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M. ARROYO AND T. BELYTSCHKO
foundation of the present theory. Section III describes
formulation of the continuum constitutive response in ter
of the interatomic potential. The precise definitions of t
infinitesimal elastic moduli of carbon nanotubes, and th
explicit expression in terms of the functional form of th
interatomic potential, are provided in Sec. IV. It is show
that these analytically derived moduli coincide with tho
extracted from atomistic calculations. In Sec. V, the simu
tion method developed by combining the continuum m
chanics surface model and the finite element method
shown to accurately mimic the energetics, the large defor
tion morphologies, and the structural instabilities of the p
ent atomistic model in the fully nonlinear regime. In a com
panion paper,30 the mechanics of thick multiwalled carbo
nanotubes containing millions of atoms are explored.

II. FINITE CRYSTAL ELASTICITY FOR CURVED
MONOLAYERS

The relation between the elastic moduli of bulk crystalli
materials and the interatomic interactions is well establis
in modern molecular theories of elasticity. There are t
equivalent approaches for extracting the elastic moduli fr
the atomistic description,31,32 namely themethod of the ho-
mogeneous deformations,33–35 also called the Cauchy-Bor
hypothesis,36 and the method of the long waves with
lattice-dynamical theories.31 For examples of the applicatio
of these classical methods to the in-plane response
graphene, see Refs. 37 and 38, respectively. The me
based on the Cauchy-Born rule is purely static but, unlike
asymptotic long wave limit of lattice dynamics, describes
mechanics of crystals at finite strains. This method gives
to continuum constitutive models systematically deriv
from the atomistic model in hand. Furthermore, the deriv
constitutive models inherit the symmetries of the underly
lattice. Finite crystal elasticity has been used, for instance
obtain elastic moduli and study the stability of strain
crystals.33–35,39,40Recently, these ideas have been cast i
computational framework to solve general boundary va
problems with complex geometries or loading, in what
called the quasicontinuum method.41 This method can handle
defects and fracture, by adaptively refining the continu
description down to the atomic level where required. A si
pler version, the so-called local quasicontinuum meth
combines the finite element method and finite crystal ela
constitutive relations; successful applications include
simulation of nanoindentation in silicon based on an anal
cal potential and the tight binding method,42,43 and an analy-
sis of the polarization switching of ferroelectric single cry
tals based on anab initio Hamiltonian.44

Given the crystalline nature of carbon nanotubes, and
large elastic~reversible! deformations they exhibit, finite
crystal elasticity appears to be appropriate for their mech
cal analysis. As recently suggested,13 the standard theorie
aimed at space-filling crystals do not capture the effects
the curvature of crystalline monolayers deforming in thr
dimensions such as nanotubes. The general idea behind
dard finite crystal elasticity in the case of space-filling cry
tals is sketched below, its limitations for carbon nanotub
2
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illustrated, and the extended theory briefly outlined.
Space-filling continuum bodies can be mathematica

represented by subsets of the ambient Euclidean space.
sider the finite deformation of this body. LetF be the defor-
mation that maps the undeformed bodyV0,R3, into R3. If
X denotes a point in the undeformed body, its image a
deformation is x5F(X). The deformed body isV
5F(V0), and is also a subset ofR3. The deformation gra-
dient is thederivative of F, F5DF5]F/]XPR333. At
each pointX, the deformation gradient is a linear transform
tion from R3 into R3, which locally characterizes the defo
mation, and maps ‘‘infinitesimal’’ material vectors from th
undeformed into the deformed body,dx5FdX. 45

The central hypothesis behind molecular theories of e
ticity at finite strains is that, at the scale of the atomic sp
ing, the deformation of the crystal is homogeneous. Con
quently, as the crystalline solid deforms, lattice vecto
undergo a linear transformation.32,33,46This approach is often
abstracted through the Cauchy-Born rule:36,40

a5FA, ~1!

where A denotes an undeformed lattice vector anda the
same vector in the deformed crystal. This rule links the a
mistic and the continuum deformations. Complex lattic
that is lattices with more than one atom in the unit ce
require a special treatment as detailed in the following s
tion. The Cauchy-Born rule is restricted to regions where
crystal is free of defects, slips, and other inhomogeneities
special crystallographic phenomena. Its validity and range
applicability has recently been rigorously studied by metho
of nonlinear analysis.47

Now consider a crystalline monolayer such as a graph
sheet deforming arbitrarily in three dimensions. It is natu
in this case to treat the continuum solid as a surface, a cu
two-dimensional body without thickness. Indeed, the tw
dimensional nature of the lattice does not suggest any m
ingful thickness; owing to the Born-Oppenheimer appro
mation, the binding energy depends exclusively on
positions of this two-dimensional arrangement of atoms. I
postulated that the atoms lie on the surface, and thereforethe
lattice vectors are chords of the surface.13

The appropriate framework to describe two-dimensio
continua deforming in three dimensional Euclidean spac
continuum mechanics on manifolds.48 The undeformed body
V0, which represents the planar ground configuration
graphene, is now a subset ofR2. It is mapped by the defor-
mation into the deformed bodyV, a surface inR3. In this
context, the deformation gradientF is called the tangent o
the configurationTF, and it maps infinitesimal material vec
tors of the undeformed bodyV0 into vectors which are tan
gent to the surfaceV ~see Fig. 1!.

