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SUMMARY

A three-dimensional laminar flow over a backward-facing step is studied as a numerical experiment by
solving the steady-state, isothermal and incompressible Navier–Stokes equations using two different finite
element codes. The Reynolds number ranges from 100 to 1050. The expansion ratio is 1:1.94, and the aspect
ratio is 1:36.7. The numerical experiment reveals both eddies along the lower and upper walls downstream
of the step. Results of computations regarding positions of detachment of the eddy along the upper wall
and positions of reattachments of the eddies along both the lower and upper walls are tabulated along with
positions and magnitudes of global extrema of shear rate within the eddies. The wall effects are shown by
calculating streamlines along planes parallel/normal to the lateral walls of the domain and depicting how
the streamlines are distorted close to the walls and how they assume a two-dimensional configuration in the
plane of symmetry. Comparisons are made with available numerical results and laboratory measurements.
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1. INTRODUCTION

A backward-facing step is a fundamental flow in fluid mechanics that has served as a test case for
laboratory techniques and numerical methods. In addition, this flow is a case example of a separated
flow that is being used in a study of complex dynamic phenomena of transition, stability, and so on.
A thorough recent review on that subject may be found in the work of Schäfer et al. [1].

This flow has even been a leading example in a direct numerical simulation of turbulence [1, 2].
However, there is a lack in the literature of a three-dimensional computational study that can predict
with acceptable accuracy the relatively complex separation phenomena in the laminar regime by
using a computational domain with the same dimensions as the test section of an actual laboratory
experiment. The main aim of this work is to fill in this gap.

The physics of the laminar backward-facing step flow are well understood because of the pio-
neering work of Armaly et al. [3]. This fact has been acknowledged in relevant reviews early on
(e.g., Adams and Johnston [4, p. 494]) In addition, their experiments have been verified by Lee
and Mateescu [5] and Tylli et al. [6] who used similar expansion and aspect ratios. Finally, the two
eddies (a primary eddy along a lower wall and a secondary eddy along an upper wall) that appear
in this flow for Re > 400 have been predicted by all authors who have performed two-dimensional
computations in the laminar flow regime (e.g., Erturk [7] for the latest review).
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Armaly et al. [3] have reported three-dimensional effects in their measurements although they
have used an aspect ratio of 1:36.7 (the ratio of step span to step height). This choice was on
the safe side of a suggested aspect ratio of 1:30, which guarantees two-dimensional results in
the plane of symmetry according to De Brederode and Bradshaw [8, p. 33]. In the literature, the
three-dimensional effects of the experiments by Armaly et al. [3] have been explained accord-
ing to Schäfer et al. [1, p. 87] in the work of Williams and Baker [9]. Indeed, Williams and
Baker [9, p. 1166] predicted very well the primary eddy in their three-dimensional computations
by using the test section of Armaly et al. [3] as their computational domain. Regarding the com-
putation of the eddy along the upper wall, they briefly mentioned in their text (p. 1169 of their
work) that it appears short in the plane of symmetry, and they avoided any comparison with the
experimental data.

Clearly, a full three-dimensional numerical experiment over a backward-facing step in the lami-
nar regime, which predicts with satisfactory accuracy both eddies of this flow, may shed more light
in the interpretation of the results of Armaly et al. [3] . This is the second aim of this work.

All three-dimensional computational approaches so far successfully predict the primary eddy
along the lower wall up to a Reynolds number of 1000. A thorough review on this subject may be
found in the works of Nie and Armaly [10], Chiang and Sheu [11] as well as Williams and Baker [9].
Later works include those of Biswas et al. [12], Barbosa Saldana et al. [13], Kitoh et al. [14] and
Nie et al. [15]. The issue of the secondary eddy along the upper wall has been addressed by Chiang
and Sheu [11], Williams and Baker [9], Tylli et al. [6] and Kitoh et al. [14].

Chiang and Sheu [11] were able to predict the secondary eddy only for aspect ratios greater than
the one used in the test section of Armaly et al. [3]. Williams and Baker [9, p. 1171] showed the
development of the secondary eddy that is confined in a region close to the plane of symmetry
and does not extend all the way to the lateral wall. Kitoh et al. [14, p. 1148] gave only qualitative
characteristics of the secondary eddies along the upper wall, which are created at the lateral wall
and may or may not extend all the way to the plane of symmetry depending on the expansion ratio
of the step. Tilly et al. [6, p. 3840] also computed this secondary eddy, which is located close to
the lateral wall and does not penetrate to the plane of symmetry. Biswas et al. [12, p. 371] also
came to similar conclusions as Kitoh et al. [14] and Tilly et al. [6] regarding the eddy along the
upper wall.

