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SUMMARY

We present a method to process embedded smooth manifolds using sets of points alone. This method avoids 
any global parameterization and hence is applicable to surfaces of any genus. It combines three ingredients: 
(1) the automatic detection of the local geometric structure of the manifold by statistical learning methods; 
(2) the local parameterization of the surface using smooth meshfree (here maximum-entropy) approximants; 
and (3) patching together the local representations by means of a partition of unity. Mesh-based methods 
can deal with surfaces of complex topology, since they rely on the element-level parameterizations, but 
cannot handle high-dimensional manifolds, whereas previous meshfree methods for thin shells consider a 
global parametric domain, which seriously limits the kinds of surfaces that can be treated. We present the 
implementation of the method in the context of Kirchhoff–Love shells, but it is applicable to other 
calculations on manifolds in any dimension. With the smooth approximants, this fourth-order partial 
differential equation is treated directly. We show the good performance of the method on the basis of the 
classical obstacle course. Additional calculations exemplify the flexibility of the proposed approach in 
treating surfaces of complex topology and geometry. 

KEY WORDS: point-set surfaces; meshfree methods; maximum-entropy approximants; thin shells

1. INTRODUCTION

Over the last years, there has been a growing interest in the computer graphics community on point-
based surface processing, which presents attractive features as compared with the conventional 
mesh-based processing [1, 2]. In mesh-based methods, the mesh serves two useful purposes: it
describes the geometry of the surface, and the elements provide local parametric spaces where the 
shape functions and the local parameterizations of the surface can be defined, and where
the required calculations on the surface can be performed, e.g. for thin-shell analysis. In these 
methods, the mesh generation can be difficult, they are not natural for point-based data, and they
seem unpractical for embedded manifolds in high-dimensional spaces. On the other hand, in the 
absence of a mesh, the notion of a surface defined from a set of scattered nodes becomes difficult to 
grasp. In particular, as noted in [3], a fundamental difficulty in defining basis functions and
performing calculations on an embedded surface, as compared with open sub-sets in the Euclidean 
space, is the absence in general of a single parametric domain. A simple example is the sphere,
which does not admit a single singularity-free parameterization. Mesh-based method, consisting of a
collection of local parameterizations from the parent element to the physical elements, does not have
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any difficulty in this respect at the expense of reduced smoothness across the element boundaries. In
meshfree methods, such a natural parametric domain is not available, and the description of surfaces
with a topology different to that of an open set on R2, such as a sphere or a torus, becomes challenging.
Even for surfaces homeomorphic to open two-dimensional sets, such as that depicted in Figure 18, the
geometric complexity can make it very difficult to produce well-behaved global parameterizations.

In the computer graphics literature, Levoy and Whitted [4] pioneered using points as primitives
for geometric modeling and rendering of surfaces. Existing methods for describing a surface from
a set of scattered points are generally based on implicit representations of the surface [5, 6].
Moving least-squares (MLS) surfaces are a noteworthy example of point-based implicit surface
representation, where the surface is defined as a set of fixed points of suitable projections [3, 7].
This idea has been very successful in the computer graphics community for rendering, either up
or down-sampling, and manipulating point-set models, see e.g. [1, 2, 8–10]. Despite the common
themes and challenges, these developments have remained largely unconnected to the computational
mechanics community. In this field, meshfree methods have been applied to thin-shell analysis,
and the difficulty of defining an appropriate parametric space has been overcome by considering
either a support mesh or very simple surfaces admitting a single parametric space [11–14].

Thin-shell theory requires the approximation of the deformation field to have second-order
square integrable derivatives. For general unstructured meshes, it is very difficult to construct C1

finite element approximations, which has prompted many techniques that avoid this requirement.
Most alternative approaches requiring only C0 elements are based on either Reissner–Mindlin
theories for thick plates and shells or on hybrid and mixed methods [15–17]. Excellent reviews
and insightful remarks can be found in these references or in [18, 19]. For an extended review, the
reader is referred to [20].

Following ideas from computer graphics, Cirak et al. [18, 21] presented a direct numerical treat-
ment of thin-shell analysis based on the smooth approximants provided by subdivision surfaces
technology. Subdivision finite elements represent unified framework for geometric modeling and
thin-shell analysis. On the other hand, discontinuous Galerkin (DG) formulations have been
proposed recently for plates, beams and Kirchhoff–Love thin-shells [22–24]. These methods avoid
the C1 continuity requirement by designing suitable numerical fluxes conjugate to the deformation
jumps. An advantage of this method is the ease in the imposition of the rotation essential boundary
conditions. As disadvantages, the formulation and implementation of these methods is cumber-
some, and they typically exhibit a poorer accuracy for a given number of degrees of freedom as
compared with methods based on smooth approximants.

Here, we present a method to perform numerical calculations on smooth manifolds described
in terms of a set of scattered points. The proposed method avoids any global parametric domain,
required in previous meshfree methods, which greatly expands its range of applicability. Although
we exercise here the method for surfaces in R3, it is applicable to perform calculations on embedded
manifolds in any space dimension, unlike mesh-based methods. The implications of this attribute
of the method are hinted in the closing remarks. The method results from combining three ingre-
dients. First, the local geometric structure of the manifold is detected from the node set using
statistical learning methods. Here a weighted Principal Component Analysis (wPCA) identifies
the (hyper-) plane closest to the points in a given neighborhood that we call patch. This plane
is then used as the local parametric space to construct the meshfree maximum-entropy (max-ent)
basis functions [25, 26] and the local smooth parameterization of the manifold, and it can be seen
as the analogous of the parent element in finite element methods. This smooth parameterization in
each patch can be realized with a variety of methods, from other mesh-free methods such as MLS
approximants to mesh-based methods such as subdivision finite elements. In the latter case, no
global mesh is required. Here the local max-ent approximants [25] are chosen, due to their smooth-
ness, robustness, and the relative ease of quadrature relative to other meshfree approximants. The
different local parameterizations are then glued together with a partition of unity (PU) defined in
the ambient space, which consequently is also a PU in the embedded manifold. Specifically, func-
tionals defined on the surface are readily split into local contributions, each involving a single local
parameterization.
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The outline of the paper is as follows. Section 2 describes the proposed methodology for
point-set manifold processing. This methodology is illustrated with the simple yet illustrative
calculation of the Willmore energy of a sphere. Next, Section 3, provides a short account of the
Kirchhoff–Love shell theory. Throughout the present work, we confine our attention to the linear
theory of shells under static loading. Numerical experiments to evaluate the performance of the
method are presented in Section 4, with particular attention to the obstacle course of benchmark
tests proposed by Belytschko et al. [27]. Other numerical examples illustrate the ability of the
method to treat shells with complex topology or geometry. Some remarks and conclusions are
collected in Section 5.