The standard Cauchy-Born hypothesisa5FA produces
tangent vectors instead of chords, i.e.,FAP TxV, where
TxV denotes the tangent linear space to the surfaceV at x,
and therefore does not capture the effect of curvature. A g
eralized kinematic hypothesis based on the differential
ometry concept of the exponential map has been propose
Ref. 13. The fundamental idea is to compose the stand
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Cauchy-Born rule with the exponential map,49 which natu-
rally maps the tangent space onto the curved surface. Th
accomplished by the so-called exponential Cauchy-Born

a5exp+FA, ~2!

where exp denotes the exponential map ofV at the point
from which a emanates. The exponential map ‘‘brings’’ th
tangent vectorw5FA to the curved surface, thereby produ
ing a chord~see Fig. 1 for an illustration!. More physica
insight on this extended hypothesis can be gained by ana
ing the simplest case of an atomic chain deforming in t
dimensions.50

The evaluation of the exponential map requires
knowledge of the geodesic curves of the surface, which
general entails the integration of a system of two differen
equations in which the Christoffel symbols are the coe
cients. Thus the map described by Eq.~2! is nonlocal and
difficult to evaluate exactly. For this reason, the exponen
map is approximated. This results in a local, simple mod
in which the deformed geometry of the lattice vectors is
pressed in terms of the local deformation of the surface,
is the first and the second fundamental forms.49 Note the
analogy with standard differential geometry of surfaces,
which the undeformed bodyV0 takes the role of the para
metric space, and the deformation mapF is the parametri-
zation of the surfaceV. The first and second fundament
forms can be ‘‘pulled back’’48 by F to the undeformed body
thereby defining the standard left Cauchy-Green deforma
tensorC, and a Lagrangian~extrinsic! curvature tensorK.
Similarly, in the context of differential geometry of surface
the first and the second fundamental forms are someti
expressed in the referential coordinates.51 By formulating the
theory in terms of Lagrangian~material!strain measures, th
principle of material-frame indifference is automatically s
isfied.

The final result of the extended theory is that a new se
continuum strain measures which represent the deformed
ometry of the atomic bonds can be defined in terms of
local deformation of the surfaceV, i.e., in terms ofC andK
~see Appendix A!. For instance, the deformed bond lengta

FIG. 1. Illustration of the surface kinematics and the exponen
Cauchy-Born rule. The exponential map transforms the vectow
5FA tangent to the surface into a chord of the surfacea.
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of a lattice vectorA after deformation is explicitly written as
a5 f (C,K;A). Similarly, a continuous variable representin
the angle between two lattice vectorsA and B in the de-
formed configuration can be written asu5g(C,K;A,B).
Thesederivedstrain measures are adequate to formulate c
tinuum constitutive functions in terms of bond-order pote
tials, which only depend on bond lengths and angles. Sim
expressions can be derived for other geometric quant
such as dihedral angles.

III. CONSTITUTIVE LAW FOR GRAPHENE

One can distinguish three inequivalent bond vectors in
unit cell of the honeycomb lattice of grapheneA0i , i
51,2,3. These bond vectors form three inequivalent ang
labeled such thatu i is the angle between bondj and bondk,
and$ i , j ,k% is an even permutation of$1,2,3%. At the ground
state of graphene, the length of each of these bond vecto
denoted byA0, andu i52p/3, i 51,2,3. When dealing with
graphene, special attention must be paid to the fact that
a Bravais multilattice; it can be viewed as two woven simp
lattices~see Fig. 2!. The standard crystal elasticity treatm
of multilattices is to assume that the homogeneous defor
tion affects each of the simple lattices. Additional kinema
variables describing the relative shifts of the simple lattic
must be introduced to properly describe the configuration
uniformly strained multilattices. These relative shifts a
called inner displacements.33–35,42,46The optical modes are
the analog of the inner displacements in lattice dynam
theories.32

Let h denote the inner displacements field, which follow
ing Ref. 42, is defined in the undeformed body, previous
the ‘‘macroscopic’’ deformationF. Thus, the lattice vectors
are

A i5A0i1h, i 51,2,3. ~3!

