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Summary: A methodology for investigating the micromechanical fatigue behaviour of
unidirectional composites based on fibre-matrix debonding is developed. The fatigue dam-
age mechanism is based on the progressive failure of fibres caused by debond crack tip stress
fields resulting from fibre breaks in previous load cycles. The methodology combines an
analytical model to describe the debond crack initiation and growth with a numerical finite
element model to calculate resulting stresses. The methodology is applied on a two-fibre
model composite. It can qualitatively predict the stress development within the simulation
domain as well as the mechanism of a debond crack tip stress field triggering a break in a
neighbouring fibre. Both is consistent with microscale observations in the literature.

1 Introduction

Modern-day wind turbines are equipped with increasingly longer rotor blades. As
these blades consist dominantly of composite materials, understanding their mechanical
behaviour, especially the fatigue mechanisms, will be crucial for an optimised blade design.

The fatigue properties of unidirectional fibre-reinforced plastics (UD-FRPs) are usually
determined utilising empirical design approaches requiring time-consuming experiments
on the coupon level [1]. Additionally, these methods underestimate the actual fatigue
performance of the material itself since side effects (like failure initiating in the tab re-
gion) lead to a premature failure causing a lower number of cycles to failure than the
true fatigue life [2]. A model describing the basic microscopic mechanisms of fatigue in
UD-FRPs can help in better understanding the development of fatigue damage zones in
this material class and eventually lead to new composite materials with superior fatigue
properties. Thus, in the scope of this work, a combined analytical-numerical approach
will be proposed to effectively predict the microscale fatigue evolution. The model will
be applied on a common material combination of E-glass fibres and epoxy resin used in
wind applications. The numerical finite element (FE) simulations are carried out using
Abaqus FEA by Dassault Systèmes Simulia Corp. [3].
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2 Methodology for Predicting the Fatigue Damage Evolution

2.1 Overview of the Methodology

The methodology presented in this work builds upon an analytical model introduced
by Sørensen [4] and further developed by Sørensen and Goutianos [5] and Sørensen et al.
[6]. Conceptually, the model is built upon the microscale fatigue damage evolution docu-
mented by Jespersen and Mikkelsen [7]. The analytical model can be used to predict the
growth rate of damage zones in UD-FRPs caused by cyclic loading. The main underlying
mechanism is that, during first loading, a break in a single fibre leads to a debonding of the
fibre and the matrix in a region of certain length around the fibre break. This debonding
forms two circular debond crack tips (one in either direction of the fibre break) creating
a stress concentration field (in linear elastic fracture mechanics modelled as a singular
stress field, denoted the K-field). The primary stress field from the fibre break as well as
the secondary stress fields form the debond crack tips result in three distinct stress peaks
in a neighbouring fibre of a broken fibre as shown by van den Heufel, Peijs and Young
[8]. The debond crack growth during cyclic loading is driven by the mutual influence of
forward and backward slip in the debonded interface region and the resulting change in
the stress intensity factor ∆K. The details of this mechanism shall not be explained in
detail herein. Therefore, the reader is referred to [5]. As the debond crack tip progresses,
so does the K-field. The K-field can ultimately reach a microscopic defect in a neigh-
bouring fibre and thus trigger a secondary fibre break. This procedure repeats for further
cyclic loading. The debond crack tip of the broken fibre is assumed to eventually reach
a constant length where there is no more debond crack growth (∆K = 0). If all broken
fibres in the composite reach that saturated state, a fatigue limit of the composite exists
where the growth of the fatigue damage zone comes to a rest. Conversely, if at least
always one broken fibre triggers a break in a neighbouring fibre, the fatigue damage zone
will grow until the remaining fibres cannot withstand the macroscopic force any more and
ultimate failure occurs.

