KK). The main difference lies in the time oscillation of the main mode k = 9: whereas it is
significantly slowed down when no back-filtering is used, as a consequence of the damping effect applied
by the spline smoothing on this mode, we see that in the back-filtered runs it matches almost perfectly
with the reference PIF run in Figure 4.

0 50 100 150 200

10
-30

10
-20

10
-10

(a) gridless PIF with K = 16

0 50 100 150 200

10
-30

10
-20

10
-10

(b) spectral GEMPIC with K = 16, M = 33 and κ = 2

Figure 4: FGI: time evolution of the main electric modes using a gridless PIF method (left) and a spectral
GEMPIC method with quadratic spline shapes and a grid of size M = 33 (right). Both methods solve
Maxwell’s equations in Fourier space with K = 16 modes.
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Figure 6: FGI: time evolution of the main modes using a smoothed Fourier GEMPIC scheme with
different grids and shape degrees, and back-filtering.
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