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 This pﬁper describes a number of triangular and quadrilateral pléte and shell -
: 'elements derived via Reissner-Mindlin plate theory and mixed intecpolation: It -

is shown how by intreducing the adequate constrains the original thick plate

. elements evolve into DK forms adequate for thin situations only. This evolution

" process allows to revisite some clagsical elements like the Morley triangle and - 8
., ‘also to derive simple.plate and shell triangles and quadmlaterals with oniy .
- iuanslat:ona.l degrees of freedom s nodal va.uables : :

e INTRODUCTION

 Considerable effort ha.s been put. in recent years in the development of

- p]ate and shell elements based on the 8o called Reissner-Mindlin plate theory

' thus, the corresponding plate and shell elements are in principle applicable to -
" both thick and thin situdtions. It is however well known that overstiff solutions -~ .
- are obtained when Reissner-Mindlin elements are used to solve very thin eases.
" This “locking” effect is due to the progressibly increasing influence of the shear -~
- -stiffness terms as the thickness reduces, This leads to an undesirable larger global =
. ‘stiffness which tends to an infinite value in the thin limit. Locking was originally
“ . overcome by means of the so called selective integration (SI) techniques [1] whick

[1]. “The attractive feature of this theory is that i allows for.an independent

" . approximation of the deflection and the rotation fields, thus overcoming one
“of the main drawacks of standard Kirchhoff’s theory {1]. Moreover, shear. ~© -’

deformation is naturally taken into account in-Reissner-Mindlin theory and,

" bagically use a reduced quadrature for integrating the shear stiffness texms. This

" simple procedure can in some occassions modify the proper rank of the global = -

stiffness matrix leading to the appearance of spurious mechanisms. The more

"%, popular alternative to SI techniquies is the use of mixed interpolations where the

deflection, the rotations and the shear forces {and sometimes also the bending

* moments) are independently interpolated. The analogy of this procedure with SI .

- techniques was soon established and it has opened a wide scope for development

of new plate and shell element fa.mzhes whach can “safely” opefa.te_ in both t_;hick_
- and thin regimes 1]. a

Reissner-Mindlin theory can be taken as the startmg point for the

_.developrnent of “pure” thin plate {or shell) elements, i.e. elements satisfying
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- Kirchhoff’s orthogonality conditions for the normal vector. A .well known
‘technique is based on the introduction of Kirchhoff’s constraints at a number
'of discrete element points so that the transverse shear strain is effectively zero
~over the element. Some of the so called DK elements, like the DK triangle {1,
2, 3], have enjoied great popuiarity in the last decade among piate and shell
o plactltloners :

This paper reviews the denvat.xon of different Re]ssner-Mmdhn and DK ‘

: _-.element families for plate and shell analysis. It is shown in particular how mixed -

Reissner-Mindkin thick plate elements “degenerate” into thin DX forms in a
natural and simple manner. The first element family starts from compatible

*.-quadratic triangle and quadrilateral elements based on Reissner-Mindlin theory
. and amixed interpolation. By introducing adequate Kirchhoff's constrainis these
- element evolve naturally into standard DK triangular and quadrilateral forms,

* 'The second element family starts from simple incompatible linsar triangulaz . -
- and quadrilateral Reissner-Mindlin elements. The introduction of Kirchhoff’s
“constraints leads in this case to the well known Morley triangle {4] and also to

its corresponding quadrilateral form, The introduction of new constraing on the

rotations field leads to the simplest elements of this family, i.e. the linear triangle L

and bi-linear quadrilateral with the deflection as the only nodal variable [5, 15].

-Figure 1. Definition of deflection and rotations in a plate . -

" .COMPATIBLE PLATE ELEMENT FAMILIES. FROM QUADRA-
'-—-TIC RDISSNER MINDLIN ELEMENTS TO THE DKT AND DKQ

F:gure 1 shows the geometry of a pla,te w1th the sxgn conventlon for the _.