The workflow of the proposed methodology is depicted in Figure 2. For simplicity, the
workflow will be explained in the following sections using a two-fibre composite as shown
in Figure 1. The two-fibre composite consists of two equivalent fibres of radius r. The
distance between the surfaces of these two fibres is denoted as inter-fibre distance dif .
The model domain is assumed to be long compared to the fibre radius (lmodel ≫ r). The
two fibres are surrounded by a thin fibre-matrix interphase layer of finite thickness tint.
A fibre coordinate system will be used coherently throughout this work with the fibres
being oriented along the z-direction and the fibres being stacked along the y-direction.

Starting from the mathematical formulation of the previous works, the following sec-
tions will explain the undertaken steps to adapt the analytical model eventually leading
to the newly proposed hybrid analytical-numerical model. The steps from Figure 2 will
be given in brackets in the section headings for better understanding.

2.2 Analytical Model for Debond Initiation and Growth (5, 7b, 10)

First Loading and Debond Initiation The two-fibre composite is loaded for the first
time up to the maximum applied macroscopic strain ε̄max. During this step, Fibre 1 fails
(due to a microscopic defect). Fibre 2 is assumed to not fail in the near proximity of
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Figure 1: Two-fibre composite after many cycles. Fibre 1 (blue) is assumed to already
have broken in the first cycle. Fibre 2 (grey) breaks after many cycles caused by the

stress concentration field of the debond crack tip of Fibre 1. Adapted from [5].

Fibre 1 in the first loading cycle. It is assumed that Fibre 1 fails early in this loading
step. After Fibre 1 has broken, a debond crack will form at the fibre-matrix interface and
grow with increasing strain ε̄. During that loading, the debonded fibre exhibits a slip in
the positive z-direction (forward slip) resulting in the frictional sliding shear stress τs that
will act in the opposite direction of the forward slip direction. For the first loading, the
shear stress is a material constant and denoted as τ 0s . Once ε̄ reaches ε̄max, the debond
reaches the initial length after the first cycle, denoted as l0d. Based on [6], the initial
debond length l0d at the maximum strain ε̄ = ε̄max can be calculated as follows:

l0d
r
=

Ef

2τ 0s

(
ε̄max −

σ̄i

Ec

)
, (1)

with r as fibre radius, Ef as fibre Young’s modulus, τ 0s as interfacial shear stress at first
loading, ε̄max as maximum applied macroscopic strain, σ̄i as debond initiation stress and
Ec as the composite Young’s modulus given by the rule of mixtures. The debond initiation
stress defines the macroscopic stress at which a debond crack growth can initiate. It is
introduced based on [4]:

σ̄i

Ec

=
(1− Vf )Em

Ec

∆εT + 2

√
(1− Vf )Em

Ec

(
Gi

c

Efr

)
, (2)

with Em as the matrix Young’s modulus, ∆εT as the thermal mismatch strain and Gi
c as

the interfacial fracture energy of the debond crack tip. ∆εT is a measure for the difference
in thermal expansion along the fibre direction of fibres and the matrix.

As can be seen from Equation 1 and Equation 2, the initial debond length is mainly
influenced by the interfacial properties τ 0s and Gi

c and the thermal mismatch strain ∆εT .

Subsequent Loading and Debond Growth After the first load cycle, the two-fibre
composite is unloaded to the minimum applied macroscopic strain ε̄min and subsequently
loaded cyclically. ε̄min can be defined by convention using the R-ratio R = σ̄min/σ̄max =
ε̄min/ε̄max for linear elastic materials. For simplicity of this first approach, it is assumed
that the critical event of a debond crack tip triggering a fibre break in a neighbouring
fibre happens at maximum applied strain under forward slip. The main difference between
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1.
2.
3.
4.
5.
6.
7.

a)
b)
c)

d)
8.
9.

a)
b)

10.
11.

