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Abstract. Rockfall protection systems are highly flexible structures that can absorb large
amounts of energy. Compared to rigid protection structures, these structures undergo
large deformations upon impact and thus result in lower braking accelerations. This leads
to an effective transfer of the load. Previous works have shown that the partly highly
complicated real ring structures and rope constructions can be represented by simplified
structural models, using the Finite Element Method (FEM), if the global behavior of the
protective structure and the impacting objects is of interest. We discuss the appropriate
modeling of the protective structures and sliding edge cables using the FEM in this work.
Additionally the realization of the impact simulation by coupling particle methods and
the FEM is briefly discussed.

1 INTRODUCTION

Rockfall protection systems can be found wherever vulnerable areas need to be pro-
tected. It is mainly roads along steep rock faces and settlements in mountainous land-
scapes that need to be protected accordingly. The protective structures are designed in
such a way that they allow very large deformations in order to minimize the braking
accelerations of the impacting objects. This allows for the efficient absorption and dissi-
pation of large energies. In order to evaluate new designs, time-consuming and expensive
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experiments have to be carried out. This testing process is to be supported by numerical
computer simulation in order to make it cheaper and more effective. The basis and first
investigations for the realization of such simulation is given in [8]. Since then, many other
publications [8, 9, 10, 11, 12, 13] have dealt with and advanced this topic. In order to
model the structure appropriately with the Finite Element Method (FEM), very detailed
structural elements are developed, as can be read in [13], for example. The impacting
objects are also discretized with finite elements (surfaces, lines) and finally the impact
is simulated with suitable contact conditions. In order to avoid these complex contact
algorithms (contact between surface and surface or surface and line, etc.) and to offer
a modular simulation environment, recently published works [1, 2, 3, 4] have proposed
to use the Discrete Element Method (DEM) to model the impacting objects while the
structural response is still calculated by the FEM. The impacting objects are modeled
from clusters of spherical single particles to approximate the irregular geometry of rocks
while using the effective contact algorithm for spheres. Initial discussions of this coupling
idea were published in [4] while the foundation for it was laid in [3] and is based on the
work of [14, 15]. Practical applications and comparisons with experiments can be found
in [1, 2]. The present paper will not deal with the implementation of the coupling and
will instead focus on the modeling of the FEM model of the structure. Some of the more
important element formulations and possible alternatives will be discussed. This paper
can be seen as a short review article of selected passages from [1, 2, 3, 4].

2 Coupling Procedure

To realize the coupled simulation the multi-physics code KRATOS [16, 17, 18] is used.
The DEM code and the FEM code are subsequently called and data is exchanged in a
suitable co-simulation environment. The coupling procedure shall not be discussed in
this work and the reader is kindly re-directed to [3]. Since structural modeling is to be
discussed in this paper, we cannot avoid presenting the rough working of the coupling.
The basic idea is to consider the structural domain both as a rigid boundary ΩD in the
DEM simulation and as a structural model ΩS in the FEM simulation. The contact forces
are calculated on ΩD and then set to the appropriate nodes in the structural model ΩS. A
structural response is then calculated with the help of the FEM. The resulting solutions,
such as displacements and velocities, are then set back to ΩD and its coordinates are
updated accordingly. By progressing in time in this way, the coupled simulation can be
realized.

This modular approach has several advantages, with the different modeling of the
interface in the DEM and the FEM being particularly noteworthy in the context of this
work. As shown in Figure 1, for wire meshes, the rigid boundary ΩD of the DEM can
be modeled realistically with suitable openings while the structural model can use a
simplified homogenized finite element model to describe ΩS and thus offer an effective
analysis tool. Figure 2 demonstrates the aforementioned coupling procedure and shows
how small particles are able to penetrate the interface, although a homogenized FE model
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is applied to calculate the structural response.

Figure 1: Discretization of the respective interface participants. The real geometry (adapted from [5])
is modeled realistically including any openings as the DEM rigid boundary. The model for calculating
the structural response with the help of the FEM, on the other hand, is a simplified, homogenized surface
that is discretized with triangular elements.

Figure 2: Visualization of the interface during impact. While the rigid boundary of the DEM allows for
penetration of small impacting objects, the homogenized structural surface model allows for a simplified
structural analysis of the deformation behavior applying the FEM.

Of course, one is not limited to modeling ΩS by a homogenized FE model. If necessary,
more detailed structural models can also be used.

3 DEM

More information on the DEM and its individual components can be found in [14, 15],
for example.
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4 FEM

The FEM is used to numerically solve partial differential equations. Since it is usually
impossible to find closed-form solutions to most structural problems, the domain of the
structure is divided into finite elements for which approximate solutions are available.
This discretization allows to find a solution for the whole domain, which is evaluated at
the discrete mesh nodes.

For an arbitrary structural domain, including Neumann and Dirichlet boundary condi-
tions the strong form of the initial boundary value problem can be written as (not stating
the boundary conditions),

div (σ) + b = ρü, (1)

including the Cauchy stress tensor σ, body forces b, the density ρ and the accelerations
ü. Multiplying Equation 1 with the virtual displacement field δu as the test function
and integrating it over the current domain Ω, the weak form is achieved, expressing the
virtual work. The virtual internal work δWint is given in the following for both the current
domain Ω and the initial domain Ω0.

