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Despite the wide application of Floating Car Data (FCD) in urban link travel time and congestion estimation, the sparsity of
observations from a low penetration rate of GPS-equipped floating cars make it difficult to estimate travel time distribution (TTD),
especially when the travel timesmay havemultimodal distributions that are associatedwith the underlying traffic states. In this case,
the study develops a Bayesian approach based on particle filter framework for link TTD estimation using real-time and historical
travel time observations from FCD. First, link travel times are classified by different traffic states according to the levels of vehicle
delays. Then, a state-transition function is represented as a Transition Probability Matrix of the Markov chain between upstream
and current links with historical observations. Using the state-transition function, an importance distribution is constructed as
the summation of historical link TTDs conditional on states weighted by the current link state probabilities. Further, a sampling
strategy is developed to address the sparsity problem of observations by selecting the particles with larger weights in terms of
the importance distribution and a Gaussian likelihood function. Finally, the current link TTD can be reconstructed by a generic
Markov ChainMonte Carlo algorithm incorporating high weighted particles.The proposed approach is evaluated using real-world
FCD. The results indicate that the proposed approach provides good accurate estimations, which are very close to the empirical
distributions. In addition, the approach with different percentage of floating cars is tested. The results are encouraging, even when
multimodal distributions and very few or no observations exist.

1. Introduction

Information of travel time distribution (TTD) is essential for
route guidance and advanced traveler information systems.
It reveals underlying traffic conditions for measuring travel
time reliability, evaluating the level of service of intersection,
and detecting the congestion and incident, which can be
introduced to improve service reliability performance [1].

Up to now, the increasingly available vehicles equipped
with GPS, named as floating cars, provide a significant
amount of vehicle trajectory data in urban road networks.
Many works have proposed analytical or data-driven models
to infer mean link travel time from this data, but yet
research on the estimation of link TTD is still evolving,
especially when the travel times appear to be multistate
features. In reality, the travel times of vehicles traversing an
urban link are heavily affected by traffic lights, interaction

among vehicles, and conflicting traffic from cross streets
[1–5]. The characteristics of interrupted traffic flow would
likely result in different clusters of travel times, which reflect
how vehicles experienced traffic states on a link. Therefore,
rather than to provide the mean value that is generally
used in planning applications, a probability distribution, that
fully characterizes different components of travel times for
retaining maximum traffic state information, is preferred.

In order to estimate the link TTD, a relatively large
number of floating cars is needed to generate useful travel
times among various errors such as GPS errors, map-
matching errors, and estimation errors. Unfortunately, the
spatial distribution of floating cars is not uniform. Taxicabs,
which have been suggested as the main types of floating
cars [6], are used widely to collect travel time information
for urban link travel time and congestion estimation [4, 5,
7]. However, taxicabs cover mainly densely populated and
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commercially well-developed areas, since these areas may
have higher passenger flow and taxicabs are more likely to
pick up passengers. For those areas with limited coverage by
floating cars, it would raise inquiries about how to utilize the
limited data sample from a small number of floating cars to
produce an accurate link TTD, even for the multistate feature
of travel times.

In this situation, it may be possible to combine real-
time traffic information incorporating the current traffic
states with prior knowledge from historical link TTDs that
provide similar data sequences to the actual distributions
to reconstruct the TTD. The objective of this study focuses
on developing a methodology to estimate such probability
distributions under situation when floating car density is
quite low and link travel times may follow multimodal
distributions.

The main contributions of this paper are as follows.
(1) This research can be regarded as an initial attempt to
estimate multistate link TTDs in the context of the sparse
and incomplete observations from real-time FCD.The corre-
sponding solutions are given by a Bayesian approach based
on particle filter framework, in which the state-transition
trends are modeled by historical trends to construct an initial
solution providing past travel time patterns, as well as the
sampling strategy that focuses on a fundamental issue of the
irregular, unsmooth TTDs directly constructed by the only
real-time FCD and allows much less real-time information.
(2) The results of case study show that multistate link TTD
models can be robustly realized by using our proposed
approach for different percentage of floating cars, even for the
condition with no data available. Moreover, the applications
help provide in-depth understanding on the heterogeneity of
link travel times that showmultistate distributions and imply
significantly different state combinations changing with time
of day, in which the state convergingmost of travel timesmay
play a dominant role on the whole link traffic conditions.

2. Literature Review

In review of literature, models on the estimation of travel
time distribution (TTD) can be generally divided into two
categories, namely, unimodal andmultimodal/multistate dis-
tributions. Unimodal distributions, such as Weibull, expo-
nential, Lognormal, or normal distributions, are often used
for modeling travel time. For example, Hunter et al. [8]
proposed a probabilistic model for inferring vehicle path and
travel time based on low frequency GPS data in the arterial
network. An expectation maximization (EM) algorithm for
the proposed model is employed to simultaneously learn the
likely paths and the parameters of lognormal link travel time
distributions using the path travel time observations.

A recent work of the same group by Herring et al. [9]
proposed a statistical approach to capture the evolution of
traffic states with a coupled hidden Markov model, since
the actual state of current link is unobserved (hidden) and
depends on adjacent links (coupled). The authors assumed
that travel times between successive links are independent,
and only one traffic state on each link can exist in the same
period. The authors went on to assume that the link travel

time distribution is conditional on its hidden state. Likewise,
an EM algorithm is used to iteratively update the parameters
of the distributions and the state-transition matrix. The
evaluation is done using sparse probe data from taxicabs in
San Francisco, CA.

A similar approach was proposed by Westgate et al.
[10]. In this work, a Markov Chain Monte Carlo (MCMC)
algorithm was used to simultaneously estimate the likely
paths, travel times, and parameters of link TTDs from GPS-
equipped ambulances. The findings from these studies in
general concluded that the lognormal distribution provides
a superior fit over the alternative unimodal distributions.The
main limitation of unimodal distributions is the assumption
that travel time is the result of a single traffic state on a link.
Hence unimodal distributions usually provide some poor fit
results under complex traffic conditions, such as interrupted
flow.