+* deflection w and the two rotations 8; and 8y, -
“Table I shows the basic equations of Reissner-Mindlin plate theory [1] deﬁmng S

the curvature and shear ‘strain fields, the constitutive 1elat1onsh1ps and the

- prmc1ple of virtual work for a distributed loading ¢.

~An independent finite element interpolation- will now be assumed fOL the -

: deﬂectmn, the rota.bmns and the shear stra,ms as. '

:..w‘zNw.wn_ 8 ZNﬂ iy 1= ZN')’,'Y: . (1)
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. Table I. Basic equations of Reissner-Mindlin plate theory . - i

" -where w;, 6; and «; are nodal values of the deflection, the rotation and the -

© transverse shear strains, respectlvely and Nw‘, Ny, and N-y are the correspondmg
interpolating functions.

The conditions which must be satlsfy these three ﬁelds to glve a stable and

: "lockmg free solutaon are {1 6-8)

where ny, ng and ny denote the number of variables involved in the interpolation
_of each field (after discounting the prescribed boundary values). Condition
. (2) must be satisfied for any element (of patch of elements) as a necessary
- (altheugh not always sufficient) requirement for stability of the solutlon, whereas
- the convergence should a]ways be verified via the patch test [1]

ng+nw>n7 ; .R~,’>nw :.(2).
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' TQQL quadratic trlangle '

The first element considered is a 6 node Re:lsmer»Mmd!m plate tnangie‘
{Figure 2) with the following mterpolatlon fields:
1) A. complete quadratic field is used to interpolate the deflection and the
" yotations in terms of the nodal values in the standard manner =~

o 2) A linear interpolation for the transverse shea.r strams is deﬁned in the natural': L

coordmate system as .

LY = et ag +agy DT
m=aatapttagy o (3)

.The parameters o; are obtained by sa.mpling; the shear strains at the six

‘Gauss points along the sides. This allows to express ¢ and 'y,? in terms of the
" osix ta.ngenh:a.l shea.r strams 75 a,long the elernent mdes :

' Yeriables -
o o8]
® a8,

: Figure 2. 'FQQL ard TLQL Reissner-Mindlin plﬁ_te elements .

The relationship between the tangentlal shea,r strains and the noda,i

“displacements is abtained at element level by imposing the condmon ¥s — T + :
By =0 along the element sidesin a welghted residual sense as .

oo

. .. ‘/ITFV[’)'s——a:+Bs]ds:0 : . o : n (4) .

“where s denotes the side coordinate, ! is the side length and W are appropriate
- weighting funcitions. . The simplest choice is point collocation, however other -

alternatives are possible [1, 6-8]. Transforming the natural shear strains to the
cartesian system gives the final expression between the shear strain vector -y of .

'+ Table, I and the nodal dlsplacement vector Eor the element ale )

Cr=Ba )

Matrix B; is termed substitute fransverse shear strain matrix (sometimes

- called alsq B-bar matrix). The detailed derivation of B, can be fi?und in [1, 6-8].
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The element bending and shear stiffness matrices are obtained now by

ng) - L(c) B?DstdA ; K£°) = L(C) EEDSB‘;dA {6}

where Al®) is the element area, B is the substitute shear strain matrix of eq. {5)

and By is the standard bending strain matrix given by By = [By,, By, ... By |

~ where n is the number of element nodes and By, = LNy, (see Table I for definition

of L). :
The computation of the mtegra]s in {6} requires in this case a 3 point
numerical quadrature.

This element was originally developed by Zienkiewicz et al. (7] and it is’

termed here TQQL (for Triangle, Quadratic deflection, Quadratic rotations and
Linear transverse shear strain fields). The TQQL element satisfies eq. (2) for all
meshes and it behaves well in all examples analyzed {6-9] although a too flexible
behaviour was found for coarse meshes. This can be improved as shown next.