l
FIG. 2. Graphene honeycomb multilattice and illustration of t

inner displacements: the two simple Bravais lattices, depicted
black and white, are relatively shifted byh, also affecting the bond
vectors which are transformed fromA0i into A i . The unit cell of
areaS0, the Bravais basis vectorsB1 andB2, and the shift vectorP
are also shown.
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For some materials, the inner displacements may desc
homogeneous phase transformations.42,44

Since the configuration of the undeformed lattice depe
on h @see Eq.~3!#, the deformed geometry of the bond ve
tors does as well; for instance, the lengths of the deform
bond vectors can be written as

ai5 f̄ ~C,K,h;A0i !, i 51,2,3, ~4!

and the three angles these inequivalent bonds form after
formation as

u i5ḡ~C,K,h;A0 j ,A0k!, i 51,2,3, ~5!

where$ i , j ,k% is an even permutation of$1,2,3%. The explicit
expressions forf̄ andḡ follow from Appendix A and Eq.~3!.

This finite elasticity theory for curved crystalline mon
layers can in principle be combined with any atomis
model. We assume in the following potentials that fall with
the bond-order formalism,27 and consider the bond-orde
potentials for hydrocarbons developed by Brenner28 which
have been widely applied to study the mechanics of car
nanotubes6,19,52 including the nucleation of defects.53,54 In
these potentials, the energy is expressed in terms of b
lengths and angles as a sum over the bonds:

E5(
i

(
j . i

@VR~r i j !2B̄VA~r i j !#, ~6!

where the bond-orderB̄ models the many-body coupling be
tween bondij and its local environment. It depends on t
lengths of the bonds and angles adjacent to theijth bond. By
considering a unit cell, which contains one of each inequi
lent bond, and has an undeformed surface area ofS0

5(3A3/2)A0
2 ~see Fig. 2!, and using Eqs.~4! and ~5!, the

stored strain energy density~energy per unit undeforme
area!of the continuum surface can be written as

W~C,K,h!5
1

S0
Ecell~a1 ,a2 ,a3 ,u1 ,u2 ,u3!

5
1

S0
(
i 51

3

@VR~ai !2B̄~aj ,ak ,u j ,uk!VA~ai !#.

~7!

This hyperelastic potential depends on the left Cauchy-Gr
deformation tensorC and Lagrangian curvature tensorK of
the surface, and on the inner displacement fieldh. The de-
pendence of the energy on the undeformed lattice vectors
been omitted.

The inner displacements can be eliminated at the con
tutive level.13,42 At each point, given the local deformation
the strain energy density can be minimized with respect toh:

ĥ~C,K!5arg@min
h

W~C,K,h!#. ~8!

After this inner relaxation, the effective strain energy dens
can be written as a function ofC andK only:

Ŵ~C,K!5W@C,K,ĥ~C,K!#. ~9!
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While a closed-form expression for the hyperelastic poten
W in terms of the atomistic potential is available@see Eq.
~7!#, the evaluation ofŴ(C,K) requires the solution of a
bivariate minimization problem. If the graphene sheet is p
nar, i.e.,K50, this theory results exactly in standard fini
crystal elasticity. The total internal energy functional for t
continuum surface is obtained from the surface integral
the hyperelastic strain energy density over the undeform
body:

P int@F#5E
V0

Ŵ@C~F!,K~F!#dV0 . ~10!

Stress measures work conjugate to the strain measure
the surface can be derived from the hyperelastic potentia

S52
]Ŵ

]C
52

]W

]C U
h5ĥ

, m5
]Ŵ

]K5
]W

]KU
h5ĥ

. ~11!

It is possible to replace the derivatives of the effective p
tential Ŵ by derivatives of the analytically available pote
tial W as long as the inner displacements are in internal e
librium, as argued in Refs. 42 and 13. The first of these str
measures is an in-plane stress, and corresponds to the se
Piola-Kirchhoff stress.48 It has units of force divided by
length ~surface tension!, while the second is a momentl
stress that has units of force. These unusual units for st
tensors follow from the fact that the continuum surface h
no thickness.

IV. ELASTIC MODULI

Effective ~i.e., at the relaxed inner displacements! La-
grangian elasticity tensors can be obtained by taking sec
derivatives of the elastic potential with respect to the str
measures:

Ca54
]2Ŵ

]C2
, Cb5

]2Ŵ

]K2
, Cc52

]2Ŵ

]C]K . ~12!

The first of these elasticity tensors is a measure of the
plane stiffness of the surface and is measured in units
force divided by length. It corresponds to the second elas
ity tensor.48 The second represents the bending stiffness
the third is an in-plane/bending coupling stiffness. Again,
unusual surface tension units for the in-plane elastic modu
are a consequence of the two-dimensional nature o
graphene sheet.