2. MANIFOLD DESCRIPTION FROM SCATTERED POINTS

We consider a smooth d-manifold M embedded in RD , d�D. Our aim is to obtain a numerical
representation of M, and make computations on it. Manifolds are important objects in mathematics
and physics because they allow us to understand complicated structures in each neighborhood in
terms of Euclidean spaces. The first of the three steps in the methodology presented here precisely
captures numerically the local Euclidean structure of the manifold in a set of neighborhoods that
we call patches.

Let P ={P1,P2, . . . ,PN }⊂RD be a set of points representing M. We detect the local Euclidean
structure and build local parameterizations around the patch points, Q ={Q1,Q2, . . . ,QM }, typically
a subset of P but not necessarily. For simplicity, we will denote the points in P and its associated
objects with a lower case subindex, e.g. Pa , for a =1,2, . . . , N , and the patch points in Q and its
associated objects with an upper case subindex, e.g. QA, for A=1,2, . . . , M .

We recall the construction of a Shepard PU, for later reference. Let Y ={y1,y2, . . . ,yL}⊂RD be
a set of points and consider a set of non-negative reals {�a}a=1,2,. . .,L associated with each point
in Y . We define the Shepard PU with the Gaussian weight related to the set Y as the functions
wY

a :RD →R for a =1,2, . . . , L given by

wY
a (x)= exp(−�a|x−ya|2)∑L

b=1 exp(−�b|x−yb|2)
. (1)

For efficiency, and given the fast decay of the Gaussian functions, it is convenient to consider
numerically these functions to be compactly supported. We define for each point x the neighborhood
index set from Y as

NY
x ={a ∈{1,2, . . . , L}|exp(−�a|x−ya|2)>T O L}, (2)

where T O L is a numerical tolerance. Then, the evaluation of the Shepard functions becomes

wY
a (x)=

⎧⎪⎨
⎪⎩

exp(−�a|x−ya|2)∑
b∈NY

x
exp(−�b|x−yb|2)

for a ∈NY
x ,

0 otherwise.

(3)

A dual notion of neighborhood index list is given by the points in a given set Z ={z1,z2, . . . ,zO}
that lie within the support of a given Shepard function wY

a , i.e.

N̂
Z
ya

={b∈{1,2, . . . , O}|wY
a (zb)>T O L}. (4)

Following [25], we define a dimensionless parameter �a =�ah2
a , the aspect ratio parameter of

the weighting or shape functions, where ha is a measure of the point spacing around ya . As the
value of � increases, the Shepard functions become narrower. For a systematic method for defining
the typical point spacing, see [10].
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In the following, we will consider Shepard functions associated with the point-set P , which
will be denoted as wP

a (x),a =1,2, . . . N , and with the set of patch points Q, denoted by w
Q
A (x),

A=1,2, . . . M . Note that each of these two PUs are defined not only from different node sets, but
also from different sets of aspect ratio parameters. We also note that each of these sets of functions
sums to one in every point in RD .

2.1. Local Euclidean structure

We turn now to a fundamental element in the proposed method, that of computing the local
geometric structure of the manifold around QA. For this purpose, we use a fundamental idea in statis-
tical learning: principal component analysis (PCA). PCA is a standard tool in computer graphics
[2], data analysis [28], manifold learning [29], or model reduction techniques in computational
mechanics based on proper orthogonal decomposition (POD) methods [30, 31]. PCA identifies the
low-dimensional subspace that best explains the variance of a higher-dimensional data set. The
original data are transformed into a new orthogonal coordinate system such that the projection of
the data on the subspace defined by the first m coordinate directions maximizes the variance as
compared with any other projection onto an m-dimensional subspace.

To describe the manifold properties around a patch point QA, a weighted local version, which
we call wPCA (also kernel PCA), is more suitable. The main idea is to define a small neighborhood
around QA, and compute the covariance matrix of the points of P in this neighborhood. If the
local structure of the point-set around QA is that of a d-manifold, then the first d eigenvalues of
the covariance matrix will strongly dominate the spectrum. If this is not the case, it is possible that
the noise in the data is too large, and a larger domain of influence of the weighting function may
be adequate. If this domain of influence is too large, the drawback is a loss of the local features
of the manifold.

The average of the points in the neighborhood of QA is then

Q̄A = ∑
a∈NP

QA

wP
a (QA)Pa,

where NP
QA

denotes the neighbor index set of QA relative to the Shepard functions of P . Arranging

the points as column vectors, we define the matrix XA ∈R
D×card(NP

QA
) whose columns are Pa −Q̄A,

for a ∈NP
QA

. The covariance matrix is then

CA =XA diag{wP
a (Q̄A)|a ∈NP

QA
}(XA)T ∈RD×D.

This positive- (semi-) definite symmetric matrix has real eigenvalues and diagonalizes in an
orthonormal basis of eigenvectors. We define VA ∈RD×d as the eigenvector matrix formed by the
d eigenvectors corresponding to the largest d eigenvalues. These eigenvectors form an orthogonal
basis of the local Euclidean structure of the manifold, which can be informally thought of as a
numerical tangent space at QA. This plane, TA (see Figure 1), passes through Q̄A and is parallel
to these first d eigenvectors. The matrix VA defines an orthogonal projection relative to Q̄A onto
the reduced space of dimension d, i.e.

�A : RD −→Rd

z �−→ (VA)T(z−Q̄A).

Note that in general Q̄A �=QA; hence �A(QA) �=0.