TLQL quadratic triangle

An enhanced version of the TQQL element can be derived by constraining the
normal rotation {o vary linearly along the sides (Figure 2). This idea originally
proposed in [7] was the basis towards the derivation of & new plate triangle with
"-the following assumed fields:

3
1) The deflection varies linearly as w = 2o Lyw;
& .
2) The followmg incomplete quadratic interpolation is used for the rotations

= Z Li#; + 4Ly Loe13A8,, + 4L9L3e23A955 +4L1Lyes3Abs,  (8)
' i=1 .

‘In above L; are the sta.ndard linear shape functions of the 3 node triangle, .

Afy; is 2 hierarchical tangential rotation at the mid-side points (Figure 2) and
&;; are unit vectors along the side directions. Eq (8} defines & linear variation
of the normal rotation along the sides, whereas the tangential rotation varies
quadratically.

3) The transverse shear strains vary linearly as {8, 10]

T

where 7§j are the tangential shear strains at the mid peint of side ij.

Eq.(4) is now used to obtain the relationship between the tangential shear

strains and the nodal displacements. Choosing W =1 in (4) gives [8]

l
v -—( 5= i) = g 5@+ b )~ Sa0, 2 ; (10)

{mh-Ie 07 lz; [, "
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where #f = 1} = 1 and I = V2, I;j is the length of side if and k = 3 .
Combining egs. (9) and (10) and transforming the natural strains to the
cartesian system gives finally an expression identical to (5). Full details
of the derivation of matrix. B, in this case can be found in [6, 8. It can
.verified that the so called TLQL element {Linear w, Quadratic § and Linear
) satisfies eqs. (2) for all cases. Also note that a 3 point quadrature is

"required for integrating all terms of the stiffness matrix to prevent spurious
mechanisms, The extension of the TLQL to the shell case is straightforward
and details can be found in [6, 16]. The performance of the TLQL element
is excellent for plate and shell analysis and many examples are given in [6,
8, 11]. This element is the basis for the derivation of 2 8 d.of. DK plate
triangle as shown is next section..

TLQL N 9 dof DKT

. with no
Variables ) - shear
0w 9 = resistance
o [8,8,] : y
® , Aea Eliminate
7,
-1 .
%=[0y a.], 9 dof DST
. with shear

resistance

Figure 3. DKT and DST plate elements

Derivation of a DKXT plate triangle

The TLQL evolves naturally into s 9 dof DK plate iriangle (hereafter
termed DKT) as follows. The transverse shear strains.are made zero over the
element by constraining the tangential shear strains at the element mid-sides to
a zero value (Figure 3). This allows to eliminate the hierarchical side rotations
in terms of the side degrees of freedom as -

3 ' 37
'Y.:J =0— Al :%(wiwwi)uieij(ai.{-ﬂj) (11
Substituting {11} into (8) gives the new rotation field as

3 wy
Z Al a§e>:{azi} (12)

with
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: 6Ly L 6L;Ly '
N1=[ ( 111 2oy 4 1:3 513) {L1m3L1L2+3L1L3)I2] :

b

\ KGLLLz " 6lyly

o hy 2T Iy
. 6L1L 6Ly L :
Ny = [( L3 e+ 2 3623) ,(L3 - 3_L2L3_+ 3L_1L3) 12] _(13)

e23) (Lz - 3L2133 +3L1Lg) 12]

l13 : 103

_where Iy is the 2 x 2 unit inatrix, Eq. (12) allows to obtain the element bending
~ stiffness matriz using eq. (6);. Again a 3 point quadrature is required in this
_case, It iz interesting to note that the resulting element is identical to the popular

. DKT element originally presented by Batoz et al, [2 3] aithough the dersva.tmn o

shown here is much mmpler,

. Derivation of a 9 d.o.f. triangle with shear deformation

The hierarchical mid-side rotation in the 'I‘l::QL element can be eliminated

- by equaling the mid-side tangential shear strains to those gwen by the standard_

benci:ng moment- shear equillbnum rela.tlonshlp, ie.
= D“lq— D_ILTm——D ILTDbB,,a(e) 1)

where L can be deduced from Table 1.