define the simulation domain
discretise the simulation domain (meshing)
define the material properties for fibre, matrix and intact interface
set the thermal prestress
calculate the maximum debond length (saturation length)

set the first fibre to be broken
initiate the fibre break and debond for all broken fibres

initiate a break in the current fibre
calculate the debond length for the current fibre
calculate the material properties for the debonded region for the

current fibre
repeat for all broken fibres

run the finite element simulation
evaluate the stress state for all fibres

evaluate if the current fibre broke, if yes: set this fibre to be broken
repeat for all fibres

calculate the next increment size and increase the number of total cycles
repeat until all fibres have broken or all fibre debonds are saturated

Figure 2: Flowchart of the methodology. Steps associated with the numerical model are
highlighted in blue. Steps associated with the analytical model are highlighted in grey.

loading for the first time and loading after many cycles arises from an additional sticking
effect near the debond crack tip [5]. In the scope of this work, this additional sticking
effect will not be explicitly modelled in subsequent loading cycles. Nevertheless, due to the
way of how the behaviour of the debonded interface will be implemented in the FE model,
a sticking effect can be incorporated in future investigations. With these prerequisites,
the analytical model for first loading has to be adapted by the cycle-dependent variables.
Referring to [6], the interfacial shear stress τs decreases during cyclic loading due to a
decreasing surface roughness (wearing effect). During first loading, τs = τ 0s holds as
described earlier. After many load cycles, the interfacial shear stress reaches a constant
value τs = τ cs . The transition from τ 0s to τ cs is described by a simple decay law [6]:

τs(N ) =

{
(τ 0s − τ cs )

(
1−

(
N
Nc

)n)
+ τ cs for N < Nc

τ cs for N ≥ Nc

, (3)

with N as the number of cycles since the fibre broke, Nc as the number of cycles to reach
τ cs and n as a decay exponent. Here, it has to be mentioned that each fibre is assigned
its own cycle count after fibre break which consequently is different from the total cycle
count N of the entire composite (N ̸= N). N = 0 for the cycle in which the fibre broke.

Equation 1 can be extended to calculate the current debond length ld(N ) based on the
current shear stress τs(N ) [6]:

ld(N )

r
=

Ef

2τ 0s

(
ε̄max

2

(
(1 +R) + (1−R)

τ 0s
τs(N )

)
− σ̄i

Ec

)
. (4)

Comparing Equation 4 with Equation 1, it becomes obvious that Equation 4 reduces
to Equation 1 for τs(N ) = τ 0s . It follows, that as τs decreases, ld increases until ld reaches
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the saturated debond length lcd when τs = τ cs . If fibre failure has not occured in Fibre 2,
the fatigue damage is stable.

2.3 Adapted Cohesive Law for Debonded Interface (7c)

It has been shown in subsection 2.2 that the interface region between the fibres and
the matrix is crucial for the microscopic failure mechanisms. Therefore, a precise way of
numerically modelling the constitutive response of this region is needed while keeping the
computational costs low due to the cyclic nature of the problem. Therefore, a traction-
separation law for cohesive elements is used to describe the material behaviour in the
bonded and debonded interface region. This is numerically less expensive than modelling
a discrete contact with friction in the debonded region as has been done in the appendix
of [5].

It is assumed that the properties of the bonded region do not change during a single
cycle. Accordingly, the bonded region is modelled using a single thin layer of hexahedral
cohesive elements without damage. The linear elastic response of the cohesive elements is
defined by the stiffness vector K = (Kn, Ks, Kt)

⊤ consisting of the normal component Kn

and the shear components in two directions Ks and Kt. To simulate a perfect bonding,
displacement continuity at the interface is achieved by setting all components of the
stiffness vector to a high value K = 1× 108 MPa.

The debonded region exhibits a combination of sticking and slipping friction. There-
fore, the cohesive element should behave linear elastically until a maximum shear traction
t0 is reached at the corresponding separation δ0. If the separation δ further increases by
the increment ∆δ0, the shear traction t should remain constant. This behaviour is depicted
in Figure 3a. The slope of the linear elastic regime (the sticking region) can be modelled
by the shear components of K. As the cohesive element should be quasi-indeformable
in normal direction, the normal component of K is set to a high value of 1 × 108 MPa.
The damage initiation is handled by a quadratic nominal stress criterion as described in
[3]. Herein, the traction values for onset of damage t0s and t0t are set according to the
interface behaviour, t0n is set to a high value of 1000 MPa. This way, the influence of the
normal traction on the quadratic nominal stress criterion can be reduced and thus the
shear tractions dominantly determine the interface behaviour.