In the calculation of these elastic moduli, even when
inner displacements are in internal equilibrium we can
replace Ŵ by W, as in Eq. ~11!; extra terms arise with
crossed derivatives ofW with respect to the strain measure
and the inner displacements.42 The evaluation of these
moduli at an arbitrary deformation requiresĥ(C,K), which
in general must be obtained numerically.
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A. In-plane moduli

We now develop closed-form expressions for infinitesim
elastic moduli in the analytically tractable situation of plan
graphene in its ground state, for which the inner displa
ments vanish. Although considering the small strain elas
ity of planar graphene as representative of that of nanotu
may seem a crude approximation, these moduli are avail
in a closed form, and are found to provide good estima
Indeed,ab initio calculations show that the elastic modu
of nanotubes differ only slightly from those of plan
graphene.16,17,26

The in-plane moduli of graphene can be treated follow
standard methods of crystal elasticity; other results h
been recently reported.37 Here, the precise expressions
terms of the functional form of the potential are provided,
well as a discussion of how to interpret them. The propo
theory also furnishes expressions for the flexural stiffne
For concreteness, potentials based on the bond-order for
ism are considered, although explicit expressions can be
tained for other interatomic potentials.

By methods analogous to those in Ref. 42, the in-pla
second elasticity tensor in Eq.~12! can be computed at th
relaxed inner displacements as

Ca54F ]2W

]C2
2

]2W

]C]h
•S ]2W

]h2 D 21

•

]2W

]h]CG . ~13!

This tensor, evaluated at the ground state of graphene,
responds with the usual small deformation tensor of ela
moduli.

For moderate deformations, the bond-order functionB̄ of
bond ij in Brenner’s potential depends only on the ang
adjacent to this bond.20,28 In the following, all expressions
are evaluated at the equilibrium configuration of graphe
characterized by equal bond angles 2p/3, and equilibrium
bond lengthA0. Let us denote byVR8 and VR9 the first and
second derivatives ofVR with respect to their only argumen
and similarly forVA . Let B̄8 denote the first derivative of th
bond orderB̄ with respect to any of its arguments~when
evaluated for graphene at equilibrium, the choice of ar
ment does not matter!, while B̄9 denotes the second deriva
tive of B̄ with respect to one of its arguments. ByB̄8,8we
denote the second derivative ofB̄ with respect to the first and
the second arguments. Let us define

Crr 5VR92B̄VA9 , Cuu5
3VA

A0
2 ~2B̄92B̄8,8!,

Cru5
2A3

A0
VA8 B̄8. ~14!

Lengthy but otherwise straightforward calculations lead
the following expression for the Euclidean components
the in-plane infinitesimal elasticity tensor of graphene:

Ci jkl 5m~d ikd j l 1d i l d jk!1l d i j dkl , ~15!

where
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m5
1

4A3
FCrr 2Cru2Cuu2

~Crr 1Cuu!2

Crr 1Cru2Cuu
G ~16!

and

l5
1

4A3
FCrr 1Cru1Cuu1

~Crr 1Cuu!2

Crr 1Cru2Cuu
G ~17!

are the Lame´ coefficients. The underlined terms correspo
to the effect of the inner displacements, i.e. the second t
on the right hand side of Eq.~13!.

The tensor of infinitesimal moduli in Eq.~15! has the
general form of a fourth order isotropic tensor. Unlike f
bulk materials, this tensor is defined in a two-dimensio
space@the indices in Eq.~15! run from 1 to 2#. Thus, the
infinitesimal elasticity tensor is isotropic, a well known fa
about honeycomb lattices. This does not imply that graph
is isotropic for finite deformations, i.e. its invariance grou
does not coincide with the group of proper finite rotatio
SO(2).48 Finite deformations introduce anisotropy in the la
tice; in particular the finite deformation required to roll
graphene sheet into a nanotube induces anisotropy obs
able in the slight variations of the elastic moduli with radi
and chirality.55

The conventional expressions relating the Lame´ coeffi-
cients with Young’s modulusY and Poisson’s ration for bulk
isotropic linearly elastic materials are

Y5
m~3l12m!

l1m
and n5

l

2~l1m!
. ~18!

Young’s modulus and Poisson’s ratio are defined from
thought experiment of applying uniaxial tensions11 to a
prismatic homogeneous isotropic linear elastic body, a
measuring the strains in each direction. ThenYªs11/«11
and nª2«22/«1152«33/«11. One may be tempted to us
the expressions in Eq.~18! for graphene. However, it is im
portant to bear in mind that they are defined for bulk ma
rials, and the present theory regards graphene sheets as
inely two-dimensional objects, for which the standa
‘‘plane-strain’’ or ‘‘plane-stress’’ conditions do not mak
sense. If one subjects a rectangular planar slab of graphe
uniaxial tensions11, measures the strains«11 and«22 («33 is
not defined!, and adopts the natural definitionsYsªs11/«11
andnsª2«22/«11, the resulting expressions in terms of th
Lamécoefficients in Eq.~15! are

Ys5
4m~l1m!