_ Eq. {14) can now be particularized to give the tangential shear strain at
 the mid-side points. Equaling the resulting expression to thal given by eq.{10)
~ provides the three equations necessary for eliminating the three hierarchical

- rotations Abgy. The resulting 9 d.o.f. element - termed DST (for Discrete Shear

Triangle) is incompatible and it incorporates shear deformation effects (Figure

-3). This approach was originally proposed by Ba.toz et a.l [13 14] and Katili

[18] to derwe mrmlar plate elements.

Some ele_ments of the Reissner-Mindlin_and DK quadrllateral family

The simplest Relssner-Mindlin (mixed) plate quadrilateral is the four node
with bilinear interpolation of deﬁectaons and rotatxons and the followmg linear
shear st:am ﬂeld :

Cgg=eytenm , wm=eatad . - (15)

Pacamebers ov; can be obtained via eq. (4). The simplest choice for W in this
case is point collocation, The integration of the stiffness matrix requires a full
2 x 2 quadrature. This element termed here QLLL (for Quadrilateral and Linear
- deflection, rotation ard shear fields) was originally propesed by Dvorkin and
Bathe [12], it satisfies eqs, (2) {except for a four element patch) and it behaves

very well for thick and thin plate and shell analysm. A detatled descr:ptxon of

tius element can be found in [1, 6, 8, 12]. -

i
-
i
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Qm o

. I 'e‘,;,al co : . '
.  Yariables 4 g B A DKQ
o w : — - - ia . @
o [6,6,]1 N noo Eliminate 40,
D Lo e mnaa viano
£ ] . L N .
* L ’ o — 2 S
' B | 2 1 5 2

‘Figure 4, QLLL, QLQL and DKQ plate elements -

16 d.o.f. QLQL plate guadrilateral

- This is an element with identical features to the TLQL of a p:evlous sechion,
The interpolating flelds are the following:

© 1) The deflections are bi-linearly interpolated in terms of the corner values in

.d,of. The approach follows precisely the lines explained for deriving the DKT in -

the standard manner [1].
. 2) The followmg mcomplete quadratm ﬁeld is chosen for the rotatlons Lo

4
B ZN" + f(«EJ(l*n)EmMsﬁ f('r)(1+f)e23A9se+

} f(E)(1+n)e43Ms7+ f(n)(1~£)e14A9ss L e

‘where N; are bilinear shape functions, flz}=1-= e a,nd ejj and A8, have -

" the same meaning &s in eq. (8).
3) The transverse shear strains are assumed to vary linearly as is eq. {15) for
" 'the QLLL element. A 2 x 2 quadrature is used for all terms of the stiffness
matrix,
Examples of the good beha\rlour of thls element can be found in [6 8, 11]

12 d.o.f‘ DK and DS plate quadrliatera}s
The QLQL plate eiement is the basis for deriving a DK quadrilateral with 12

‘'a previous section; i.e. the condilion of zero tangential shear strain along the four
. element sides is used to eliminate the hierarchical tangential side rotations Afs,
“in-terms of the corner degrees of freedom, Details of the resulting :nterpola.%.mg

{unctions for the rotation field can be found in [6].
The procedure explained previously to derive a 3 node triangle incorporating

- -~ shear effects {DST element) can be followed now again to obtain an equivalent
.. D3Q 12 d.of. quadrilateral. This element has been formulated by Ofiate and

Castro [11] and Katili [18] However its efﬁcnency is not compm able l:o the smlpler

QLLL element
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NEW INCOMPATIBLE TRIANGULA.R AND QUADRILATERAL

PLATE ELEMENTS
' _.Lmear 9 d.o.f. TLLL Reissner-Mindlin plate trlangle

. Ofate et al. [10] have recently proposed a mmple lower orcier plate tnangie
" based on the following fields:
"1) The deflection is linearly interpolated in terms of the corner values.
'2) The rotations are also linearly mterpoiated in terms of the rmd-sxde node
va.lues as (F1gure 5) : : :

0= ZNa O Ty (P T P ¢ S

R
“with .