After the onset of damage, the constant traction behaviour can be modelled by intro-
ducing a dependency between the damage variable D and the separation ∆δ:

D = 1− δ0

δ0 +∆δ
, with δ0 +∆δ = δ. (5)

An exemplary relation between ∆δ and D is depicted in Figure 3b.
Modelling perfect bonding in the bonded interface region and a capping shear traction

in the debonded interface region together with the sharp transition from one region to
another caused by assigning different materials to neighbouring cohesive elements allows
for a quasi-singular (in the scope of an FE simulation) crack tip stress field.

2.4 Hybrid Analytical-Numerical Model (all steps)

The previous sections described the prerequisites for implementing the fatigue mecha-
nism for UD-FRPs in a hybrid analytical-numerical model. This section will again refer
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(a) Linear elastic and subsequent constant
traction behaviour.

(b) Dependency of the damage variable D on
the separation ∆δ.

Figure 3: Bi-linear traction-separation material model for debonded interface regions.

to Figure 2 but focus on the detailed numerical implementation of the necessary steps to
summarise the entire model workflow in detail.

Definition and Discretisation of the Simulation Domain (1, 2) The two-fibre
composite from Figure 1 is used as a baseline for the simulation domain to explain the
workflow. However, if the two-fibre composite is to be modelled using finite elements while
maintaining a relevant fibre volume fraction of Vf > 0.5, the distance between the outer
diameter of the fibre and the outer boundary of the simulation domain would become
small resulting in edge effects. Therefore, a concentric frame of fibre material is added
around the matrix material mimicking the stiffening effect of the neighbouring fibres in a
real composite. The dimensions of this so-called fibre frame can be adjusted so that the
two-fibre model has the desired fibre volume fraction leading to a simplified model with
comparable mechanical conditions as in a real composite.

To facilitate the symmetrical problem, only half the problem domain is used as simula-
tion domain. The two-fibre composite domain is meshed using linear, reduced integration,
hexahedral elements with enhanced hourglass control (C3D8R). The interface regions be-
tween the fibre and the matrix are meshed using hexahedral cohesive elements (COH3D8).
The element size along the z-direction is set equal for every element. The simulation do-
main is depicted in Figure 4.

Definition of the Cycle-Independent Material Properties (3) In this first investi-
gation, the cycle-independent materials (fibre, matrix and bonded interface do not change
their material behaviour between cycles) are modelled using linear elastic relations. As
a finite element framework is used, the material models can later easily be exchanged by
more advanced constitutive relations. To allow for fibre breakage, a failure criterion for
the fibres has to be determined additionally. Therefore, the fibre elements are assigned
a strength in fibre direction σult. As will be shown later, the fibre breakage is judged
by postprocessing the results of a linear elastic simulation. Consequently, the strength
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properties are defined outside of the FE model. As fibres fail from local defects, the ma-
terial properties of the fibres have to locally vary following a statistical distribution. Only
that way, a K-field can trigger a break in a neighbouring fibre. Assuming the fibres fail
from a surface defect [6] and that it is insignificant, where that defect is located at the
circumference of the fibre, all elements of a cross section of the fibre are assigned the same
material properties. This leads to “discs” of same Young’s modulus and same strength
as shown in Figure 4b. The Young’s modulus of the fibres is assumed to follow a normal
distribution and the strength is assumed to follow a two-parameter Weibull distribution.
Whereas the normal distribution does not show a length-scale dependency, the Weibull
distribution does. Therefore, if the strength distribution is determined experimentally on
specimens with a reference length Lref , a strength drawn from this distribution has to be
scaled to the size of the single material element disc of the FE simulation. In this work,
the characteristic strength of each element is scaled according to the element length along
the z-direction using the following relation [9]:

σult(L) = σult(Lref )

(
Lref

L

) 1
m

, (6)

with L as the scaled length, Lref as the reference length, σult(L) as the scaled strength of
the element, σult(Lref ) as the reference strength and m as the Weibull modulus.