δWint =

∫
Ω

σ : δεEA dΩ =

∫
Ω0

S : δεGL dΩ0. (2)

The Euler-Almansi strain tensor εEA, the Piola-Kirchhoff 2 (PK2) stress tensor S and its
work conjugate Green-Lagrange strain tensor εGL are used. Bold letters indicate tensors
of first and second order. Equation 2 is the starting point of most element formulations.

4.1 Sliding Edge Cable

One of the most important parts of the FE model is the sliding edge cable. It is one
of the crucial components allowing for large deformations. The basic idea is to have
an edge cable that allows all connecting nodes to slide along its axis, only restricted by
friction. Three different methods have been investigated to realize the sliding along a
deformable cable element, which are summarized in Table 1. Two of the methods, the
penalty method [19] and multi point constraints [20] need a nearest neighbor search in
each time step to search for the nearest two nodes along the edge cable to which the
sliding constraint is either approximated or enforced. The third option, the sliding cable
element formulation is a stand-alone element formulation that incorporates an arbitrary
number of inner nodes along the edge cable which is only one single FE.

4.1.1 Sliding Cable Formulation

The finite element formulation for the sliding cable uses only one single element along
the whole edge with the inner part discretized as shown in Figure 3. The idea is to
calculate the internal stresses w.r.t. the change of the total length l instead of the change
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Advantages + Drawbacks -

Sliding Edge
Element Formulation

Efficient handling of friction
Easy incorporation into FE model

No neighbor search
Edge cable is only 1 element
Constraint exactly enforced

Implementation of new element

Penalty Method No add. element implementation

Handling of friction
Neighbor search
Penalty factor

Constraint only approximated

Multi Point
Constraints

No add. element implementation
Constraint exactly enforced

Handling of friction
Neighbor search

Case-by-case analysis necessary
Non-linear constraint

Table 1: Advantages and drawbacks of three different methods to realize sliding along a given deformable
cable element.

Figure 3: Support rope, taken from [1]. (A) Detailed sketch of installation guide, adapted from [6]. (B)
Discretization of FEM model.

of the line segments li. A detailed derivation is given in [21] and shortly introduced in
the following.

W.r.t. Equation 2, δWint is expressed using the cross-section A, the total current
length l =

∑nlines

i li, the total reference length L =
∑nlines

i Li, the one-dimensional Green-
Lagrange strain εGL, the one dimensional PK2 stress S, a given PK2 pre-stress Spre, and
a direction vector T,

δWint =
l

L
· A · (E · εGL + Spre) ·T · δu, (3)
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T1 =

[
−∆x1

l1
−∆y1

l1
−∆z1

l1

]
,Ti =

[
∆xi−1

li−1

− ∆xi
li

∆yi−1

li−1

− ∆yi
li

∆zi−1

li−1

− ∆zi
li

]
,

Tnnodes
=

[
∆xnnodes−1

lnnodes−1

∆ynnodes−1

lnnodes−1

∆znnodes−1

lnnodes−1

]
.

(4)

T contains the distance between the nodes, e.g. ∆xi = xi+1−xi. As described by [21, 8]
an additional friction force can be easily added to the sum of internal forces at each node
to model the movement restriction due to friction. Figure 4 demonstrates a test-setup for
a coupled simulation applying the sliding element formulation.

Figure 4: Impact simulation with sliding edge cables, taken from [3, 4]. The interior structural domain
is modeled with standard cable elements.

4.1.2 Penalty Method

To realize the sliding with the help of the penalty method additional terms are added
to the internal energy which represent an energy representation of the distance d between
an arbitrary node and the edge cable segment. By minimizing the total internal energy
in the FEM solving process the distance d is minimized too. W.r.t. Figure 5 the distance
d can be calculated depending on the discrete nodal displacements u as follows:

v = A (u)−C (u) , w = B (u)−A (u)

d (u) =
| v ×w |
| w |

, d2 (u) =
(v ×w) · (v ×w)

w ·w
.

(5)

d2 is now used to define a functional f which is similar to the energy description of a
single spring element,

f (u) =
1

2
· d2 (u) · α, (6)

where α represents the penalty factor which is highly problem dependent. By adding f to
the total energy of the system the following contributions to the internal forces Fint,r and
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the tangential stiffness matrix Kr,s can be expressed, while r, s are two arbitrary degrees
of freedom.

Fint,r =
∂f

∂ur
= α · ∂d

∂ur
, Kr,s =

∂2f

∂ur∂us
= α · ∂2d

∂ur∂us
. (7)

Figure 5: Visualization of the geometric investigations to determine the distance between an arbitrary
node C and a line spanned between A and B.

The same simulation as shown in Figure 4 is repeated by replacing the sliding cable
elements with standard cable elements and applying the penalty method. The final results
are shown in Figure 6. It can be clearly seen, that there is a gap between the outer nodes
and the edge cable. This is a result of the choice of the penalty factor α. If it is chosen
wrongly it can either lead to badly conditioned system matrices (α is too large) or to a
bad representation of the distance constraint (α is too low). This drawback makes the
penalty method inferior to the sliding cable formulation for the problem setup at hand.