The multimodal travel time distribution comprising two
or more distributions outperforms the single distribution
by reflecting the coexistence of heterogeneous traffic states
simultaneously [11, 12]. One of the most attractive features
of the multimodal distribution provides a straightforward
relationship for the probability of encountering state (e.g.,
congestion) and the component distribution accordingly
under such state. In [11], a multistate model was proposed
by using a mixture of normal distributions to fit travel times
on freeways. The authors revealed that different traffic states
can exist in the same analysis period such as free-flow and
congested states. Besides each component distribution is
associated with an underlying state. In the research by Park
et al. [12], the authors attempted to quantify the impact of
traffic incidents on travel time reliability using multistate (3
states) model. The state of a section on freeways describes
the level of congestion. They concluded that the congested
state corresponding to the third component distribution
becomes more dominant since incidents increase the travel
time variability.

While very few multimodal link TTD models using GPS
data were proposed up to now, for the estimation of the
parameters of multimodal distribution, Hofleitner et al. [13]
developed a dynamic Bayesian network for the transition
between link states using GPS probe data. A simulation-
based EM algorithm is proposed to estimate the transition
probabilities and the travel time distribution parameters.
Feng et al. [7] integrated signal timing and arterial geometry
information with real-time GPS data to dynamically update
the parameters of the bimodal urban link TTDs based on
MCMC simulation. Ji et al. [1] proposed a hierarchical
Bayesian bimodal TTD to capture the interrupted nature of
urban traffic flow as well as analyze traffic operations from
probe vehicles. A further development using a hierarchical
MCMC algorithm for producing the posterior distribution
of Gaussian mixture models and the lognormal prior was
presented in Li et al. [14].The authors assumed that real-time
GPS samples are distributed in each component distribution.
These studies all adapted iterative procedures to estimate
the parameters of link TTDs using maximum likelihood
estimation and Bayesian approach. However, one limitation
of their work is that travel times of probe vehicles are
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not readily available for each unobserved state since probe
vehicles penetration rate is fairly low. Another limitation of
their work is that they assumed the link travel times are
independent. In reality, adjacent link travel times may have
strong correlations. As an alternative, the multistate nature
of travel times and their correlations between adjacent links
can be modeled by a Markov chain methodology. Ramezani
and Geroliminis [15] proposed a Markov model to estimate
arterial route TTD. The model used a Transition Probabil-
ity Matrix (TPM) constructed from simulated probe data
to capture the spatial correlations. However, the approach
conducted by Ramezani and Geroliminis [15] needs ample
real-time observations conditional on link states to estimate
the TPMs, which limits the application under urban areas
with missing data (no or few data available).

In this paper, TPMs of the Markov chain between
upstream and current links are calibrated from historical
travel time observations to alleviate the dependence on
the limited data sample. On this basis, the study develops
a Bayesian approach based on particle filter framework
for estimation of multistate link TTD by combining past
information of link TTD represented as an importance dis-
tribution with real-time travel time information represented
by a likelihood function.The importance distribution, used as
an initial solution for approximating the actual distribution,
is constructed by the summation of past TTDs conditional on
link states weighted by the estimated state probabilities. The
likelihood function is chosen as a normal distribution that
describes how likely a particle (i.e., sample) tends to follow
the real-time observations. As a result, the particles with high
similarity are retained and replicated to address the sparsity
problem of observations and then can be integrated into a
Bayesian algorithm for producing a multistate link TTD.

3. Data Collection and Characteristics

3.1. Data Introduction. Nanjing is the capital of Jiangsu
province, lying in the east of China, with over 8,236,000
inhabitants. The city has been rather well equipped with
ITS infrastructures for nearly 10 years. Radio Frequency
Identification Data (RFID) technology is applied in some
main arterials. Currently, more than 0.7 million vehicles,
including taxicabs and private vehicles, have been equipped
with RFID tags. There are over 7700 GPS-equipped taxicabs
to collect vehicle trajectory data as Floating Car Data (FCD).
In this paper, FCD are used to evaluate the performance
of the proposed approach, as well as RFID being chosen
to produce the ground truth distributions compared to the
corresponding estimated TTDs from FCD.

FCD vehicles generate a data record every 30 seconds
including the vehicle's position, timestamp, speed, and status
(with or without passengers). The process of matching the
reported locations to road network links from raw data
records has been accomplished by a widely used map-
matching approach [16]. Since this is not the focus of this
paper, we will not cover the detail here. Besides, the impact
of different data polling frequency on the required sample
size determination is not considered in this paper. In order
to eliminate the effects from vacant taxi driving intentionally

slowly, and searching for potential passengers, only FCD from
hired taxis are used. As to RFID, several arterials are installed
with both RFID sensors and video cameras at upstream
and downstream locations of signalized intersections. RFID
sensors scan the vehicle plate with high frequency of 20
milliseconds and mainly record plate number, timestamp,
and station number when tagged vehicles pass by the RFID
stations. More than 80% of vehicles on arterials are detected
by RFID sensors [3–5]. Hence RFID can almost obtain the
information of all the passing vehicles which constitutes a
full-sample data.

As shown in Figure 1, the case road link divided by
two consecutive RFID stations (i.e., the stations between
6004 and 6006) is around 1054-meter long. The road link
has eight-lanes double way from Caochangmen Street and
Qingliangmen Street all along and intersects withmany other
streets in between. The design speed of the selected studied
link is 60 km/h.

For the source of FCD, the 1-month (November 2011)
data for weekdays (Monday to Friday) between 7 a.m. and 8
p.m. were taken as the historical database. For both sources
(FCD and RFID), data from 7 a.m. to 8 p.m. on Dec. 1, 2011
(Thursday), were used for the comparison and validation.
Considering the word limit, we choose the south bound
traffic flow to analyze the travel time.