For each disc, a Young’s modulus is drawn as a sample from the normal distribution
and a strength is drawn as a sample from the Weibull distribution and scaled according
to Equation 6. The number of material discs is determined by the number of elements
along the z-direction in the simulation domain (in Figure 4b: 137). The fibre frame is
not subjected to statistically varying material parameters as fibre fracture is prevented in
this region. Accordingly, the fibre frame is assigned a mean linear-elastic fibre material
with no failure strength. The following material parameters have to be defined: the mean
and the standard deviation of the Young’s modulus distribution of the fibres σ(Ef ) and
µ(Ef ), the Weibull scale and shape parameter of the strength distribution of the fibres
A(Ef ) and B(Ef ), the Poisson’s ratio of the fibres νf , the Young’s modulus of the matrix
Em and the Poisson’s ratio of the matrix νm.

(a) Overview. The mesh is
hidden for better visibility.

(b) Side view with the initial fibre break in the centre and
the debonded region in red.

Figure 4: Exemplary discretised two-fibre composite with fibre frame. The blue colours
represent the statistical distribution of the fibre properties.
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Initiation of the Thermal Prestress (4) As the matrix and the fibres have different
coefficients of thermal expansion, residual stresses form during cool-down from processing
temperature. The way of determining this residual stress shall not be described herein.
Following subsection 2.2, the definition using the mismatch strain is used. For further
information, the reader is referred to [4].

Calculation of the saturated debond length (5) As the two-fibre composite con-
sists of two equal fibres with equal interface properties, both fibres will have the same
saturated debond length lcd. Thus, it has to be calculated only once at the beginning of
the workflow using Equation 4 and Equation 3 with N = Nc.

Setup of the First Loading Cycle (6, 7) To start the fatigue process, Fibre 1 in the
two-fibre composite is initiated with a fibre break in the centre of the simulation domain
zbreak,1 = lmodel/2. This is implemented by deleting the material disc closest to zbreak,1 as
shown in Figure 4a. Subsequently, the initial debond length of Fibre 1 is calculated using
Equation 1 and Equation 2. The material properties of the cycle-dependent debonded
interface region are initialised by setting the maximum shear tractions equal to the initial
interfacial shear stress t0s = t0t = τ 0s . The maximum normal traction is set to t0n =
1000 MPa, the normal stiffness is set to Kn = 1×108 MPa as described in subsection 2.3.
For future investigations, the sticking behaviour can be adjusted by adapting Ks and Kt

to the analytical behaviour. In the scope of this work, Ks = Kt = 1 × 106 MPa is used.
The interface elements are assigned either the bonded or the debonded interface material
properties based on their z-position. If the element centre lies within a distance of l0d/2 of
the fibre break, the elements are assigned the debonded material properties. Else, they
are assigned the bonded material properties.

Setup of Subsequent Loading Cycles (6, 7) In subsequent cycle steps, the debond
of any of the two fibres has grown due to the cycles in previous steps. Thus, the current
debond length and the current interfacial shear stress are recalculated using Equation 4
and Equation 3 respectively for the current cycle count N for each fibre. Subsequently,
the material properties for the bonded and debonded interface region are recalculated and
reassigned based on the the current interfacial shear stress τs(N ) and the current debond
length ld(N ).

The procedure of initiating a fibre break after the first loading cycle is comparable to
the first fibre break in the first cycle. If a fibre was determined to have broken in the
previous cycle step (i.e. the stress in fibre direction in the last cycle step exceeded the
strength of the respective element), the failed fibre disc is deleted from the simulation.
The initial debond length is calculated and the bonded and debonded interface properties
are assigned based on τ 0s .