All of these authors reported a very good agreement of their calculations with the data of Armaly
et al. [3] or with other two-dimensional computations for the reattachment length of the eddy along
the lower wall. There is a complete lack of report of numerical data of these authors regarding
the secondary eddy and a consequent comparison with available experimental data by Armaly
et al. [3] or by Lee and Mateescu [5] or with the numerous two-dimensional computations on
that subject (e.g., Erturk [7]). Surprisingly, almost none of the authors who even performed two-
dimensional computations have compared their predictions with the available experimental data for
the secondary eddy with the exception of Lee and Mateescu [5, p. 714], Romé et al. [16, p. 1261],
and Barton [17].

This work intends to alleviate the shortcomings of previous three-dimensional computations in
the laminar flow over a backward-facing step by presenting results in a computational domain that
uses the geometry of the test section of the experiments of Armaly et al. [3]. Two computational
codes are used in order to enhance the credibility of the predictions: FEFLO and FEM3D.

In the following, the governing equations are given along with the appropriate boundary con-
ditions. The numerical methods and codes used are then briefly presented. Finally, the results are
discussed in detail and conclusions drawn.

2. DOMAIN CONSIDERED, GOVERNING EQUATIONS, AND BOUNDARY CONDITIONS

The computational domain for the laminar three-dimensional flow over a backward-facing step con-
sidered here is shown in Figure 1. The streamwise, transverse, and spanwise directions are aligned
with the x, y, and ´ axes, respectively. A cross section of the domain perpendicular to the spanwise
direction is also shown in the same figure.

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2012; 68:1102–1125
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Figure 1. A sketch of the computational domain of this work.

An incompressible Newtonian fluid of constant viscosity and density enters the computational
domain and flows all the way up to the exit. The computational domain is a combination of two
cuboids, which are a small channel and a big channel with heights of hD5.2mm andHD10.1mm,
respectively. The small channel is mounted upstream of the entrance of the big channel at the step
of the domain. The height of the step is S D 4.9 mm. These are the same dimensions of the test
section where Armaly et al. [3] conducted their laboratory experiments. The expansion ratio of the
domain is hWH D 1W1.94. The aspect ratio of the domain is S WW D 1W36.7. In Figure 1, only half
of the domain is considered in the spanwise direction, as the flow is expected to be symmetric with
respect to the plane of symmetry. Actually, it has been reported by Armaly et al. [3, p. 474] that the
flow maintained symmetry with respect to the centerplane of their test section for the whole range
of Reynolds numbers studied.

Two eddies are sketched in the two-dimensional cross section of the domain in Figure 1. Because
of the expansion of the flow over the step, an eddy is formed along the lower wall of the channel
downstream of the step. The reattachment length of this eddy is x1. When the Reynolds number is
greater than 400, a second eddy is formed along the upper wall. This eddy has been first reported by
Armay et al. [3] and has been later confirmed by many two-dimensional computations (e.g., Kim
and Moin [18], Gartling [19], Erturk [7] and references therein). The detachment position of this
eddy is x2, and its reattachment position is x3. The numerical data for positions x1, x2, and x3 are
usually given for comparisons among the authors who have performed computations and laboratory
experiments over the course of the years. The values for these positions are the main results of this
work as well.

The Navier–Stokes equations describing isothermal flow of an incompressible Newtonian fluid
are given in a nondimensional form by

r � uD0 (1)

u,t C u � ruD�rpC
1

Re
r � ¹ruC .ru/T º. (2)

Here, uD .u, v,w/ is the dimensionless velocity vector in the fluid, with u, v,w as its components
in the x,y, ´ directions, respectively. The governing equations have been rendered dimensionless

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2012; 68:1102–1125
DOI: 10.1002/fld