3.2. Characterization of Travel Times. In order to estimate
link travel time for individual floating car traversing a link,
a travel time allocation method proposed by Sanaullah et al.
[17] is applied here because of the simple calculation and
high estimation accuracy. Then, mean link travel time can
be calculated with an average of travel times for individual
floating cars in an analysis interval. Note that an observation
from FCD (RFID) is treated as the travel time in each
link experienced by a vehicle. Besides, the time interval for
estimation is set as 15 min to avoid unavailable observations.

To better understand the differences between the mean
value and the probability distribution for explaining the
trends or patterns of traffic states under interrupted flow,
Figure 2 shows the temporal variation of travel times and the
number of vehicles counted from both FCD and RFID in 15-
min intervals. Apparently, the development of themean travel
times from FCD and RFID is quite consistent. The mean
absolute percentage error (MAPE) is chosen for evaluating
the accuracy of the estimated travel time. It turns out that the
value of average MAPE is 8.46%, which appears to be quite
acceptable.

However, Figure 2(a) shows an intuitive understanding
on travel times, which can be clustered into two or more
components from the scattered observations in a certain
interval. This finding implies that the mean is not a good
tracking index for capturing the multistate features of link
travel times, once compared to TTD. On the other hand,
Figure 2(b) illustrates that the proportions of floating cars
are relatively low during time of day and that observations
from FCD largely distribute at the high-speed regime (nearly
between 25 and 50 km/h). These may likely result in inade-
quate sample to monitor the remaining travel time states. To
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Figure 1: Layout of the study link selected in Nanjing, Jiangsu province, China.
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Figure 2: Variability by a 15-min interval: (a) mean travel times and (b) number of vehicles.

better model multistate TTD, a Bayesian approach based on
particle filter framework is then introducedwith limited FCD
sample.

4. Methodology

The proposed solution framework, consisting of five major
parts, is outlined in Figure 3. The state identification is
presented first in this section, followed by a description of
how the states transfer between two adjacent links. After
that, the importance distribution is introduced to produce

historical travel time patterns as prior knowledge.The follow-
ing subsection presents the sampling strategy to generate a
certain number of high weighted particles. Finally, the Gibbs
sampling algorithm is applied to approximate the posterior
distribution of Gaussian mixture model (GMM).

4.1. State Identification. The multistate nature of travel times
on urban links is principally attributed to the road geometric
features (e.g., roadway alignment, link length, lane width, and
number of lanes), interaction among vehicles (e.g., weaving,
diverging, andmerging), and signal controls.With the results
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Figure 3: Link travel time distribution estimation framework. This figure is reproduced from a shorter version of this work presented at the
97th Annual Meeting of the Transportation Research Board [5].

of the interaction among these factors, four typical traffic
states that exhibit travel times on a link experienced by
vehicles are shown in Figure 4, and can be defined as follows:

(i) State 1 (nonstopped): vehicles traverse the whole link
without stopping.

(ii) State 2 (stopped): vehicles stop at the end of the link
for a red light.

(iii) State 3 (stopped with delay): vehicles traverse the
whole link with delays caused by the interference
among vehicles and signal control.

(iv) State 4 (stopped twice or more): vehicles have to
stop twice or more due to the overflow queue at the
signalized intersection.

In order to distinguish the heterogeneous traffic states,
intuitive traffic engineering rules are applied to quantify state
boundaries so each state represents the corresponding cluster
of travel times. Here the boundaries between two neighbor
states can be approximated as follows, respectively.

(i) The first boundary between state 1 and state 2 is
to judge whether vehicles pass the signalized link
without stopping.

Considering a free-flow traffic condition, the travel times
of vehicles traversing a signalized link directly depend on the
signal controls and their distribution appears to be bimodal
[1–5, 7], which features two clusters of travel times corre-
sponding to the states of nonstopped and stopped vehicles,
respectively. To achieve the state partitions, a two-component
mixed normal distribution, rather than the skewed mixture
models (e.g., the components are both lognormal distribu-
tions), is adopted to obtain the travel times in state 1 and state
2 individually as a tradeoff between computation complexity
and explanatory power [18]. Besides, the travel times between
02:00 a.m. and 04:00 a.m. are extracted from FCD for the
free-flow condition [19]. Hence, the first travel time boundary
(denoted as 𝑇𝑇𝑓), determined by the point of intersection
of two normal distributions [20], is stated mathematically
as
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Figure 4: Four typical travel time states on urban signalized links.

𝑇𝑇𝑓 = N (𝑇𝑇 | 𝜇𝑓,1, 𝜎𝑓,1) = N (𝑇𝑇 | 𝜇𝑓,2, 𝜎𝑓,2) ,
𝜇𝑓,1 < 𝑇𝑇𝑓 < 𝜇𝑓,2 (1)

where N(∗) is the normal distribution, 𝑇𝑇 is travel
time variable, 𝜇𝑓,1 and 𝜇𝑓,2 are the mean of the first and
second normal distribution, and 𝜎𝑓,1 and𝜎𝑓,2 are the standard
deviation of the first and second normal distribution.

(ii) The second boundary between state 2 and state 3
is to distinguish whether vehicles only experience
intersection signal delay.

Signal delay is the primary factor that influences travel
time patterns on an urban link [3]. Unfortunately, in most
cases, the signal control plans at intersections are generally
unknown. As an alternative, we use the red time for through
movement (denoted as 𝑇𝑇𝑟𝑒𝑑) as additional travel times to
judge whether vehicles stop at the end of the link. This
part of travel times is assumed to be only generated by
the signal control, since it makes a major contribution to
travel delay rather than traffic flow. Note that the means of𝜇𝑓,1 and 𝜇𝑓,2 for state 1 and state 2 are closely related to
the signal settings, and their difference between nonstopped
and stopped vehicles can be used to approximately estimate
the red time. Consequently, the second boundary by adding
the red time to free-flow travel time (denoted as TT𝑠𝑡𝑜𝑝) is
represented as

𝑇𝑇𝑠𝑡𝑜𝑝 = 𝑇𝑇𝑓 + 𝑇𝑇𝑟𝑒𝑑 = 𝑇𝑇𝑓 + 𝜇𝑓,2 − 𝜇𝑓,1 (2)

(iii) The last boundary is to judge whether vehicles expe-
rience oversaturated conditions.