l12m
and ns5

l

l12m
, ~19!

where the subscripts emphasize the fact that they refer
surface continuum. As usual,ns is nondimensional. In this
case,Ys has units of surface tension, agreeing with the po
of view of other authors.26 The in-plane shear modulusGs
is also expressed in units of surface tension, and coinc
with m.
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B. Bending modulus

We consider an initially planar graphene sheet. We th
calculate the second derivative of the strain energy den
with respect to the curvature in a given direction. We a
interested in the scalar modulus

Cb5
]2Ŵ

]k2
, ~20!

wherek is the only nonvanishing principal curvature of th
monolayer. Appendix B describes the derivation of th
modulus in terms of the functional form of the interatom
potential. Several intermediate results deserve special a
tion.

On the one hand, the fact that the second term of Eq.~B4!
vanishes reveals that, unlike the in-plane moduli, the infi
tesimal bending modulus is insensitive to the inner displa
ments. On the other hand, it follows from the derivation
Appendix B that for any two-dimensional honeycomb latti
whose interatomic potential depends only on bond leng
and angles~and not on dihedral angles for instance!, the
infinitesimal bending modulus around the planar state can
written as

Cb5(
i 51

3
]W

]ai

]2ai

]k2
1(

j 51

3
]W

]u j

]2u j

]k2
. ~21!

Remarkably, this modulus does not depend on second de
tives of the atomistic potential function. This means tha
we naively adopt a quadratic two-body/three-body expans
of the energy of graphene around its ground state

E5 (
bonds

1

2
ks~ai2A0!21 (

angles

1

2
ku~u i22p/3!2, ~22!

it follows that]W/]ai50 and]W/]u i50 at the equilibrium
configuration. Therefore such a lattice has zero bending s
ness, which is not realistic for graphene.

As expected, the infinitesimal bending stiffness of plan
graphene does not depend on the direction in which the s
is bent, i.e., planar graphene is isotropic with respect
bending. For bond-order potentials, the bending modu
adopts the particularly simple form

Cb5
1

2
VA~A0!B̄8~2p/3,2p/3!. ~23!

C. Comparison to atomistic calculations

The explicit expressions for Young’s modulus, Poisso
ratio, the shear modulus, and the bending modulus derive
the previous sections are here checked against atomistic
culations. The second parameter set of the potential prop
by Brenner28 has been adopted in the comparisons, but
methodology is in principle applicable to any analytical i
teratomic potential. According to Eqs.~14!, ~16!, ~17!, ~19!,
and ~23!:

Ys5235.8 J/m2, ns50.4123, Gs583.47 J/m2,
6
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Cb52.177 eV Å2/atom. ~24!

The result for Young’s modulus perfectly matches that o
tained in Ref. 37 for the same potential. To compare w
values of the Young’s modulus provided in units of press
which assume a thicknesst50.34 nm, simply operate as fol
lows: 694 MPa5236 J/m2/0.34 nm. To illustrate how thes
moduli represent the behavior of nanotubes of finite rad
for a (10,10) nanotube we obtainYs5234 J/m2 and ns
50.414.

To extract Young’s modulus and Poisson’s ratio of plan
graphene from atomistic calculations, a planar slab
graphene is subject to a small uniaxial deformation~0.02%!.
The energy of the structure is then minimized while allowi
for lateral deformation. Appropriate periodic boundary co
ditions are used. The axial force and the lateral deforma
are measured from the calculations to compute the ela
moduli. These calculations perfectly match~to four signifi-
cant digits!the analytical values forYs andns in Eq. ~24!.

The significance of the inner displacements onYs andns
can be explored by omitting the second term in the rig
hand side of Eq.~13!, that is omitting the underlined terms o
Eqs. ~16! and ~17!. In this case,Ys

no inner5337.8 J/m2 and
ns

no inner50.1580. Atomistic calculations in which the stru
ture is stretched without relaxation of the inner displac
ments also give these values of elastic moduli. These va
differ substantially from those in Eq.~24!, so the effect of the
inner displacements is very significant. It can be obser
that the effect of the inner displacements is very importa
Although these elastic moduli agree more closely with ac
rate ab initio data ~see Table I!, they do not represent th
actual behavior of atomistic systems described by Brenn
potential.

To validate the expression for the bending modulus,
~23!, we compute the strain energies~relative to the ground
state of planar graphene!of fully relaxed nanotubes of vary
ing radii. We plot the strain energy of these nanotubes ver
the inverse of their equilibrium radius, and compare with t
simple quadratic expression in the curvature 1/2Cb(1/R)2,
where Cb is not fitted, but obtained from Eq.~23!, andR
denotes the radius of the nanotube. One would expect
approximation to be valid for very small curvatures, that
very large nanotubes. However, a quadratic approximatio
the bending energy has been shown to accurately describab
initio results for a wide range of radii.16,17 Figure 3 shows
that the agreement between the atomistic calculations and
quadratic approximation of the energy is excellent. For sm
nanotubes~right side of the plot!some deviations are notice
able. Nevertheless, for nanotubes of diameter larger tha

TABLE I. Elastic properties of graphene fromab initio calcula-
tions, and from Brenner’s potentials@* from Kudin et al. ~2001!#.