Simulation and Evaluation of the Current Cycle (8, 9, 10) The previous steps are
needed to set up the actual FE simulation for the current cycle. This simulation consists
of two static, implicit simulation steps: first an equilibrium step to achieve equilibrium
after the thermal mismatch in fibres and matrix and secondly a displacement step to apply
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the maximum macroscopic strain ε̄max. The displacement is applied on the z-component
of the nodes at the positive end of the domain: U z

z+ = lmodel ε̄max. Further boundary
conditions prevent a translational movement of the simulation domain by setting the z-
displacement of the nodes at the negative end of the domain to 0: U z

z− = 0. The nodes
in the centre of the simulation domain (x = y = 0) are constrained to only allow an
elongation along the z-direction: Ux

x=y=0 = Uy
x=y=0 = 0. Poisson effects are not restricted.

An x-symmetry boundary condition is applied to the symmetry plane.
One simulation is created per cycle step. There is no transfer of information be-

tween the cycle step simulations except the difference in fibre breaks, debond lengths
and debonded interface properties. This is justifiable without restriction for linear elas-
tic material properties but has to be kept in mind and thoroughly investigated when
implementing history-dependent material properties like plasticity.

After the simulation was carried out, each element of each fibre is evaluated for failure.
Therefore, the element stress in z-direction σzz is compared to the respective element
strength σult. If σzz > σult, the entire fibre disc is labelled as “broken” to be removed
in the next cycle step. Additionally, the current total cycle count N is stored as debond
initiation for the respective fibre.

Finally, the increment size for the next cycle step is calculated. As the simulation
domain is discretised, the debonds can only grow in certain increments. The smallest
possible debond crack growth ∆ld per cycle step equals the element length in z-direction.
With Equation 4, the number of cycles necessary to make a debond grow this minimal
increment size (one element length) can be determined solving the inverse problem N (ld).

Subsequently, the current cycle is increased by the cycle increment and the next simu-
lation can be set up. This procedure is repeated until both fibres in the simulation domain
broke or all debonds reached the saturated debond length indicating fatigue run-out.

3 Model Results

3.1 Development of the Neighbouring Fibre Stress

With the proposed workflow, the microscopic mechanisms of fatigue damage can be
investigated in detail. The material parameters used herein and their source are de-
noted in Table 1. A first investigation focuses on the development of the fibre stress in
a neighbouring fibre (denoted as Fibre 2) of an already broken fibre (denoted as Fi-
bre 1). As was shown by [8], the stress in the neighbouring fibre shows three distinct
stress peaks. One at the fibre break location of Fibre 1 and one each near the debond
crack tip location of Fibre 1. Only if the proposed model can depict this behaviour, the
mechanism of a fibre debond crack tip triggering a neighbouring fibre break can also be
depicted. Therefore, a simulation domain with lmodel = 40 r, dif = r and r = 0.017 mm
is generated as shown in Figure 4a. Load is applied with a maximum macroscopic strain
ε̄max = 0.02 and R = 0.1. As it is not necessary to trigger a fibre break in this investi-
gation, the statistical material properties are neglected. Consequently, all fibre elements
are assigned the same linear elastic material properties. Simulations are carried out for
N = 1, 10000, 20000, 30000 and 40000. As the maximum stress in Fibre 2 occurs at the
elements closest to Fibre 1, the stresses in z-direction in those elements are investigated.
Additionally, they are normalised to the far field stress determined at the boundaries (z+
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and z−) of the simulation domain. It has to be noted that, depending on the domain size,
the stress at the boundaries can differ from the actual far field stress. This influence is
assumed to be negligible for the used discretisation. The results are depicted in Figure 5a.