Theoversaturated conditions on urban principal arterials,
characterized as extremely low speeds and extensive queu-
ing, is defended as level of service F [21]. In this case, a

residual queue is the most likely occurring at the signalized
intersection in one cycle time. Hence, the last boundary for
oversaturated conditions (denoted as TT𝑂𝐶) where vehicles
encounter two or more queues can be initially estimated by
link length and 30% of speed limit:

𝑇𝑇𝑜𝑐 = 𝐿0.3 × 𝑉𝑙𝑖𝑚𝑖𝑡 (3)

where L is the link length and V 𝑙𝑖𝑚𝑖𝑡 is the speed limit of
the arterial link.

4.2. State-Transition Function Modeling. This section adopts
work of Ramezani and Geroliminis [15] to represent the
spatial state transition between two adjacent links based
on Markov chain framework. The spatial state transition
exhibits how vehicles experience multiple traffic states on
route’s successive links whereas it differs from the traffic
congestion propagation. For example, a vehicle that passed
the upstream link without stopping would have a certain
probability of stopping on the downstream link, and it
would have another probability of not stopping on the
downstream link. This simple case illustrates that the travel
times on the current link are dependent on the upstream link
state.

In this paper, there are four traffic states constituting a
four by four TPM. The TPM 𝑃𝑛−1,𝑛(𝑡) between any pair of
successive links n-1 and n at time t is shown as follows:

𝑃𝑛−1,𝑛 (𝑡) = [[[[[

𝑝11 (𝑡) ⋅ ⋅ ⋅ 𝑝14 (𝑡)... d
...𝑝41 (𝑡) ⋅ ⋅ ⋅ 𝑝44 (𝑡)

]]]]]
4∑
𝑗=1

𝑝𝑖𝑗 (𝑡) = 1 for 𝑖 = 1, . . . , 4, 0 ≤ 𝑝𝑖𝑗 (𝑡) ≤ 1,
(4)
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where 𝑝𝑖𝑗(𝑡) denotes the transition probability from state i on
link n-1 to state j on link n at time t and can be expressed
mathematically as the corresponding observed frequencies:

𝑝𝑖𝑗 (𝑡) = 𝑃𝑟𝑜𝑏 {𝑆𝑛 (𝑡) = 𝑗 | 𝑆𝑛−1 (𝑡) = 𝑖} = 𝑋𝑖𝑗 (𝑡)∑4𝑘=1𝑋𝑖𝑘 (𝑡) (5)

where 𝑆𝑛(𝑡) = 𝑗 indicates that the state on link n at time t
is j and𝑋𝑖𝑗(𝑡) is the number of observations produced by the
same vehicles experiencing state i on link n-1 and state j on
link n at time t. Note that we adapt a relatively static TPM to
relax the constraint of limited real-time observations and use
the historical data during a 1-month period on workdays to
calibrate the TPM at each time t from 7 a.m. to 8 p.m.

Given a set of real-time observations on link n-1 at
time t, the state probability vector 𝜋𝑛−1(𝑡), consisting of the
probabilities of four states, can be estimated by

𝜋𝑛−1 (𝑡) = [𝜋1𝑛−1,𝑡 𝜋2𝑛−1,𝑡 . . . 𝜋4𝑛−1,𝑡]
= [ 𝑋1 (𝑡)∑4𝑘=1𝑋𝑘 (𝑡)

𝑋2 (𝑡)∑4𝑘=1𝑋𝑘 (𝑡) . . . 𝑋4 (𝑡)∑4𝑘=1𝑋𝑘 (𝑡)]
(6)

where 𝜋1𝑛−1,𝑡 is the probability of state 1 on link n-1 at time
t and𝑋𝑘(𝑡) is the number of observations of state k on link n-
1 at time t. Finally, combined with (4)∼(6), the current state
probabilities 𝜋𝑛(𝑡) on link n at time t are calculated as

𝜋𝑛 (𝑡) = [𝜋1𝑛,𝑡 𝜋2𝑛,𝑡 . . . 𝜋4𝑛,𝑡] = 𝜋𝑛−1 (𝑡) 𝑃𝑛−1,𝑛 (𝑡) (7)

4.3. ImportanceDistributionConstruction. A straightforward
approach for estimation of link TTD is to take advantage of
only real-time observations fromFCD.However, undermany
circumstances, it is very difficult to represent the potentially
multiple states with an incomplete collection of observations
due to the low penetration rate of floating cars. Consequently,
the chief challenge in our methodology is to construct
an importance distribution (also often referred to as the
proposal distribution) properly providing a high similarity
to the posterior distribution, from which a series of samples
with weights are randomly generated for the heterogeneous
traffic states. More importantly, the importance distribution
can be modified with the real-time observations to further
approximate the posterior distribution.

Herewe consider an importance distribution that consists
of four historical normal distributions. And each historical
normal distribution for the corresponding traffic state is
fitted by historical observations located in the same state
boundaries at time t. Combining with the estimated state
probability vector 𝜋𝑛(𝑡), the importance distribution 𝑝(𝑥𝑛,𝑡 |𝑥𝑛−1,𝑡) on link n incorporating the observation 𝑥𝑛−1,𝑡 on link
n-1 at time t can be adjusted as

𝑝 (𝑥𝑛,𝑡 | 𝑥𝑛−1,𝑡) = 4∑
𝑖=1

𝜋𝑖𝑛,𝑡N (𝑥𝑛,𝑡 | 𝜇𝑖𝑛,𝑡, 𝜎𝑖𝑛,𝑡) (8)

where 𝜇𝑖𝑛,𝑡 is the mean of historical normal distribution
for state i on link n at time t and 𝜎𝑖𝑛,𝑡 is the standard deviation
of historical normal distribution for state i on link n at time t.