Ys(J/m2) ns Cb (eV Å2/atom)

Brenner~1990! 236 0.412 2.2
Brenner~2002! 243 0.397 1.8
Ab initio* 345 0.149 3.9
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nm, the bending modulus provided by the continuum ana
sis very accurately characterizes the elasticity of atomi
models of nanotubes.

Table I reports the values of the elastic moduli of plan
grapheneYs , ns , andCb derived from Eqs.~14!, ~16!, ~17!,
~19!, and~23! for the second parameter set of Brenner’s p
tential. The predicted equilibrium bond length for graphe
with this potential is 0.145 nm. The recently developed s
ond generation bond-order potential29 is also analyzed, and
the associated elastic properties reported in Table I.
equilibrium length predicted by this potential is closer to t
widely accepted value of 0.142 nm. The overestimation
the equilibrium bond length with the original potential b
Brenner slightly biases the elastic properties. These mo
are compared with availableab initio calculations,17 which
agree very well with other published data.16 It can be ob-
served that the bond-order potentials deviate significa
from the ab initio data. The second generation bond-ord
potential slightly improves Young’s modulus and Poisso
ratio, but provides a worse bending stiffness.

Equation~23! provides valuable insight into the relatio
between the elastic bending modulus and the functional f
of the potential. Consider the following exercise. Let us
scale the bond-order potential, leavingB̄(2p/3,2p/3) un-
changed but changingB̄8(2p/3,2p/3) to fit the ab initio
value forCb . Note that this does not alter the ground ene
of graphene, nor the equilibrium bond length. By doing th
we obtain a value for Young’s modulus of 336 J/m2, very
close to theab initio value. Poisson’s ratio also dramatical
improves to a value of 0.16. This exercise illustrates how
expressions provided in the previous sections facilitate fitt
an analytical potential.

V. FINITE ELEMENT SIMULATIONS

The finite deformation continuum theory for a surfa
without thickness described in Sec. III is now combined w
the finite element~FE! method. Since the continuum energ
depends on second derivatives of the deformation m

FIG. 3. Strain energy relative to planar graphene for fully
laxed nanotubes of varying radius plotted vs a quadratic appr
mation of the bending energy with the bending modulus predic
by the continuum theory.
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through the curvature tensor, a sufficiently smooth finite
ement approximation is required; here, subdivision finite
ements are used.56 An alternative coarse grained simulatio
method for carbon nanotubes based on constrained atom
calculations in combination with meshfree methods, in
spirit of the nonlocal quasicontinuum method, has been p
posed recently.57

The continuum/FE approach is validated by compar
the finite element calculations with zero temperature atom
tic calculations. The second parameter set of the Bren
potential28 is used for the bonded interactions. Since t
Brenner potential does not include nonbonded interactio
these are incorporated by a separate potential.58 A Lennard-
Jones potential is adopted for the nonbonded interactio
which corresponds to the graphene-graphene parameter s
Ref. 59. This potential for the nonbonded interactions h
been used for instance to analyze the mechanics of C60 mol-
ecules inside carbon nanotubes.60 Since we want to mode
intratube van der Waals interactions, in the simulations
given atom can interactvia the nonbonded potential with a
other atoms in the system, except the set of atoms close
in the lattice~within the cutoff radius of the nonbonded po
tential in the undeformed configuration!. The main disadv
tage of such a partitioning approach, namely that it hind
the reactive capability of the bond-order potential, is irr
evant for our purposes. A continuum version of the no
bonded interactions can also be formulated,13 and is imple-
mented in the FE simulations. This continuum nonbond
energy, together with the internal energy in Eq.~10!, define
the total energy of the continuum system. In both atomis
and continuum simulations, the total energy is minimiz
with the BFGS quasi-Newton method, which only requir
gradients of the energy. The inner relaxation of Eq.~8! is
performed numerically by Newton’s method at each quad
ture point of the finite element model. These bivariate mi
mization problems typically converge to machine precis
in two iterations.

Figure 4 shows the comparisons for a twisted (10,1
nanotube 25 nm long. In this example, the atomistic sys
has 12 000 degrees of freedom, while the finite elem
model around 10 000. This example is not intended to de
onstrate the computational savings that the continuum/fi
element approach can deliver; its purpose is to illustrate
accuracy of the continuum theory in an example involvi
severe deformations and structural instabilities.