2.2. Local parameterization

The local Euclidean structure around QA provides a convenient parametric space for the embedded
manifold, as is shown in Figure 2. Indeed, consider the reduced dimensionality point-set

�A ={na =�A(Pa)|a ∈N̂
P
QA

}⊂Rd . (5)
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will denote by pa(n),a =1, . . . ,n with n∈Rd , are non-negative linearly reproducing approximants
intimately related to convex geometry. To simplify the notation in this section, we renumber the

point indices for a given patch N̂
P
QA

, from 1 to n =card(N̂
P
QA

).
The local max-ent approximants used here are first-order consistent. Extensions to second-order

approximation schemes based on adding extra constraints to the convex program below can be
found in [26] Rosolen et al. (in preparation), whereas González et al. [35] propose a method based
on the de Boor’s algorithm. For a set of nodal values {ua}a=1,. . .,n associated with a nodal set
{na}a=1,. . .,n , the approximation of a function u(n) is given by

u(n)≈
n∑

a=1
pa(n)ua,

where the approximants pa are non-negative and fulfill the zeroth and first-order consistency
conditions:

pa(n)�0,
n∑

a=1
pa(n)=1,

n∑
a=1

pa(n)na =n.

The definition of the max-ent approximants is not explicit, but rather follows from an optimization
problem set up at each evaluation point n, where the unknowns are the values of the basis functions
at this point pa(n),a =1, . . . ,n, and where the above conditions are seen as constraints on these
unknowns. As shown in [25], the constraints are only feasible within the convex hull of the
node set.

As the approximants are non-negative and form a PU (zeroth-order consistency condition) at each
point n, they can be interpreted as a probability distribution. This information–theoretical viewpoint
allows us to pose a statistical inference problem where the approximants pa are the unknowns.
A canonical measure of the uncertainty associated with a discrete probability distribution is the
entropy, and the principle of maximum entropy provides the least biased approximation schemes
consistent with the constraints. As proposed in [25], it proves convenient to select a compromise
between maximizing the entropy and minimizing the width or support-size of the basis functions,
which leads to the following convex program [36]:

For fixed n, minimize
n∑

a=1
�a pa|n−na|2 +

n∑
a=1

pa ln pa

subject to pa�0, a =1, . . . ,n

n∑
a=1

pa =1,
n∑

a=1
pana =n.

This convex optimization problem is solved efficiently and robustly with duality methods [25],
obtaining

pa(n)= 1

Z (n,�∗(n))
exp[−�a|n−na|2 +�∗(n) ·(n−na)],

where

Z (n,�)=
n∑

b=1
exp[−�b|n−nb|2 +�·(n−nb)]

is the partition function and �∗ is the solution at each point n of the convex and unconstrained
optimization problem

�∗(n)=arg min
�∈Rd

ln Z (n,�). (7)

These approximants are meshfree since they are entirely defined by the node set {na}a=1,. . .,n
and the parameters {�a}a=1,. . .,n . The parameter �a>0 is a measure of the locality of the shape
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Figure 4. Local max-ent approximants for a non-uniform nodal distribution. The locality parameter
�a =�/h2

a at each node is selected to achieve a uniform aspect parameter �=1.6.

functions. As mentioned in Section 2.1, a dimensionless aspect parameter �a =�ah2
a characterizes

the aspect ratio of the shape functions relative to the typical nodal spacing ha in the vicinity of na .
As the value of �a increases, the corresponding shape function is sharper and more local, and in the
limit �a →∞ coincides with the Delaunay hat shape function. For highly unstructured point-sets,
it is easy to produce local max-ent approximants of uniform aspect ratio by appropriately selecting
a non-uniform value of the parameters �a , resulting in a uniform value for the parameters �a (see
Figure 4).

It has been shown that these approximants are C∞. Their gradients can be computed analytically.
The expressions for the first and second spatial derivatives of local max-ent approximants are given
in Appendix A, see also [36]. These approximants are non-interpolating, except at the boundary of
the convex hull of the node set, where a weak Kronecker-delta property holds. This property makes
it straightforward to impose essential boundary conditions unlike other meshfree methods such as
those based on the MLS approximations [37]. Finally, we note that local max-ent approximants deal
robustly with training data infected with zero-mean additive noise, as proven for non-parametric
supervised classification [38].

2.5. Post-processing of the surface geometry and fields on the surface

The proposed method does not provide a way to patch together the local overlapping parameteri-
zations of the surface or of fields on the surface. Indeed, the patching is performed at the level of
the integrals. We describe next the procedure to post-process shapes and displacement fields used
here. We assume that a number of points in space are sampling the true surface, that in general
does not coincide with the sets P and Q. Given such a point y∈M, the numerical approximation
of the surface takes the form

uh(y)= ∑
A∈NQ

y

w
Q
A (y)

∑
a∈N̂P

QA

pa(�A(y))Pa, (8)

where the patch projection �A has been defined in Section 2.1. Similarly, other fields on the
surface described in terms of nodal values can be evaluated, for instance the displacement field

uh(y)= ∑
A∈NQ

y

w
Q
A (y)

∑
a∈N̂P

QA

pa(�A(y))ua .

We note that in Equation (8), the points Pa can be viewed as control points, following the B-Spline
terminology. Indeed, as in B-Splines or NURBS, a point of the numerical surface is obtained as a
convex combination of the control points, whose coefficients are the basis functions evaluated at
a particular point in parameter space. Also, in the present context the numerical approximation of
the surface does not pass through the control points either, and a control point has a local effect
on the surface in its vicinity. Thus, in general, the control points should be chosen such that the
actual surface, given analytically or through a set of sample points, is accurately reproduced, for
instance with a least-square fit. In the examples below, we do not perform this pre-processing step,
and directly place the points in P on the surface. This results in a small error in the description
of the geometry that disappears as the discretization is refined.
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2.6. Example: the Willmore energy of a sphere

The computation of the Willmore energy (related to the curvature strain energy of thin elastic
sheets) of a spherical surface is presented next to illustrate and assess the methodology. The
expression of the energy is

E =
∫

�
H2 d�, (9)

where H is the mean curvature and d� is the area element of the surface �. This functional
involves the computation and integration of second-order spatial derivatives. For a sphere, we have
E =16�.

Following the method described above and for a surface described by a set of points P =
{P1,P2, . . . ,PN }⊂R3, the elastic energy E is approximated by

E =
∫

�
H2 d�

	
M∑

A=1

∫
AA

w
Q
A (uA(n))H2(n)JA(n)dn, (10)

where for a surface we can compute the Jacobian determinant as JA =‖uA,1 ×uA,2‖. In the
equation above, H is not an explicit function of n, but rather of the first and second derivatives of
the local parameterization uA. The energy in Equation (10) is thus split into patch contributions
E 	 Eh =∑M

A=1 Eh
A, which are evaluated using numerical quadrature

Eh
A =

ng∑
g=1

w
Q
A (uA(ng))H2(ng)JA(ng)wg,

where {ng}g=1,. . .,ng
are the quadrature point coordinates in the parametric space AA, with the

corresponding weights wg . We define the relative error for the elastic energy of the sphere as

erel = |16�− Eh |
16�

.