4.4. Sampling Strategy Design. In this section, a sampling
strategy is developed from the concept of the particle filter
approach to generate a set of high weighted particles for
representing the heterogeneous traffic states. Each particle
refers to a travel time sample with a corresponding weight.
Here a general particle filter approach mainly consists of the
state update process showing a system evolving with time and
the measurement update process showing the relationship
between the system states and the system outputs at a certain
time. Finally, a posterior distribution can be represented by
a collection of weighted particles using the particle filter
approach. More details about this approach are given in the
work of Doucet et al. [22].

Similar to the particle filter approach, the proposed
sampling strategy comprises three components, that is, state
update, measurement update, and resampling scheme. First,
the importance distribution based on the spatial TPMs is
applied to produce the particles instead of using a temporal
state-transition model in the state update process. Then,
with the arrival of new observations, probability densities
as weights are updated by the likelihood function with
input of the particles and real-time observations. Note that,
in Figure 2(a), each observation from FCD has an error
distributed around the actual mean from RFID. More impor-
tantly, the means from FCD and RFID are quite close. If
we take the means from FCD as ground truth, then it is
reasonable to assume that errors between particles and the
mean of observations in 15-minute interval can be described
as a normal distribution. In this way, the smaller error
between a particle and the mean achieves the larger weight
assigned to the corresponding particle. Hence, the likelihood
function is represented by a zero-mean normal distribution
with a standard deviation of 50 seconds based on empirical
evaluation (i.e., N(0, 50)). Finally, a resampling procedure is
used to eliminate particles with low weights and concentrate
on particles with large weights. Residual, stratified, and sys-
tematic resampling are three common resampling schemes.
In this paper, systematic resampling is preferred to be easily
implemented since it aims to minimize the Monte Carlo
variation and save computational time.

To summarize, the sampling strategy is specified as
follows.

Step 1 (state update). Set the number of particles 𝑁 = 100
and generate N particles 𝑦𝑖𝑛,𝑡 with the weights 𝑤𝑖𝑛,𝑡 (the
weight refers to the probability density of the random sample)
according the importance distribution 𝑝(𝑥𝑛,𝑡 | 𝑥𝑛−1,𝑡) on link
n at time t:

𝑦𝑖𝑛,𝑡 ∼ 𝑝 (𝑥𝑛,𝑡 | 𝑥𝑛−1,𝑡) , 𝑖 ∈ [1,𝑁] (9)

Step 2 (measurement update).

(2.1) Calculate the mean ofM observations 𝑥𝑗𝑛,𝑡 from FCD
on link n at time t:

𝑧𝑡𝑚𝑒𝑎𝑛 = ∑𝑀𝑗 𝑥𝑗𝑛,𝑡𝑀 , 𝑗 ∈ [1,𝑀] (10)
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(2.2) Update the weights by likelihood function 𝑝𝑧:
𝑤𝑖𝑛,𝑡 = 𝑤𝑖𝑛,𝑡𝑝𝑧 (𝑦𝑖𝑛,𝑡 − 𝑧𝑡𝑚𝑒𝑎𝑛) (11)

Step 3 (resampling). Normalize the weights to ensure that
the sum of weights is equal to one. Thereafter, the systematic
resamplingmethod, similar to the roulette wheel strategy in a
basic genetic algorithm, is applied to retain and replicate the
particles with larger weights. For more details of the method
the reader can refer to [23].

4.5. Travel Time Distribution Estimation. As mentioned in
the literature review, travel times on urban links may have
multimodal property which are associated with the heteroge-
neous traffic states. Hence, Gaussian mixture model (GMM),
from which the flexible fitting structure and explanatory
power can be provided, is preferred to fit multistate link
TTD.

Specifically, a GMM for travel time with finite K compo-
nents can be formulated as follows:

𝑝 (𝑥 | Θ) = 𝐾∑
𝑘=1

𝜋𝑘N (𝑥 | 𝜇𝑘, 𝜎2𝑘) (12)

where 𝜋𝑘 is the mixture coefficient for the 𝑘𝑡ℎ normal
distribution such that 𝜋𝑘 ≥ 0 and ∑𝐾𝑘=1 𝜋𝑘 = 1. 𝜇𝑘 and 𝜎2𝑘 are
themean and variance for the𝑘𝑡ℎ normal distribution, respec-
tively.Θ = {(𝜋1, 𝜋2, . . . , 𝜋𝐾), (𝜇1, 𝜇2, . . . , 𝜇𝐾), (𝜎21 , 𝜎22 , . . . , 𝜎2𝐾)}
is the set of GMMparameters. 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑁) is a vector
of observations. In this paper, the number of components in
GMM ranges from 𝐾 = 2 to 𝐾 = 4 in terms of four states in
total.

To estimate the GMM parameters, EM algorithm and
MCMC simulation are two commonly used methods. How-
ever, the EM algorithm based on the asymptotic theory needs
samples, and it may result in a local maximum problem
[24]. Unlike the EM algorithm, the MCMC simulation as a
goldenmethod for Bayesian inference can provide a posterior
distribution of the parameters in the proposed model, which
incorporates prior knowledge with smaller number of sample
size in an iterative sampling procedure [25]. Such a sam-
pling process would repeat many times until the estimated
parameters tend to converge and produces the posterior
distribution.

In Bayesian inference, the posterior distribution 𝑝(Θ | 𝑥)
for GMM can be expressed in terms of the prior distribution𝑓(Θ) and likelihood function 𝐿𝑥(𝑥 | Θ).