Table 1: Material parameters used for the E-glass fibres, the matrix and the interface
region. * only used in statistical simulation. a measured values for EPIKOTETM Resin
MGSTM RIMR 135 + EPIKURETM Curing Agent MGSTM RIMH 137 from Hexion Inc.,
Columbus, OH, USA; b measured values for HybonTM 2150 from Nippon Electric Glass
Co., Ltd., Ōtsu, Japan; c assumed values in order of magnitude of [6]; d value from [10].

Em νm µ(Ef ) σ(Ef )* A(σult,f )* B(σult,f )* νf

[MPa] [−] [MPa] [MPa] [MPa] [MPa] [−]

3019a 0.39a 72381b 797b 2103b 6b 0.2d

Vf ∆εT Gi
c τ 0s τ cs Nc n

[−] [−] [J/m2] [MPa] [MPa] [−] [−]

0.6c 0.0033c 50c 75c 5c 50000c 0.9c

As can be seen, the model develops three stress peaks in Fibre 2. This is in qualitative
agreement with findings from the literature [8]. It can further be noted, that the secondary
stress peaks form during cyclic loading. Whereas for N = 1, only one stress peak at the
location of the break in Fibre 1 is present, this shifts towards three distinct stress peaks
for N = 40000. Investigating the position of the secondary stress peaks relative to the
debond crack tip in Fibre 1, the model shows the stress peak shifted towards the position
of the break in Fibre 1. This can be explained by the redistribution of the stress in the
model composite after Fibre 1 broke. As the fibres have an inter-fibre spacing, the matrix
is transferring a part of the load from broken Fibre 1 to intact Fibre 2. A superposition
of the macroscopic load and the K-field of the debond crack tip in Fibre 1 lead to the
shifted peak stress positions.

3.2 Initiation of a Neighbouring Fibre Break

As the model can predict the characteristic three stress peaks in the neighbouring fibre,
a second investigation is carried out using statistical fibre properties and allowing a fibre
break in Fibre 2. To increase the probability of a fibre break within the simulation
domain, the reference length for Weibull scaling is set to Lref = lmodel. The simulation
domain remains the same as in the first investigation.

As can be seen in Figure 6, the model can initiate a fibre break in Fibre 2 having
been triggered by the debond crack tip of Fibre 1. Fibre 2 breaks at cycle N = 40410.
A stress exposure is defined as the ratio between the element stress in fibre direction and
the element strength σzz/σult. The stress exposure for the critical element (the to-break
element in Fibre 2) and the element at the z-position of the break in Fibre 1 (centre
element) is depicted in Figure 5b. It can be seen that the stress exposure of the critical
element remains approximately the same until N ≈ 30000. After that, the K-field of
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the debond crack tip moves into the proximity of the critical element. As soon as the
exposure in the critical element exceeds 1, the element fails creating a break in Fibre 2.
The stress exposure in the centre element gradually decreases until the break of Fibre
2. Subsequently, the stress exposure drops. This is according to expectation.

(a) Fibre stress along Fibre 2 for equal
material properties in the fibres. Only half

the simulation domain is plotted.

(b) Stress exposure in Fibre 2 for statistical
material properties.

Figure 5: Model results.

(a) At N = 1 (after Fibre 1 broke). (b) At N = 40411 (after Fibre 2 broke).

Figure 6: Debond crack growth results. The fibres are shown by a white outline.
Debonded interface regions are blue. Bonded interface regions are black.

4 Conclusion

A model for investigating the micromechanical fatigue behaviour of unidirectional com-
posites based on fibre-matrix debonding was proposed. The model uses an analytical
approach do determine the debond crack initiation and growth and a numerical finite
element approach to calculate resulting stresses. The model can qualitatively predict
the development of stresses in a neighbouring fibre of a broken fibre. Additionally, the
model can depict the process of a debond crack tip stress field triggering a break in a
neighbouring fibre. Latter is consistent with the microscale observations in the literature
[7]. A quantitative validation of the model with experimental data is still to be carried
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out. Future work could investigate the model behaviour under history-dependent material
models for the matrix and statistically distributed multi-fibre simulation domains.
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