We investigate the influence in the computation of Eh of (i) the accuracy of the integration rule
and (ii) some key numerical parameters, see Table I. We consider the Gauss–Legendre cubature
rules [39] of order 1,2,3,4,5,6,8,10, and 15 for the Delaunay triangulation supported on the
projected node sets �A; these schemes have 1,3,4,6,7,12,16,25, and 54 quadrature points per
triangle, respectively. The numerical parameters entering the calculation, collected in the table,
are a set of tolerances and aspect ratio parameters. More specifically, the tolerance T O L that
sets the cutoff of the neighbor search, see Equations (2,4), can be chosen independently for the
Shepard functions involved in the wPCA step, wP

a , for the Shepard functions defining the PU that
splits the integrals, w

Q
A , and for the local max-ent (LME) approximants pa . Similarly, the aspect

ratio parameter can be selected independently for each of these three approximants, i.e. �wPCA,
�PU and �LME. Additionally, a tolerance must be set for the Newton–Raphson solution of the dual
optimization problem in Equation (7) required to evaluate the local max-ent shape functions.

In setting the tolerances, it is important to note that those involved in the neighbor search, see
Equations (2,4), have a noticeable effect on the computational cost of the method. The values

Table I. Numerical parameters used to perform the computations.

Parameter wPCA PU LME

� 1.8 3.0, 6.0 0.6, 1.0, 1.4
T O L 10−8 10−6 10−10

T O LNR — — 10−12
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Figure 5. Relative error for the Willmore energy of a sphere. Error sensitivity with respect to (a) the
number of quadrature points and (b) to the aspect-ratio parameter of the LME and PU shape functions.

Also, a line of slope two for the visual inspection of (b) is shown.

chosen here provide good accuracy at a reasonable cost. The tolerance for the Newton–Raphson
iterations influences very slightly the computational cost due to the fast quadratic convergence. As
for the aspect ratio parameters, the calculations are robust for a wide range of values of �wPCA. The
value selected in the Willmore energy calculations is shown in Table I, although a smaller value
might be needed for data points affected by noise, or a higher value and more patch points for
surfaces with sharp features. We analyze in more detail the sensitivity of the results with respect
to the two remaining parameters, �PU and �LME.

We consider different levels of refinement of the point-set describing the sphere and of the set
of patches. Specifically, we consider subdivisions of an octahedron following Loop’s scheme, and
relocate the resulting points on the unit sphere. We consider the levels of refinement n=3,4,5,6,7,8
with N=22(n+1) +2 points in P , and one level of refinement less for the patch points in Q, with
M=22n +2 patches (see Figure 3). For this example, the refinement of the patches relative to the
point-set P can be lowered by two or more levels without noticeable changes in the results.

Figure 5(a) shows the relative error erel for different levels of refinement and different number
of cubature points. It can be observed that for coarse point-sets, the interpolation error dominates
the quadrature error and the results are insensitive to the number of integration points. For finer
point-sets, it can be observed that the accuracy is affected by the numerical quadrature, and up
to 12 points per triangle are needed for the finest point-set, containing 262 146 points, in order to
keep the quadrature error negligible relative to other errors.

Convergence plots in a log–log scale are shown in Figure 5(b) for different choices of the
aspect ratio parameters �LME and �PU. The relative error in the Willmore energy converges with a
slope of 2, i.e. erel ∝h2. The insensitivity of the results with respect to �PU is apparent. Neverthe-
less, this parameter has a significant impact on the computational cost. Indeed, low values cause
much overlap and redundancy in the numerical quadrature, whereas higher values greatly reduce
the number of quadrature points in each patch (see also Figure 3 for an illustration). However,
excessively large values may result in poor overlapping and degradation of the accuracy. From our
experience, the interval between 4 and 6 is a suitable range for �PU. As for �LME, we know that for
very large values, the surface MA will become polyhedral since the approximants will converge to
the Delaunay shape functions. Therefore, for functionals depending on the curvature, lower values
can be expected to produce accurate results. Indeed, we find numerically that the convergence
is degraded for �LME =1.4. In thin-shell calculations, lower values of �LME result in a denser
structure of the stiffness matrix, hence in a higher computational cost. To conclude this section,
we highlight the fact that accurate results and numerical evidence of convergence is provided
throughout the paper for functionals depending on second-order spacial derivatives and their corre-
sponding fourth-order partial differential equations, while using linearly consistent approximation
schemes.
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The local shell deformations can be characterized by the Green–Lagrange strain tensor. Since
the convected components of the metric tensor coincide with the components of (T x)TT x in the
basis associated with {�i }, the Green–Lagrange strain tensor can be expressed as the difference
between the metric tensors on the deformed and undeformed configurations of the shell, i.e.

Eij = 1
2 (gij −g0i j )= 1

2 (x,i ·x, j −x0,i ·x0, j ).

Plugging the basic kinematic ansatz x=u(��)+�t(��) into the above expression and grouping
terms, we obtain

Eij =εij +��ij +(�)2ϑij, (12)

which admits the following interpretation in terms of the symmetric tensors εij, �ij, and ϑij:

• The membrane strain tensor ε�� = 1
2 (u,� ·u,�−u0,� ·u,�), which lives on the middle surface,

measures the in-plane deformation of the surface; the components ε�3 = 1
2u,� ·t measure the

shearing of the director t0; and the component ε33 = 1
2 (t ·t−1) measures the stretching of the

director t0.
• The bending or change in curvature of the shell is measured by the tensor ��� =u,� ·t,�−
u0,� ·t0,�, and ��3 = 1

2 t,� ·t measures the shearing originated from the director elongation;
the in-plane tensor ϑ�� = 1

2 (t,� ·t,�− t0,� ·t0,�) is exclusively related to changes of the middle
surface directors. The rest of the components vanish, �33 =ϑ3i =ϑi3 =0.

3.2. Kirchhoff–Love hypothesis

In the remainder of this section, we restrict our attention to the Kirchhoff–Love theory of thin
shells, i.e. we constrain the deformed director t to coincide with the unit normal of the deformed
middle surface of the shell, i.e.

t= u,1 ×u,2

j̄
, u,� ·t=0, |t|=1, t·t,� =0.