𝑝 (Θ | 𝑥) = 𝐿𝑥 (𝑥 | Θ) 𝑓 (Θ)𝑓 (𝑥) ∝ 𝐿𝑥 (𝑥 | Θ) 𝑓 (Θ) (13)

𝐿𝑥 (𝑥 | Θ) = 𝑁∏
𝑖=1

𝐾∑
𝑘=1

𝜋𝑘N (𝑥𝑖 | 𝜇𝑘, 𝜎2𝑘) (14)

𝑓 (Θ) = 𝐾∏
𝑘=1

𝑝 (𝜇𝑘 | 𝜎2𝑘 , 𝜋𝑘) 𝑝 (𝜎2𝑘 | 𝜋𝑘) 𝑝 (𝜋𝑘) (15)

where according to the conjugacy property that describing
the posterior distribution has the same parametric form as
the prior distribution, the priors for distributions {𝜇, 𝜎, 𝜋} are
assumed to be as follows [24]:

𝜇𝑘 | 𝜎2𝑘 , 𝜋𝑘 ∼ Normal(𝑏, 𝜎2𝑘𝜏 ) (16)

1𝜎2
𝑘

| 𝜋𝑘 ∼ Gamma (𝛼, 𝛽) (17)

𝜋𝑘 ∼ Dirichlet( 1𝐾, 1𝐾 . . . , 1𝐾) (18)

where parameters {𝑏, 𝜏, 𝛼, 𝛽} are taken as known
‘hyperparameters’. In the initialization of the MCMC
simulation, the hyperparameters can be set to {𝑏 = 150, 𝜏 =0.1, 𝛼 = 1, 𝛽 = 2}. Finally, the pseudocode of the proposed
MCMCmethod using Gibbs sampling algorithm is presented
in Table 1.

Another important point is that the number of compo-
nents inGMM is unknown. An information criterion, known
as Bayesian Inference Criterion (BIC) for the goodness of
fit assessment, is chosen to find the optimal number of
components [26]. In use of the BIC, a smaller value of BIC
indicates a better fitting model. Specifically, the BIC taking
into account the log likelihood, the number of estimated
parameters d, and sample size N is defined as

𝐵𝐼𝐶 (𝐾) = −2 ln 𝐿𝑥 (𝑥 | Θ) + 𝑑 ln𝑁 (19)

5. Case Study and Verification

5.1. Multistate Travel Time Histograms. Before utilizing the
proposed method for estimation of multistate link TTD, the
simple histogram can exhibit intuitive information on the
TTD. Figure 5 shows two or more clusters in travel time
histograms for two different traffic conditions.

During off-peak period, Figure 5(a) gives a distinctly
bimodal pattern for the observations from RFID, and most
of the observations fall into state 1 and state 3. Conversely,
during peak period, as shown in Figure 5(b), state 4 gathering
over 80% of the observations plays a dominant role in the
congested situation. In terms of the FCD, one (Figure 5(a))
is very small number of observations in state 1 and state 2
whereas there are no observations in state 3, and the other
(Figure 5(b)) is the observations largely distributed beyond
the two peaks in state 3 and state 4, which represent themajor
clusters of travel times.

Overall, this simple example implies that the issues of
sparse and incomplete observations from FCD may result
in irregular, unsmooth TTDs. To improve the estimation of
link TTDs, it is suggested that historical information on prior
travel time patterns is strongly needed.

5.2. Estimation of Link TTD. For each number of com-
ponents, the sampling procedure was run in a total of
20,000 iterations and the first 10,000 iterationswere discarded
as burn-in, while the remaining samples were used for
inferencing the posterior distribution. Convergence of the
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Table 1: Gibbs sampling algorithm for a K component GMM combining with BIC.

Input: N particles (i.e. 𝑥1, 𝑥2, . . . , 𝑥𝑁) with large weights selected by sampling strategy, K
Output: parameters Θ = {(𝜋1, 𝜋2, . . . , 𝜋𝐾), (𝜇1, 𝜇2, . . . , 𝜇𝐾), (𝜎21 , 𝜎22 , . . . , 𝜎2𝐾)}, 𝐵𝐼𝐶(𝐾)
Step 1. Initialization

Determine hyperparameters: 𝑏, 𝜏, 𝛼, 𝛽
Set iteration 𝑟 = 0
Set 𝑒(𝑟)
𝑘
= 1/𝐾, draw 𝜋(𝑟)

𝑘
∼ Dirichlet(𝑒(𝑟)1 , ⋅ ⋅ ⋅ , 𝑒(𝑟)𝐾 )

Draw 𝜇(𝑟)
𝑘
∼ Normal(𝑏(𝑟)

𝑘
, 𝜎2(𝑟)
𝑘

/𝜏(𝑟)
𝑘
)

Draw 1/𝜎2(𝑟)
𝑘

∼ Gamma(𝛼(𝑟)
𝑘
, 𝛽(𝑟)
𝑘
)

Step 2. Gibbs sampling
For r = 1 to R

Update the mixing coefficients 𝜋(𝑟)
𝑘
:

Draw 𝜋(𝑟)
𝑘
∼ Dirichlet(𝑒(𝑟)1 + 𝐸(𝑟)1 , ⋅ ⋅ ⋅ , 𝑒(𝑟)𝐾 + 𝐸(𝑟)𝐾 ), where, 𝐸(𝑟)𝐾 is the effective

number of particles assigned to component K, and can be calculated by

𝐸(𝑟)
𝑘
= 𝑁∑
𝑖=1

𝜋(𝑟−1)𝑘 𝑁(𝑥𝑖 | 𝜇(𝑟−1)𝑘 , 𝜎2(𝑟−1)𝑘 )
∑𝐾𝑘=1 𝜋(𝑟−1)𝑘 𝑁(𝑥𝑖 | 𝜇(𝑟−1)𝑘 , 𝜎2(𝑟−1)

𝑘
)