Ny=1-2p , "-N5=25+2;'1“1 L Ng=1-2¢

- ~For convenience the element dxsplacement vector is now defined as

L ale) = fwy, wa, wy, 94 s 95 , B ]T Fq. (17) defines an incompatible rotation
field with interelemental compalibility satisfied at the mid-side nodes only.

" The good performance of the element 15 however ensured via sahsfactxon of
‘the pakch test. :

s

.
is sunp!y g:ven in this case by [10] -

—1-'1‘ 0:1:12 Y12 .'0 0 _0

'Bs_=J‘1_S 0 —a & 0 0 ‘azpy aypy O L (18) .

-1 0.1_ 0 0___ 0 _-0-_:;13 y13

where @ = 1/v3, a:,J =i~ T Yij e — Ui S is given by eq. (9) and Jis .

" the standard.J acobian matrix,

" “Examples of the good behaviour of this element (termed TLLL due to the .

linearity of all ﬁel_ds) for piatq and shell analysis can be found in [6, 10, 15].

‘The Morley element revisited

The DK version of the TLLL element is s:mpky obtamed by constraining the
. -three tangential shear strains along the sides to a zero value. This allows to
"-eliminate the three tangential side rotations giving a DK triangle with 6 d.o.f,
. {thrée corner deflections and three normal rotations along the sides (Figure 5)).
.. It can be verified that this element is identicel to the classical Morley triangle

-[4]. Note however that the derivation follows here a different’ approach The
~ resulting bendmg si‘.ram matnx is extremely simple and its expressmn is given
o below : .

: {a12 —eus) (aga ~a12} (a13—az3) g9 e i3
By = | (a3 ~ap) (@19 —a) (ag—ai3) bz - by —big | (19)
(di3 —d12) (di2 - dzs) (dog —d13) -—2a12 ~2003 ~2aj3

The assumed transverse shear sirains-field is a.lso linear and it coincides with .
that expressed by eq.(9) for the TLQL element. The form of- the Bs matrix - - '
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“with

* Yariables

Q[e:e]

Vamubles )
.aw
® 8,

Figure §. Some incompatible triangular and quadrilateral plate elements

- oy
T R A NP i
T W Wy wmTE
m:] =i Iy - Wi F Y "l] '—($a_; +y;_1}1/2 L {20)

" The element bending stiffness matrlx is obtalned by eq- (6)1 0_116? point |

. quadra.tur:e suffices in this case.

" From the mcompatlble 12 d.o. f. linear quadrilateral .i:,o a 8 d.o.f,

Morley quadr;iateral

: The extension of the 1ncompat=bie TLLL element to a new 12 d.o.0

- incompatible thick plate quadrilateral is straight-forward, This element (termed
_here QLLL-I) has now four corner deflections defining a bilinear deflection field

and two rotations at each mid-side point defining an incompatible linear rotation

 Beld (Figure 5). The shear strains are linearly iterpolated in terms of the

tangent:al values af the mld sxde nodes as for the ongmal QLLL element, {see eq.

( 15)). .
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The condition of zero tangeniial shear strain at each mid-side node allows
. to eliminate the tangential rotations at these nodes leading to an 8 d.o.f. thin
. plate quadrilateral, This element can be constciered a quadmlateral vers:on of
- the classical Morley triangle (Figure ).