3D LAMINAR BACKWARD-FACING STEP FLOW 1105

by choosing the height H of the channel downstream of the step as the characteristic length and
the average velocity U in the channel with height H as the characteristic velocity. Here, p is
the dimensionless pressure, ReD� UH=� the Reynolds number with � as the density, and � the
dynamic viscosity of the fluid. This definition of the Reynolds number has a consequence that
the magnitude of Re in this work is half the one calculated from the more conventional definition
found in the work of Armaly et al. [3] and followed by most authors who performed computations.
This difference in the two definitions of the Reynolds number has also been pointed out by Chiang
and Sheu [11, p. 863] who used the height of the inlet channel h and the average velocity in this
channel as the characteristic length and velocity, respectively. However, the results in Section 4
are presented with the more conventional definition of the Reynolds number introduced by Armaly
et al. [3]. The pressure p has been nondimensionalized with the magnitude � U 2.

The boundary conditions for this flow are as follows:

At the entrance (x D�4, 06 y 6 1, 06 ´ < W=2H ):

uD
6�
h
H

�3
�
y2C

�
h

H
� 2

�
y �

�
h

H
� 1

��
(3)

vD0 (4)

wD0 (5)

Along the walls of the domain and the step:

uD0 (6)

vD0 (7)

wD0 (8)

Along the plane of symmetry:

wD0 (9)
@u

@´
D0 (10)

@v

@´
D0 (11)

At the outflow: free boundary condition

Equations (3)–(5) impose a parabolic slit flow at the entrance of the computational domain. It
should be noted that the entrance of the domain L1 is located four units of length H upstream of
the step (Figure 1). It is stated in the literature (Erturk [7, p. 646] and references therein; Schäfer
et al. [1, p. 91]) that five units of length h are sufficient to assume a fully laminar, parabolic, one-
dimensional profile for the streamwise velocity at the entrance. Our choice lies on the safer side of
this assumption (5h < 4H D 7.7h).

The no-slip boundary condition (Equations (6)–(8)) has been imposed along the horizontal walls
of the domain as well as along the step and the lateral wall. By applying the no-slip boundary
condition along the lateral wall, a thorough study of the flow phenomena is enabled in the proxim-
ity of that region, as will be discussed in Sections 4.5 and 4.6. The symmetry boundary condition
(Equations (9)–(10)) is imposed along the plane of symmetry.

For FEM3D, the free boundary condition has been applied at the outflow, in order to let the fluid
leave the computational domain freely without any distortion of the flow in the interior. This outflow
boundary condition has been first applied to the laminar flow over a two-dimensional backward-
facing step by Papanastasiou et al. [20]. Ever since, this concept has found a wide use (e.g.,
Zienkiewicz and Taylor [21, vol. 3, p. 82]; Colonius [22, p. 333]; Sayag and Tziperman [23, p. 492]).
For a numerical formulation of the free boundary condition, the reader is referred to the discussion
of Equation (14). For FEFLO, the pressure is imposed at the outflow.

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2012; 68:1102–1125
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In connection with the outflow boundary condition, it should be noted that the choice of the length
of the computational domain L2 is a complicated issue because the outflow is artificial (Figure 1).
It is outside the scope of this work to get into any further details regarding artificial outflows and
appropriate boundary conditions. What matters here is to choose the outflow sufficiently away from
the step and the reattachment position of the eddy along the upper wall, so that the phenomena of
separation are not going to be affected in any way. The experience with this flow shows that the
reattachment length of the eddy along the upper wall of the domain is about 10 units of length H
(e.g., Armaly et al. [3]; Gartling [19]) at ReD800. In this work, a choice of 20 units of length H
downstream of the step guarantees that the flow phenomena to be studied are going to be unaffected
independent of the choice of the outflow boundary condition.

3. FINITE ELEMENT FORMULATION AND CODES USED

The computational results of this work have been obtained with two different codes: FEM3D and
FEFLO. In this section, both codes are briefly discussed in connection with the finite element
formulation of the Navier–Stokes equations.

3.1. FEM3D

FEM3D uses P2/P1 hexahedral elements, that is, each cuboid has 27 velocity nodes and eight pres-
sure nodes. The coordinates of the vertices of each cuboid for the computational domain of this
work are given in Table I. The mesh for the data of Table I is shown in Figure 2.

A standard Galerkin finite element formulation (e.g., Zienkiewicz and Taylor [21], Gresho and
Sani [24], Owen and Hinton [25]) is used. Velocities and pressure are approximated with Lagrangian
triquadratic �i and trilinear  i basis functions in each element as follows:

uD

27X
iD1

ui�
i , v D

27X
iD1

vi�
i ,w D

27X
iD1

ui�
i ,p D

8X
iD1

pi 
i .