Consequently, the theory can be formulated exclusively in terms of the shell middle surface. We
introduce its first and second fundamental forms expressed in convected components

a�� =u,� ·u,�,

	�� =u,� ·t,� =−u,�� ·t.
Here we have identified the director with the normal. With the Kirchhoff–Love hypothesis, the
only remaining non-zero components of the Green–Lagrange strain tensor are

E�� = 1

2
(a��−a0��)+�(	��−	0��)+ (�)2

2
(t,� ·t,�− t0,� ·t0,�)

= ε��+����+(�)2ϑ��. (13)

3.3. Small displacements

As we say at the beginning of this section, we assume that the deformation field for the shell is
restricted to account only for small displacement. Then, if the displacement vector of the middle
surface of the shell is defined as u=u−u0, the linear membrane and bending strain measures can
be derived from the kinematic variables up to first order in u in the form

ε�� = 1
2 (u0,� ·u,�+u0,� ·u,�),

��� = −t0 ·u,��−u0,�� ·�t,

ϑ�� = 1
2 (t0,� ·�t,�+�t,� ·t0,�),
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with

t0,� = − j̄0
−1{t0 ×[t0 ×(u0,1�×u0,2 +u0,1 ×u0,2�)]},

�t = − j̄0
−1{t0 ×[t0 ×(u,1 ×u0,2 +u0,1 ×u,2)]},

where �t is the approximation to t− t0 up to first order in u. We refer to the Appendix B for a
detailed derivation of the linearized strains.

3.4. Equilibrium configuration of thin shells

The potential energy of an elastic shell body with internal energy density W can be expressed by
the functional

�[u]=
∫
S0

W (u)dV0 +�ext [u],

where �ext is the potential energy of the external loads. For concreteness, we consider an isotropic
Kirchhoff–St. Venant elastic material, with an internal energy density expressed as [40]

W = 1
2 Ci jkl Eij Ekl,

where Ci jkl are the contravariant components of the elasticity tensor.
For thin-shell bodies, the Green–Lagrange tensor components are commonly retained up to first

order in h, see Equation (13), and the effect of curvature on the configuration Jacobian away from
the middle surface is neglected, that is j0/ j̄0 =1 [17, 19]. Assuming that the elasticity tensor does
not vary through-the-thickness, the internal energy density can be integrated through-the-thickness,
resulting in an internal energy density per unit area

W= 1

2

∫ h/2

−h/2
C���
E��E�


j0
j̄0

d�	 1

2
C���


(
hε��ε�
+ h3

12
�����


)
,

with

C���
 = E

(1−�2)

[
�a��

0 a�

0 + 1

2
(1−�)

(
a��

0 a�

0 +a�


0 a��
0

)]
,

where a��
0 (a0)�� =
�

�, E is Young’s modulus, and � the Poisson ratio. Thus, the internal potential
energy can be written as an integral over the reference middle surface

�int [u]=
∫

�0

W(u)d�0,

and the external potential becomes

�ext [u]=−
∫

�0

q·ud�0 −
∫

��0

h ·ud�0,

where q is the external body load per unit area, h the forces per unit length applied on the boundary
of the middle surface, and d�0 is the line element of the boundary of the middle surface.

The equilibrium displacement field is obtained by requiring stationarity of the total potential
energy with respect to all admissible variations g


�[u,g]= d

d�
�(u+�g)

∣∣∣∣
�=0

=0.

Here, the admissible displacement fields and variations must be consistent with the essential
boundary conditions. For thin shells, these can be in terms of the displacements, in ��u

0, or the
rotations of the director about the tangent to the boundary, in ��


0. Note that ��u
0 and ��


0 can
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overlap. The above is a statement of the principle of virtual work, which can be expressed in terms
of integrals over the parametric space A as follows:


�int [u,g] =
∫
A

C���

(

hε�
(u)ε��(g)+ h3

12
��
(u)���(g)

)
j̄0 d�1 d�2,


�ext [g] = −
∫
A

q·g j̄0 d�1 d�2 −
∫

�A
h·g‖u0,t‖d��,

where u0,t is the partial derivative of the middle surface mapping in the tangential direction to the
boundary curve.

Following [17], we introduce the elastic constitutive relations between the shell stresses and the
strains as

n�� = �W
�ε��

=hC���
ε�
,

m�� = �W
����

= h3

12
C���
��
,

where n�� is the effective membrane stress and m�� is the effective bending stress, which can be
interpreted as force and moment resultants. Further, by recourse to Voigt’s notation, we obtain the
following convenient expressions:

n=

⎛
⎜⎜⎝

n11

n22

n12

⎞
⎟⎟⎠=hCe, m=

⎛
⎜⎜⎝

m11

m22

m12

⎞
⎟⎟⎠= h3

12
Cq, e=

⎛
⎜⎝

ε11

ε22

2ε12

⎞
⎟⎠ , q=

⎛
⎜⎝

�11

�22

2�12

⎞
⎟⎠ ,

where the matrix C is given by the expression

C= E

1−�2

⎛
⎜⎜⎜⎝

(a11
0 )2 �a11

0 a22
0 +(1−�)(a12

0 )2 a11
0 a12

0

(a22
0 )2 a22

0 a12
0

symm 1
2 [(1−�)a11

0 a22
0 −(1+�)(a12

0 )2]

⎞
⎟⎟⎟⎠ .

Finally, with the above definitions, we can write the principle of virtual work as

0=
�[u,
u]=
∫
A

(
e ·n+
q·m) j̄0 d�1 d�2 +
�ext [
u]. (14)

3.5. Galerkin discretization

We consider now the discrete equilibrium equations KU= f for surfaces numerically represented
with the procedure described before, in terms of a set of nodes P ={Pa}, a =1, . . . , N , and a set
of patches identified with the patch points Q ={QA}, A=1, . . . , M . We consider a specific patch
A. Let u0A be a configuration mapping for the middle surface for this patch, defined over the
parametric space AA

u0A(n)= ∑
a∈N̂P

QA

pa(n)Pa,

as described in Section 2.2. We represent the displacement field in a given patch A as

uA(n)= ∑
a∈N̂P

QA

pa(n)ua .

14



Virtual displacements are represented likewise. With the strategy presented in Section 2.3, we can
split the integrals in the principle of virtual work into patch contributions, e.g.