For k = 1 to K
Update the variance 𝜎2(𝑟)

𝑘
:

Draw 1/𝜎2(𝑟)
𝑘

∼ Gamma(𝛼(𝑟)
𝑘
, 𝛽(𝑟)
𝑘
), where

𝛼(𝑟)
𝑘
= 𝛼(𝑟−1)
𝑘

+ 𝐸(𝑟)
𝑘2

𝛽(𝑟)
𝑘
= 𝛽(𝑟−1)
𝑘

+ 12 (
𝑁∑
𝑖=1

(𝑥𝑖 − 𝑥𝑘)2 + (𝑏(𝑟−1)
𝑘

− 𝑥𝑘)2 ⋅ 𝐸(𝑟)𝑘 ⋅ 𝜏(𝑟−1)
𝑘𝐸(𝑟)

𝑘
+ 𝜏(𝑟−1)
𝑘

)
Update the mean 𝜇(𝑟)

𝑘
:

Draw 𝜇(𝑟)
𝑘
∼ Normal(𝑏(𝑟)

𝑘
, 𝜎(𝑟)
𝑘
/𝜏(𝑟)
𝑘
), where

𝑏(𝑟)
𝑘
= 𝜏(𝑟−1)
𝑘

⋅ 𝑏(𝑟−1)
𝑘

+ 𝐸(𝑟)
𝑘
𝑥𝑘𝜏(𝑟−1)

𝑘
+ 𝑁(𝑟)
𝑘𝜏(𝑟)

𝑘
= 𝜏(𝑟−1)
𝑘

+ 𝐸(𝑟)
𝑘

End for
End for

Step 3. BIC calculation
Calculate the BIC for a K component GMM using Eq. (19)

Note: we first execute the sampling with increasing number of components from𝐾 = 2 to𝐾 = 4.
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Figure 5: Travel time histograms of study link on Dec. 1, 2011 (Thursday).

estimated parameters was monitored by the trace plots of the
generated sample values, the model log likelihood, and the
autocorrelations [26].

To evaluate the performance of the proposedmethod, the
Hellinger distance (HD) and Kolmogorov-Smirnov (KS) test

are employed to assess the similarity between the estimated
distribution from FCD and the empirical (actual) one from
RFID. For discrete distributions, the HD between the esti-
mated distribution TTD𝑒𝑠𝑡 and the empirical one TTD𝑒𝑚𝑝 is
defined as follows [26]:



10 Journal of Advanced Transportation

𝐻(TTD𝑒𝑠𝑡,TTD𝑒𝑚𝑝)
= 1√2√∑𝑖=1 (√𝑓𝑒𝑠𝑡 (𝑥𝑖) − √𝑓𝑒𝑚𝑝 (𝑥𝑖))

2 (20)

where 𝑓𝑒𝑠𝑡(𝑖) and 𝑓𝑒𝑚𝑝(𝑖) are the estimated and observed
probabilities for an observation 𝑥𝑖 from RFID. Besides, the
HD satisfies two requirements in (21).

𝐻(TTD𝑒𝑠𝑡,TTD𝑒𝑚𝑝) = 𝐻(TTD𝑒𝑚𝑝,TTD𝑒𝑠𝑡) ,
0 ≤ 𝐻 (TTD𝑒𝑠𝑡,TTD𝑒𝑚𝑝) ≤ 1 (21)

It is indicated that HD has the nature of symmetry and
nonnegativity. Furthermore, if 𝐻(TTD𝑒𝑠𝑡,TTD𝑒𝑚𝑝) = 0,
the two distributions will be close to each other, whereas𝐻(TTD𝑒𝑠𝑡,TTD𝑒𝑚𝑝) = 1 means that there exists the most
difference between distributions.

The KS test is a common nonparametric test used to test
if the estimated distribution passes the null hypothesis that
the observations are distributed according to the estimated
distribution. A larger p value provided from the test indicates
a better goodness of fit. The estimated distribution is rejected
when p value is smaller than 0.05 at a 95% confidence level.

Figure 6 shows a comparison of the estimated TTD
and the empirical one. It indicates that if the importance
distribution is not accurate enough as shown in Figure 6(a),
the observations from FCD imply that there is no data
in between the two peaks, and then Gaussian likelihood
function tends to pull the posterior distribution in the right
direction. Besides, the results of link TTD estimation show
the advantage of the proposed approach with few data in
terms of the calibration of TPMs from historical travel times.

If the importance distribution is quite accurate, as shown
in Figure 6(b), however, the posterior distribution is close to
the empirical one, the Bayesian posterior distribution says
that some data with high probabilities are missing in the first
peak (around 185 s). If we observe the travel time histogram
at a.m. peak periods in Figure 5(b), eight observations from
FCD located in between two major components from RFID,
there should not be such an obvious gap between state 3 and
state 4 under congested situation. Besides, the observations
nearby a mean of 210 seconds in the Gaussian likelihood
function will be assigned larger weights. Altogether, with the
Bayesian update, the posterior distribution that incorporates
information not only from the prior travel time pattern, but
also from the real-time data, may provide a more convincing
result.

Table 2 summarizes the model parameters and perfor-
mance results. It can be seen that the GMM with three com-
ponents provides a superior fit for empirical data during peak
hours. This could be explained by the underlying situations
that present two kinds of state combinations, that is, state 1 to
state 3, and state 2 to state 4, while the larger weight implies
the corresponding state in a state combination may have a
leading impact on the whole link traffic conditions. These
findings assist with insight into the heterogeneity in travel
times. Moreover, the performance results show that of all 52
periods used for the KS test, only nine of them fail to pass the

KS test, which help confirm the statistical superiority of the
proposed method.