Figure 6: Impact simulation with standard cable elements on the interior and along the edges. The
sliding is realized via the penalty method as described in this subsection 4.1.2.
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4.1.3 Multi Point Constraint

In contrast to the penalty approach the Multi-Point constraint approach, aims to ex-
actly reproduce the given constraint instead of approximating it. For this purpose a slave
node and two master nodes are considered and their respective dofs are set in a specific
relation. To obtain this relation the following Figure 7 is used.

Figure 7: Visualization of the geometric investigations to determine the movement of an arbitrary node
C on a line segment spanned between the nodes A and B.

The slave node C is only allowed to move along the line between master node A and
B. The 3-dimensional line equation,

d = B−A = B0 + uB −A0 − uA,

r = C−A = C0 + uC −A0 − uA = t · d,
(8)

can be used to express the respective displacement relations with an arbitrary scalar value
t,

t = rx/dx = ry/dy = rz/dz. (9)

The further procedure is described below as an example for case dx 6= 0 and only the
y-displacement vC , whereby case distinctions are necessary depending on the problem.
First the relations between the displacements are expressed,

if dx 6= 0→ ry = rx ·
dy
dx

∧ rz = rx ·
dz
dx
, (10)

which allows the expression of the respective master-slave relations with the x-displacement
u, y-displacement v, and z-displacement w,

vC
slave

= YA + vA
master

−YC +

(XC + uC
master

−XA − uA
master

)
· YB +

master

vB −YA −
master

vA
XB + uB

master

−XA − uA
master

 .
(11)
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Obviously, Equation 11 is a non-linear constraint and in the following exemplary lin-
earized, while dX , dY in Equation 12 are considered to be constant and given by the last
time step,

dX = XB + uB −XA − ua, dY = YB + vB − YA − va, (12)

vC
slave1

=

(
YA − YC +

YB − YA
dX

· (XC −XA)

)
constant

+ vA
master1

·
(

1 +
XA −XC

dX

)
weight1

+ vB
master2

· XC −XA

dX
weight2

+ uC
master3

· dY
dX

weight3

− uA
master4

· dY
dX

weight4

.

(13)

Finally, after successfully declaring all proper constraints the system stiffness matrix
K must be transformed by K̂ = ΛTKΛ, with the help of Λ containing the constraint
information. In the case of an explicit dynamic simulation in which the accelerations
ü = M−1 · (res−D · u̇), with the mass matrix M, the force residual res, the velocities u̇,
and the damping matrix D are solved, the residual must be manipulated to resmaster =
resmaster + resslave · weight.

The complexity of this method and the additional drawbacks shown in Table 1 make
this method again inferior to the sliding edge cable formulation for this problem.

4.2 Plate In Membrane Action with Tension Field Theory

As demonstrated in Figure 1 the complex wire mesh geometries of some protection
nets can be simplified in the numerical FE model with an homogenized surface model. In
this work plane stress plates in membrane action are used, which has been proven to be
applicable for the aforementioned structures [3, 1]. In order to do justice to the anisotropic
material behavior of wire meshes, the Münsch and Reinhardt [22] law can be used, for
example. It allows the definition of two different Young’s-Moduli Ex, Ey and is therefore
suitable for the problems at hand. The anisotropic elastic consistent linearized tangent
modulus C is expressed with the two Poisson’s ratios νyx, νxy and the shear modulus G,

C =
1

1− νxyνyx

 Ex νxyEx 0
νyxEy Ey 0

0 0 (1− νxyνyx)G

 , νxy
Ey

=
νyx
Ex

. (14)

Figure 8 shows the same simulation as done in Figure 4 by replacing the inner cable net
model with plate in membrane action elements. It can be seen, that although sliding edge
cables are applied the compression stresses in the plate elements prevent the structure
from a realistic deformation behavior.
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Figure 8: Impact simulation with sliding edge cables. The interior structural domain is modeled with
plate in membrane action elements, which can carry compression forces.

As a remedy the tension field theory is applied, which is described in [7]. It checks for
the principal stresses by an eigen-value analysis and transforms C if compression stresses
are detected. This way the correct deformation behavior is replicated, by excluding com-
pression stresses, which is shown in Figure 9.

Figure 9: Impact simulation with sliding edge cables, adapted from [1]. The interior structural domain
is modeled with plate in membrane action elements applying the tension field theory, described by [7],
which excludes compression stresses.

5 CONCLUSIONS

In order to simulate the highly non-linear interaction between impacting objects and
protective structures for rockfalls, we couple the DEM and the FEM. A brief introduction
to the coupling procedure has been given in this paper, with reference to [3] for further
information. Both the correct modeling of the rock [2] and the appropriate structural
modeling must be done carefully. This paper discusses some important aspects of struc-
tural modeling using the FEM. Two structural elements that need special attention in
the model of the protective structure have been discussed and possible alternatives were
pointed out. The application of the models presented here can be found in [1, 2].
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