�int [u,
u]=
M∑

A=1

∫
AA

[(
e·n+
q·m) j̄0]A(wQ
A ◦u0)d�1 d�2. (15)

Here, [·]A means that the expression within the brackets is evaluated with the Ath patch approx-
imation of the undeformed middle surface, the displacement field, and the virtual displacement
field. A simple calculation yields the Galerkin stiffness matrix. The interaction between nodes a
and b is given by

Kab =
M∑

A=1

∫
AA

[(
hMaTCMb + h3

12
BaTCBb

)
j̄0

]
A

(wQ
A ◦u0)d�1 d�2,

where Ma and Ba are the membrane and bending strain–displacement matrices for the ath node.
Note that Ma,Ba ∈R3×3. See Appendix C for a detailed description. The force contribution of the
ath node is

fa =
M∑

A=1

∫
AA

[q pa j̄0]A(wQ
A ◦u0)d�1 d�2 +

M∑
A=1

∫
�AA

[hpa‖u0,t‖]A(wQ
A ◦u0)d��.

The Dirichlet displacement and rotation boundary conditions are imposed with the Lagrange
multipliers, as in [11], see Appendix D.

4. NUMERICAL EXAMPLES

We confront next the proposed method with a set of standard numerical benchmark tests. We
consider a square plate loaded with a point force, and the shell obstacle course of Belytschko
et al. [27] for the linear analysis of thin shells. The test problems in the shell obstacle course
are Scordelis–Lo’s roof loaded by self-weight, a pinched short cylinder, and a hemisphere loaded
with two pairs of facing concentrated forces. At the end of this section, the flexibility of the
proposed methodology to deal with the shells of complex topology and geometry is illustrated by
two additional examples. Before presenting the numerical examples, a few remarks concerning the
numerical implementation of the method are collected.

4.1. Numerical aspects

In all the calculations of this section, we fix �wPC A =1.8 and T O LwPCA =10−8 for the tangent
plane weight functions, �PU =4.0 and T O LPU =10−6 for the PU shape functions, and T O LLME =
10−10 and T O LNR =10−12 for the LME approximants. As for �LME, we discuss its influence
with the first numerical example, and then fix it to �LME =0.8, which provides accurate solutions
at a moderate computational cost. We note that the present approach neither requires an external
specification of the normals to the surface nor of the tangent vectors to the shell boundary [11].

4.1.1. Numerical quadrature. Numerical quadrature is one of the main outstanding issues in mesh-
free methods. Here, we follow the straightforward approach of building a Delaunay triangulation
in the parametric domain of each patch AA, and placing quadrature points supported on this
local planar triangulation. More advanced technologies exist that probably result in more efficient
simulations [41]. In all the examples, we used a standard Gauss–Legendre cubature rule of 12
points (order 6) per triangle. In the boundary curves, a quadrature scheme of four Gauss–Legendre
points per integration cell was used.

4.1.2. Boundary conditions. In principle, with the weak Kronecker-delta property of the local
max-ent approximants [25] at the boundary, the displacement Dirichlet boundary conditions can
be treated directly. However, we have noticed through numerical experiments that this results in
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Figure 8. Full model of the clamped plate: (a) discretization and reference configuration and (b) computed
deformed surface, �LME =0.8. In the picture, the high smoothness of the deflected plate is noteworthy.

Owing to the symmetry of the problem, a quarter of the plate with appropriate symmetry
boundary conditions can be considered. The convergence plots for the relative error of the center
deflection for both full and quarter clamped plate models are illustrated in Figure 7(b). As expected,
the models that take symmetry into account and consider one quarter of the plate have a denser
node distribution for a given number of degrees of freedom, hence produce more accurate solutions.
The results are compared with those obtained by using a DG method (values from [24]). The
figure illustrates the high accuracy of the local max-ent approximations for �LME =0.4,0.6,0.8.
We observe a degradation of the convergence for �LME�1.0, similar to the behavior reported in
Section 2.6. The superior accuracy of the proposed approach as compared with the DG method
in this example is clear from the figure, with more than one order of magnitude of more accurate
results. Note that these authors report the results for the quarter model; hence, their results need to
be compared with the dashed lines in the figure. As the rate of convergence of the DG method is
higher, this is not expectable for extremely fine discretizations. We note again that our method is
based on smooth approximants that are only first-order consistent. Structured and unstructured sets
of nodes have been used, with no significant difference in the result. Figure 8 illustrates the node
set, with the ghost nodes, and the smooth deformation. In the remaining examples, by simplicity,
a constant value of �LME =0.8 has been selected.

4.3. Scordelis–Lo roof

In this example, a cylindrical roof is loaded by uniform gravity g =90, and supported by rigid
diaphragms in the arched sides, ux =uy =0. Material and geometrical parameters are detailed in
Figure 9(a). In the Scordelis–Lo’s roof test, both the membrane and the flexural strain energies
dominate the overall behavior of the model; hence, representation of inextensional modes is not
crucial in this problem. Therefore, this test evaluates the inadequacies of the numerical method to
compute membrane stresses, which severely could inhibit convergence.

The reference value for the maximum vertical displacement at the mid-side if the free edge
reported in the literature presents a wide scatter, e.g. with a 3% difference between the converged
value found here and that reported in [42]. For an overkill discretization we find 
z =0.300575,
which is 0.6% lower than the value given in [27] of 0.3024. Figure 9(b) shows the convergence
results obtained in both the full and quarter case, which exhibit a power-law asymptotic convergence
behavior. Figure 10 shows typical node and patch point-sets, as well as the deformation for this
example.

4.4. Pinched hemisphere

In this example, a hemispherical shell of radius R =10 and thickness h =0.04 is subjected to
radial loads F =2 applied on two diametral directions, see Figure 11. This is a challenging test
for assessing the method’s ability to represent inextensional deformations under complex shell
bending conditions involving curvature in two directions. The ability to bend without developing
parasitic membrane strains is essential for good performance in this problem. Furthermore, the
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Figure 19. Mannequin thin-shell deformations under the action of a uniform vertical load (left),
and by applying two point forces (right).

thickness is h =0.08. The boundary curve at the bottom is clamped. Figure 19 shows the smooth
deformations obtained, showing strong effect of geometry on the deformation morphology.