The twisting angle, defined as the total relative rotation
one end with respect to the other, is incrementally increas
and the total energy is minimized at each step. Three re
sentative snapshots of the deformation process are show
Fig. 4~a!, where the deformed configurations of the atomi
and the continuum simulations are presented together. T
snapshots demonstrate that the morphological agreemen
tween the continuum and atomistic simulations is excelle
and the deformed continuum surface nearly coincides w
the positions of the nuclei provided by the atomistic calcu
tion despite the severe deformations.

The evolution of the binding energy is presented for t
two models in Fig. 4~b!. This example exhibits two structu
instabilities. In the first one, a nonuniform deformation mo

-
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develops for a twisting angle of about 100°. The onset of t
instability is evident in the first snapshot of the deformatio
and can be identified in the strain energy evolution as
kink that ends the nearly quadratic regime. As loading p
ceeds, the wall of the tube comes into van der Waals con
with itself. Then, the van der Waals interactions sligh
stiffen the twisting response of the tube. In their absence,
energy growth after the first instability is roughly linear. Th
second kink in the strain energy evolution, near 460°, in
cates the development of a secondary structure. After
point, the flattened twisted ribbon folds onto itself. Figu
4~b! shows that the energetics of the atomistic system
well predicted by the continuum simulations. In the quadra
regime both methods provide indistinguishable energies.
fore the secondary structure develops, at 460°, the disc
ancy relative to the total energy change is below 0.4%,
in the final configuration, it is around 3%. This discrepan
is reduced by refining the finite element mesh.61

Figure 4~b!also shows a quadratic approximation of t
energy of the twisted nanotube based on linear theory, w
the shear modulus analytically derived in Eq.~16!. For a
homogeneously twisted nanotube, the shear strain of the
can be written asg5QR/L whereQ is the twisting angle,R
the nanotube radius, andL its length. It can be observed tha
the quadratic approximation 1/2Gsg

2 agrees remarkably

FIG. 4. Twisted 25.1-nm-long~10,10! nanotube:~a! Superim-
posed deformed configurations at three twisting angles for atom
calculation~black spheres!and continuum finite element calculatio
~gray surface!.~b! Comparison of the strain energy as a function
the twisting angle for atomistic calculation~—!, and continuum/FE
calculation (d), and quadratic approximation with the shear mod
lus obtained from the continuum analysis~- - -!.
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well with the energy of the atomistic system before buckli
occurs atg55.3%.

Figure 5 shows the evolution of the nonbonded ener
and compares the atomistic and the finite element calc
tions. The change of nonbonded energy is less than 2% o
total energy change. Nevertheless, the nonbonded inte
tions determine the morphology of the deformation, and
terpenetration of the wall of the two nanotubes will occur
their absence. Before the first buckle, the nonbonded en
is zero. After the first instability, the system gains van d
Waals energy due to the adhesion of the wall that comes
contact with itself. As deformation proceeds, the van d
Waals interactions become increasingly repulsive, parti
larly after the second instability. In this regime, the discre
ancies of the finite element prediction for the nonbond
interactions become noticeable. However, this discrepanc
the nonbonded interactions at 600° is less than 0.1% of
total energy change.

VI. SUMMARY AND DISCUSSION

The exponential Cauchy-Born rule has been applied
carbon nanotubes in combination with realistic bond-or
potentials.A priori, the application of continuum mechanic
to such small systems appears questionable to say the l
However, the presented nonstandard continuum sur
theory has been shown to accurately describe both the li
and the nonlinear mechanical response of atomistic syste
Expressions have been developed for the elastic modu
planar graphene in terms of the atomistic potential. The
pression of the bending modulus developed here canno
obtained from conventional theories. Comparisons w
moduli extracted from atomistic calculations show that t
analytical expressions very accurately describe the ela
properties of atomistic systems. Comparisons withab initio
elastic moduli suggest that the transferability of commo
used bond-order potentials for hydrocarbons is limited w
regards to the elasticity of graphene, and illustrate how th

tic

f

-

FIG. 5. Twisted 25.1-nm-long~10,10!nanotube: Comparison o
the nonbonded energy as a function of the twisting angle for at
istic calculation~—!, and continuum/FE calculation (d).
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explicit expressions can aid the parametrization of analyt
potentials.

The application of the theory at finite strains has be
presented, and it has been shown that, when combined
the finite element method, it very accurately mimics the n
linear mechanics of atomistic calculations. An exhaustive
of validation tests is presented in Ref. 61. This reference
illustrates that for nanotubes of large diameters, major co
putational savings can be achieved by the continuum ca
lations. In Ref. 30, thanks to the computational efficiency
the proposed approach, rippling deformations occurring
thick multiwalled nanotubes containing millions of atoms a
investigated.