5.3. Effect of Floating Car Percentages on the Proposed
Approach. To examine the robust of the proposed method,
six different percentages of floating cars, i.e., floating cars% =
0%, 5%, 10%, 20%, 50%, and 100%, are conducted as an input
of estimating the link TTDs. For each percentage of floating
cars, the sampling procedure was run 100 times to randomly
select the corresponding samples from observations and
calculate the average values of HD and percentages of passing
KS test in each 15-min interval. In particular, if the number
of samples is zero, we use an alternative method with the
steady-state probabilities and the means of historical travel
times instead of the estimated state probabilities in (7) and
the means of real-time observations in likelihood function.

According to the irreducible and ergodic properties of the
Markov chain, the steady-state TPMΠ𝑛(𝑡) on link n at time t
can be defined as follows [27]:

Π𝑛 (𝑡) = lim
𝑟→∞

𝑃𝑟𝑛,𝑛−1 (𝑡) (22)

where r is the number of steps. When r is big enough, each
row ofΠ𝑛(𝑡)will all reach steady-state probabilities regardless
of whatever the state probabilities on link n-1 are. Figure 7
shows the results of average HD and KS test for different
percentages of floating cars during time of day.

It can be observed that, with the percentage of floating
cars decreasing, the main trend of the average HD increases;
on the contrary, the percentage of passing KS test in general
decreases. Especially when the number of samples is zero, the
performance of the alternative method (i.e., the average HD
largely varying between 0.1 and 0.3 while the percentage of
passing KS test mainly ranging from 70% to 90%) is superior
to the proposedmethodwith sample size less than five, which
mainly generates the worst result. This is likely due to the
random sampling resulting in higher travel time variability
for estimation input, whereas the alternative method only
depending on the historical travel time information is not
sensitive to the input data.

Overall, the results confirm that the proposed method
still performs well with small sample size. For the worst
condition, i.e., floating cars% = 0%, the alternative method
is preferred in terms of the estimation performance.

6. Conclusions

This paper presents a Bayesian approach based on particle
filter framework to estimate link TTDs using the limited
observations and historical data set from FCD. The main
objective of the approach is to produce the multistate TTDs
with the low penetrate rate of floating cars. Unlike previ-
ous studies that require a complete data in modeling the
multistate TTDs, the proposed approach uses less observa-
tions to update the importance distribution. Concisely, the
importance distribution is regarded as prior knowledge and
provides past travel time patterns. On the other hand, limited
observations are integrated into the particle filter framework
and make the estimated TTDs further close to the empirical



Journal of Advanced Transportation 11

50 100 150 200 250
Travel time (s)

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

Pr
ob

ab
ili

ty

Empirical
Importance distribution
Posterior distribution

Empirical
Importance distribution
Posterior distribution

50 100 150 200
Travel time (s)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Cu
m

ul
at

iv
e p

ro
ba

bi
lit

y

Importance distribution: HD=0.22, and
0.54∗N(84.25,4.76)+0.23∗N(114.47,17.35)
+0.23∗N(182.89,17.14)

Posterior distribution: HD=0.13, and
0.72∗N(84.36,11.69)+0.28∗N(182.28,8.11)

Importance distribution: 
p-value < 0.0001

Posterior distribution: 
p-value = 0.1780

KS test at a 5% significance level

TTf
TTstop TTOC

(a)

50 100 150 200 250 300 350
Travel time (s)

0

0.005

0.01

0.015

0.02

0.025

0.03

Pr
ob

ab
ili

ty

150 200 250 300 350
Travel time (s)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Cu
m

ul
at

iv
e p

ro
ba

bi
lit

y

Importance distribution: HD=0.07, and
0.18∗N(182.78,17.34)+0.82∗N(276.22,16.01)

Posterior distribution: HD=0.06, and
0.24∗N(184.66,14.59)+0.76∗N(275.56,14.52)

Importance distribution: 
p-value = 0.5578

Posterior distribution: 
p-value = 0.0943

KS test at a 5% significance level

Empirical
Importance distribution
Posterior distribution

Empirical
Importance distribution
Posterior distribution

TTf TTstop

TTOC

(b)

Figure 6: Comparison of the estimated TTD from FCD and the empirical TTD from RFID for the periods of (a) 07:00-07:15 a.m. and (b)
08:30-08:45 a.m.
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Figure 7: The results comparisons for different percentages of floating cars. This figure is reproduced from a shorter version of this work
presented at the 97th Annual Meeting of the Transportation Research Board [5].

distributions by using a sampling strategy. Finally, the result
is a posterior distribution incorporating historical trends and
the real-time travel time information as well.

The results of the case study demonstrate that the pro-
posed approach produces the posterior distribution agreeing
well with the empirical distribution. Besides, with different
percentages of floating cars, our proposed approach performs
equally well, even under condition with no data available.
This suggests that, when the number of floating car sample
size is less than five, the approach with the steady-state
probabilities helps provide a promising result.

Nevertheless, this paper has some limitations. First, we
used the historical observations as an a priori estimation.
Information from estimated TTD in previous period should
be integrated into the particle filter framework to update
the parameters of the current importance distribution and
provide a better a priori estimation. Second, the spatial TPMs
of theMarkov chain did not consider the temporal correlation
between link travel times. A Markov process with a short
memory taking into account the effect of travel time states at
the preceding time interval on transition intensities may lead
to better TPMs estimates. Finally, a density-based clustering
method such as DBSCAN clustering or other DBSCAN
variants should be developed to cluster link travel times for
representing heterogeneous traffic states so that the ability of
the proposed approach could be generalized to a large range
of applications from urban signalized arterials to freeway

continuous traffic instead of using traffic engineering rules.
In addition, the effectiveness of the proposed approach still
needs a further verification by conducting more case studies
in other road links with different sources of trajectory data
(e.g., smartphone and the ride service platform of Uber or
DiDi Chuxing). These will be our future works. Last but not
least, we should state that the work from this paper is an
extended version of the earlier work presented at the 97th
Annual Meeting of the TRB, Washington, DC, January 2018
[5]. For more details, it can be found in [5].
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