5. CONCLUSIONS

We have presented a new methodology for processing d-dimensional point-set manifolds embedded
in RD , which avoids a global parameterization or mesh. This approach relies on three ingredients:
(1) the automatic detection of the local Euclidean structure of the manifold around a set of
predefined patch points, i.e. the numerical tangent space to the manifold, (2) the local, smooth
parameterization of the manifold around these patches using local max-ent approximants, and
(3) a PU to split integrals into patch contributions. Each of these steps is general in dimension.
We have applied the method to the Kirchhoff–Love thin-shell analysis. The performance of the
method, assessed by the classical obstacle course, is excellent. It exhibits better accuracy for a
given number of degrees of freedom than DG approaches to thin shells, and better or comparable
results than subdivision finite elements. The proposed method significantly extends the applicability
of meshfree methods to thin-shell analysis; in that it liberates such methods from the burden of
requiring a single parametric space or imposing cumbersome patching conditions between meshfree
macro-elements. This feature is illustrated by an example of a shell of complex topology. The
method’s applicability depends crucially on the quality of the sampling of the surface, specifically
on the density of the sampling relative to the feature size. Such concepts have been formalized in
the computer graphics literature [46].

Current research includes combining the proposed method with second-order max-ent approx-
imants [26] to increase the order of convergence, improving the accuracy and efficiency of the
numerical quadrature with stabilized nodal integration techniques [41]. More importantly, we are
developing methods that dramatically reduce the number of patches (i.e. the number of local
parameterizations and PU functions) relative to the number of nodes. With the current method, the
density of patches is limited by the geometric features of the surface; in that the projections �A
should not distort too much the node geometry. Finally, once the performance of the method has
been assessed numerically, a mathematical analysis of the method shedding light on the rational
choice of the numerical parameters would be highly desirable.
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APPENDIX A: DERIVATIVES OF THE SHAPE FUNCTIONS

We detail here the calculation of the derivatives of local max-ent approximants. We denote spatial
gradients of scalar functions by ∇, whereas for vector-valued functions we denote by Dy(n) the
matrix of partial derivatives. The symbol � denotes partial differentiation. The subindexes a, b,

and c refer to nodes. Within the scope of the appendix, we define the following functions

fa(n,k) = −�a|n−na|2 +k·(n−na), (A1)

pa(n,k) = exp[ fa(n,k)]∑
b exp[ fb(n,k)]

= exp[ fa(n,k)]

Z (n,k)
, (A2)

r(n,k) =∑
a

pa(n,k) (n−na), (A3)

J(n,k) = �r

�k
=∑

a
pa(n,k) (n−na)⊗(n−na)−r(n,k)⊗r(n,k). (A4)

The dependence on the evaluation point n and on the Lagrange multiplier � is dropped for
notational simplicity. The symbol ∗ is used to denote that a function is evaluated in k∗(n)=
argmink∈Rd ln Z (n,k). This introduces explicit and implicit dependences on n in all functions
with ∗. Note that what has been denoted by pa in the remainder of the paper is denoted by p∗

a in
the appendix. No implied sum is assumed for repeated node indices.

The first spatial derivative of the shape functions will be referred as ∇ p∗
a . It is readily verified

[25] that

∇ p∗
a = p∗

a

(
∇ f ∗

a −∑
c

p∗
c ∇ f ∗

c

)
. (A5)

Applying the chain rule, we have

∇ f ∗
a =

(
� fa

�n

)∗
+ Dk∗

(
� fa

�k

)∗
, (A6)

where (
� fa

�n

)∗
=−2�a(n−na)+k∗,

(
� fa

�k

)∗
= (n−na).

The only term that is not available explicitly in Equation (A6) is Dk∗. In order to compute it we
note that, since r∗ is identically zero,

0= Dr∗ =
(

�r

�n

)∗
+ Dk∗

(
�r

�k

)∗
,

where (
�r

�k

)∗
=J∗,

(
�r

�n

)∗
=−J�+I, J� =2

∑
a

�a p∗
a(n−na)⊗(n−na).

It follows that

Dk∗ = (J�−I)(J∗)−1.

Rearranging terms, we finally obtain the spatial gradients of the shape functions as

∇ p∗
a = p∗

a

(
r�−Ma(n−na)

)
,

where

r� =2
∑
a

�a p∗
a(n−na), Ma =2�aI− Dk∗.
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The second spatial derivative of the shape functions, i.e. their Hessian, will be referred as (H pa)∗.
We calculate the derivative of ∇ pa as

(H pa)∗ =∇ p∗
a ⊗

(
∇ f ∗

a −∑
b

p∗
b∇ f ∗

b

)
︸ ︷︷ ︸

A

+ p∗
a

(
(D∇ fa)∗−∑

b
p∗

b (D∇ fb)∗
)

︸ ︷︷ ︸
B

− p∗
a
∑
b

∇ p∗
b ⊗∇ f ∗

b︸ ︷︷ ︸
C

,

where

A = p∗
a

[
r�−Ma(n−na)

]⊗[
r�−Ma(n−na)

]
,

B = 2p∗
a

(∑
b

�b p∗
b −�a

)
I+ p∗

a D2k∗(n−na),

C = p∗
ar�⊗r�− p∗

a
∑
b

p∗
bMb(n−nb)⊗Mb(n−nb).

The term D2k∗ is computed by using again the fact that r∗ is identically zero, which also implies
that D2r∗ =0. Lengthy but simple calculations lead to

D2k∗(n−na)=r�⊗ja + ja ⊗r�+(r� ·ja)I−∑
b

p∗
b�abMb(n−nb)⊗Mb(n−nb),

where

�ab = (n−nb) ·(J∗)−1(n−na), ja = (J∗)−1(n−na).

Finally, the second spatial derivative of the shape functions can be written as

(H pa)∗ = p∗
a[r�−Ma(n−na)]⊗[r�−Ma(n−na)]+2p∗

a

(∑
b

�b p∗
b −�a

)
I

+p∗
a[r�⊗r�+r�⊗ja + ja ⊗r�+(r� ·ja)I]

−p∗
a
∑
b

p∗
b(1+�ab)Mb(n−nb)⊗Mb(n−nb). (A7)

APPENDIX B: STRAIN TENSORS FOR LINEARIZED KINEMATICS

In this appendix, we derive the bending strain tensor components for linearized kinematics. From
Section 3, with the Kirchhoff–Love hypothesis and defining the displacement vector u=u−u0,
the bending strains in Equation (12) become

��� =u0,�� ·t0 −(u0,��+u,��) ·t, (B1)

where

t= j̄−1(u0,1 ×u0,2 +u,1 ×u0,2 +u0,1 ×u,2 +u,1 ×u,2).