The presented continuum model cannot describe frac
or plasticity; its construction relies on a defect-free lattic
Note however that in the numerical example presen
above, these processes can in principle take place in the
mistic model, but do not. This illustrates the severe deform
tions that CNTs can sustain elastically. Nevertheless, th
are situations in which failure cannot be ruled out of t
analysis, but still the computational savings afforded by
continuum/FE approach are needed~e.g., the full simulation
of experiments of nanotube fracture1!. In these cases, th
continuum model can be coupled with atomistic models62

The continuum model can assess the onset the lattice in
bility, and thus provide a criterion to switch locally from th
continuum to the atomistic model.
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APPENDIX A: FORMULA FOR THE EXTENDED
KINEMATIC RULE

The precise definition of the extended kinematic rule
provided operationally in this appendix. See Ref. 13 fo
derivation. Letk1 andk2 denote the principal curvatures o
the deformed surfaceV. These can be obtained from th
generalized eigenvalue problem

K•V5 k C•V, ~A1!

whereC andK are the Lagrangian expressions of the fi
and the second fundamental forms of the surface. The a
ciated principal directions pulled-back to the undeform
body, V1 andV2, are normalized with respect toC, so that
V i•C•V j5d i j . The conventional principal directions ar
tangent to the surface, and can be obtained asvi5FV i . We
define a local orthonormal basis attached to each point of
surface defined by the unit normal to the surface and
principal directionsv1 andv2 ~normalized!. The component
of w5FA in this basis are (0,w1 ,w2), with wi5V i•C•A.
By definingQ(x)5sinx/x, the final expression of the lattic
vector A after deformation in the above defined local ba
according to the local approximation of the exponen
Cauchy-Born rule is
9
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a5H k1~w1!2

2
Q 2S k1w1

2 D1
k2~w2!2

2
Q 2S k2w2

2 D
w1Q~k1w1!

w2Q~k2w2!

J .

~A2!

The length of a deformed bond is thena5iai and the angle
between two deformed bondsa and b can be computed a
u5arccos@a•b/(ab)#. Thus, the bond lengths and angl
have been expressed in terms of the continuum strain m
suresC andK.

APPENDIX B: DERIVATION OF THE BENDING
MODULUS

1. Kinematic preliminaries

To calculate the scalar bending modulus defined in
~20!, we consider an initially planar graphene sheet b
about one axis. Thus, Eq.~A2! can be simplified to

a5H k~w2!2

2
Q 2S kw2

2 D
w1

w2Q~kw2!

J , ~B1!

where k is the nonvanishing principal curvature. Variabl
evaluated at the ground planar configuration of graphene
denoted byugr . Note thataugr5(0,w1 ,w2) is parallel to the
plane of graphene. In this section, derivatives of lattice g
metric quantities with respect tok are computed. These de
rivatives are evaluated at the planar ground configurat
since the goal is to obtain the infinitesimal bending modul

The first derivative of a deformed bond length with r
spect to k follows ]a/]k5(1/a)a•]a/]k. Note that
]a/]kugr5(2(w2)2/2,0,0) is perpendicular to the plane o
graphene. Consequently,]a/]kugr50.

Analogous arguments lead to](cosu)/]kugr50. Since
]u/]k5(1/sinu)](cosu)/]k, and for graphene no pair o
bonds form an angle ofp in the ground state, it follows tha
]u/]kugr50. One can check that this is not the case
dihedral angles, but we do not consider them here.

A second derivative ofa with respect tok and the inner
displacements is also needed. It can be computed for e
component of the inner displacementsA51,2 as

~B2!

The underbraces indicate whether the vectors are paralle
perpendicular to the graphene plane when evaluated at
ground state. Therefore, recalling that]a/]kugr50, we con-
clude that ]2a/]k]hugr50. Analogous calculations show
that ]2u/]k]hugr50.
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Finally, from Eq. ~B1! and the honeycomb geometry o
graphene, it follows that

(
i 53

3
]2ai

]k2 U
gr

5
23

32
A0

3 , (
i 53

3
]2u i

]k2U
gr

5
29

8A3
A0

2 . ~B3!

2. Bending modulus

Analogous to Eq.~13!, the modulus in Eq.~20! can be
computed in terms ofW when the inner displacements a
relaxed as

Cb5
]2W

]k2
2

]2W

]k]h
•S ]2W

]h2 D 21

•

]2W

]h]k
. ~B4!

For compactness, the bonds lengths and angles are de
by the arrayp5@a1 ,a2 ,a3 ,u1 ,u2 ,u3#, and pi denotes the
i th entry of this array. By the chain rule, the first term on t
right hand side of Eq.~B4! can be written as

]2W

]k2
5(

i 51

6 F (
j 51

6
]2W

]pi]pj

]pi

]k

]pj

]k
1

]W

]pi

]2pi

]k2 G . ~B5!

From the derivations of Appendix B 1, one concludes t
the first term on the right hand side of the equation ab
vanishes at the planar ground configuration.
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