‘The cost-efficiency of these two elements St—lll needs to be- venﬁed through o L

A numencal expenments

" Derivation of thin plate tuangles and quadnlaterals w1th one degl ee -

Gf freedom per node

- Odate and Cervera [5] have recentiy presented a procedure for derwmg thin

. plate bending elements with the deflection as the only nodal vanab]e The .~
o _startmg p()]nt is the foltowmg mixed set of equlllbmum equations . S

f fMTDMA ] fﬂwqu | : _:.._(?1.)5.__..

ffwT[n LW]dA 0 ﬁ:. 3 '.(22)

Eq (21) expresses the PVW for the thin plate case, whereas eq.(22) deﬁnes_ -

the curvature~deﬂech:on rela.t1onsh1p in a weighted resldual sense with

= [~ 6::2’ ‘92 23—5—}T Integrating by parts eq. (22) and choosing the

‘ '_welghtmg functlons W= I over appropnate. subdomams As where I is the Ix3 o

‘ umt matrix leads to -

Bw aw . Bw ..awiT

_ Eq (23) relates the curvature field within As wﬂ;h the deflection gradlent
- slong its boundary I's. Obviously, these gradients are discontinuous when a
Cp continuous field is chosén for the deflection and some problems arise in the

" computation of the boundary integral in {23). These problems eai be overcome
- by smoothing the deflection gradient over element patches (the simplest option :
. bemg nodal a.veraglng) Further details on the smoothing procedure can be found_ o

“in [5].

The dlscret.lzeci systems of equa,tlons is obtamed now by choosing two .

B _mdependent mterpola.tmg fields for the deﬂectlou and the curvatures as
meww() and n—NTN() _ _. = {24)
" The simplest option is the choice of a o contmuous fleld for w and a

-discontinuous field for k. However many. other alternatives are possible [5],
-Bubstituting (24) into (23) allows to obtain the discrelized curvature-deflectian

relationship as & = B,w'®) Substituting this expression into (21) gives the final

.- stiffness equaiions relating external forces and nodal deflections as 1% = f
. ‘where the bending stiffness matrix is gwen i)}r eq. (6)1 Full details of this
approa,ch can be fouud in 5. S ) ;

The simplest elements of this family are the three node triangle and the .

" four node quadrilateral with 3 and 4 d.o.f., respectively (termed hereafter BPT

and BPQ for Basic Plate Triangle and Quadrilateral respectively, Figure 6).

-~ A description of the BPT including the explicit form of its stiffngss matrix can - - .
" be found in [5]. Both BPT and BP(Q) plate clements can be derived from the . -
" Morley triangle and quadrilateral elements presented in previous sections, simply .

by constraining the normal rotation at the rrud—s1de nodes to take the foliowmg

. _value y _ _
' o 1[owp dwp R
. R e st . {9
- 2[an|i+an_'_] IR
\;where So|; and -5-—-[2 denote the values of the diseontinuous normal deﬂectmn o

: 'gradlent. "at the two elements sharing the mid-side node 1.

Obviously many other smoothing alternatives are possible and some ave
discussed -in [15] where new thin plate and flat ghell element.s w1th only

N translatmnal degrees of freedom are proposed

- Yariables
0w -

Flgure 6. BPT and BPQ elements and ;)ahches used for smootlung of the
dlscontmuous deﬂectwn gradlent along the s:des : J

- CONCLUDING REMARKS

Th:s paper shows the pot.ent.ml of combmmg Reissner-Mindlin theory and
mixed interpolations for deriving different element farmhcs adequate for thlck
and thin plate (and shell) analysis. :

Obviously the list of elements presented here is by no means exhaustive and
many new and interesting elements are available. Among these we note the
simple Q4BL and T3BL plate elements developed by Zienkiewicz et al. [19]
and Taylor and Auricchio [20] using an interpolation linking the deflection and

" rotations fields, and the family of plate and shell elements developed by Van =

Keulen el’. al. [21 22] usmg a maxed hybrld appr.oach
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