Neglecting higher-order terms in u, j̄−1 expressed in the reference configuration takes the form

j̄−1 ≈ j̄0
−1 − j̄0

−2
t0 ·(u,1 ×u0,2 +u0,1 ×u,2),

which allows us to calculate the normal director increment �t= t− t0 as

�t≈ j̄0
−1

(u,1 ×u0,2 +u0,1 ×u,2)− j̄0
−1

[t0 ·(u,1 ×u0,2 +u0,1 ×u,2)]t0.

This expression can be written more compactly after introducing v=u,1 ×u0,2 +u0,1 ×u,2 and the
identity a×(b×c)=b(a·c)−c(a·b):

�t= j̄0
−1

[v(t0 ·t0)−(t0 ·v)t0]= j̄0
−1

[t0 ×(v×t0)].
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Replacing t by t0 +�t in Equation (B1), rearranging terms, applying the identities a·(b×c)=
c·(a×b)=b·(c×a) and a×b=−b×a, and neglecting higher-order terms in u, the bending strains
can be expressed as

��� = −t0 ·u,��+ j̄0
−1

[(u0,��×u0,2) ·u,1 +(u0,1 ×u0,��) ·u,2]

+ j̄0
−1

(t0 ·u0,��)[(u0,2 ×t0) ·u,1 +(t0 ×u0,1) ·u,2]. (B2)

The derivatives of the normal vector t0 are computed as

t0,� = j̄0
−1

(u,1�×u0,2 +u0,1 ×u,2�)− j̄0
−1

[t0 ·(u,1�×u0,2 +u0,1 ×u,2�)]t0,

which can be compactly re-written by applying the previous procedure for �t:

t0,� =− j̄0
−1{t0 ×[t0 ×(u0,1�×u0,2 +u0,1 ×u0,2�)]}.

APPENDIX C: MEMBRANE AND BENDING STRAIN–DISPLACEMENT MATRICES

In this appendix we describe the membrane and bending strain–displacement matrices, which are
needed for the computation of the stiffness matrix K (Section 3). We consider a specific patch A.
Let u0A, u0 to keep the notation light, be a configuration mapping for the middle surface for this
patch, defined over the parametric space AA

u0(n)= ∑
a∈N̂P

QA

pa(n)Pa,

with derivatives

u0,�(n)= ∑
a∈N̂P

QA

pa,�(n)Pa, u0,��(n)= ∑
a∈N̂P

QA

pa,��(n)Pa .

The membrane and bending strain–displacement matrices for the ath nodal point, Ma and Ba

respectively, take the form

Ma
ij =Ma

i ·e j and Ba
ij =Ba

i ·e j ,

where

Ma
� = pa,�u0,�,

Ma
3 = pa,2u0,1 + pa,1u0,2,

Ba
� = −pa,��t0 + j̄0

−1
[(u0,��×u0,2)pa,1 +(u0,1 ×u0,��)pa,2]

+ j̄0
−1

(t0 ·u0,��)[(u0,2 ×t0)pa,1 +(t0 ×u0,1)pa,2],

Ba
3 = −2pa,12t0 +2 j̄0

−1
[(u0,12 ×u0,2)pa,1 +(u0,1 ×u0,12)]pa,2

+2 j̄0
−1

(t0 ·u0,12)[(u0,2 ×t0)pa,1 +(t0 ×u0,1)pa,2],

and e j represent the canonical basis vectors of R3. Note that repeated indices in the expressions
for Ma

� and Ba
� do not imply summation.
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APPENDIX D: ESSENTIAL BOUNDARY CONDITIONS

We describe here the imposition of the essential boundary conditions, both for the displacements
and the rotations. We describe the variational formulation with the Lagrange multipliers (a slight
variation of [11]), as well as the discretization.

Let us consider the integral of a function f over the boundary surface �S0 of a thin shell object
S0. In fact, �S0 is the only thin part of the boundary of S0, i.e. it excludes the surfaces parallel
to the middle surface. Assuming that the function does not change through-the-thickness, we have

∫
�S0

f dS0 =
∫

��0

f

⎛
⎜⎜⎝
∫ h/2

−h/2

∥∥∥∥�x0

��
× �x0

�t

∥∥∥∥
‖u0,t‖

d�

⎞
⎟⎟⎠ d�0,

where t is a tangent coordinate along the boundary curve �A. By introducing �x0/�t =u0,t +�t0,t ,
we obtain

∫ h/2

−h/2

∥∥∥∥t0 × �x0

�t

∥∥∥∥
‖u0,t‖

d�=h
‖t0 ×u0,t‖

‖u0,t‖
.

With the previous expressions and the PU, the integral of a function f on the boundary surface
�S0 becomes ∫

�S0

f dS0 =
∫

��0

h f
‖t0 ×u0,t‖

‖u0,t‖
d�0

=
M∑

A=1

∫
�AA

[h( f ◦u0)‖t0 ×u0,t‖]A(wQ
A ◦u0)d��.

Here subindex A means that the expression between the brackets is computed with the local
parameterization of the Ath patch.

D.1. Displacement constraints

Let ku be the Lagrange multipliers associated with the displacement constraints u= ū on ��u
0; the

additional terms for Equation (14) are

−
∫

��u
0

h[(u− ū) ·
ku +ku ·
u]
‖t0 ×u0,t‖

‖u0,t‖
d�0.

With the PU, we obtain

−
M∑

A=1

∫
��u

0A

h[(u− ū) ·
ku +ku ·
u]
‖t0 ×u0,t‖

‖u0,t‖
w

Q
A d�0,

where ��u
0A =��u

0 ∩supp(wQ
A ). Then, the final expression in the parametric space for the displace-

ment constraints is

−
M∑

A=1

∫
�Au

A

{h[(u− ū) ·
ku +ku ·
u]‖t0 ×u0,t‖}A(wQ
A ◦u0)d��.

D.2. Rotation constraints

We express a unit vector tangent to the boundary curve of the middle surface �0 as s0 =u0,t/‖u0,t‖,
which satisfies t0 ·s0 =0. The small rotation vector h measures the infinitesimal rotation of the
director field, i.e. it is given by the relation [11]

h×t0 ≈�t= t− t0,
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