Table I. Computational details of code FEM3D.

Total number of elements 102,180
Elements in x-direction, before the step 32
Elements in x-direction, after the step 115
Elements in y-direction 20
Elements in ´-direction 39
Number of nodes 854,385
Number of unknowns 2,484,858
Maximum front width 10,220
x-coordinates of the vertices
�4.0000 �3.75 �3.50 �3.25 �2.75000 �2.500000 �2.0000000 �1.75000 �1.5000 �1.2500
�1.0000 �0.95 �0.90 �0.85 �0.80000 �0.750000 �0.7000000 �0.65000 �0.6000 �0.5500

0.0500 0.10 0.15 0.20 0.25000 0.300000 0.3500000 0.40000 0.4500 0.5000
0.5500 0.60 0.70 0.75 0.80000 0.850000 0.9000000 0.95000 1.0000 1.2000
1.4000 1.60 1.80 2.00 2.20000 2.400000 2.6000000 2.80000 3.0000 3.2000
3.4000 3.60 3.80 4.00 : : : 20.000000
y-coordinates of the vertices
0.0000 0.05 0.10 0.15 0.20000 0.250000 0.3000000 0.35000 0.4000 0.4500
0.4851 0.55 0.60 0.65 0.70000 0.750000 0.8000000 0.85000 0.9000 0.9500
1.0000
´-coordinates of the vertices
0.0000 0.25 0.50 0.75 1.00000 1.500000 2.0000000 2.50000 3.0000 3.5000
4.0000 4.50 5.00 5.50 6.00000 6.500000 7.0000000 7.20000 7.4000 7.6000
7.8000 8.00 8.10 8.20 8.30000 8.400000 8.5000000 8.60000 8.7000 8.8000
8.8200 8.84 8.86 8.88 8.89545 8.903175 8.9070375 8.90896 8.9099 8.9109

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2012; 68:1102–1125
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Figure 2. The mesh in three dimensions along with a two-dimensional view of any plane perpendicular to
the ´-axis in the region 26 x 6 2.

These approximations are inserted into Equations (1) and (2), which are weighted integrally
with basis functions  i and �i , respectively, in order to obtain the following continuity, RiC , and
momentum, RiM , residuals:

RiC D

Z
V

r � u i dV (12)

RiM D

Z
V

�
u � ru�r �

�
�p IC

1

Re
¹ruC .ru/T º

��
�i dV . (13)

By applying the divergence theorem, in order to decrease the order of differentiation and to project
possible natural (Neumann type) boundary conditions, we can reduce Equation (13) to

RiM D

Z
V

�
u � ru�i �

�
�p IC

1

Re
¹ruC .ru/T º

�
� r�i

�
dV

�

Z
S

n �
�
�p IC

1

Re
¹ruC .ru/T º

�
�i dS . (14)

The residuals of the continuity Equation (12) are evaluated at all vertices of the computational
domain. The volume integral of the momentum residual (14) is evaluated at all nodes of the com-
putational domain (vertices plus midnodes) unless it is replaced by essential boundary conditions,
as discussed in the succeeding paragraphs. The surface integral of Equation (14) is evaluated only
along the boundary surfaces of the computational domain. Because of the fact that essential bound-
ary conditions are valid along all but the symmetry plane as well as the outflow of the domain,
Equation (14) is going to be replaced by Equations (3)–(8). Along the plane of symmetry, both nat-
ural (Equations (10) and (11)) and essential (Equation (9)) boundary conditions apply. This means
that the surface integrals of the residuals of Equation (14), which correspond to the u-velocity and
the v-velocity, become zero. The momentum residual of Equation (14), which corresponds to the
w-velocity, is replaced with Equation (9). Finally, the surface integral of Equation (14) is evaluated
along the outflow of the domain because no assumption has been made regarding the development
of the flow. The calculation of the surface integral along the outflow of the domain is the imposition
of the free boundary condition.

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2012; 68:1102–1125
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Equations (12) and (14) along with the essential boundary conditions (3)–(9) represent a nonlin-
ear system of algebraic equations. This is solved using a Newton–Raphson iterative scheme. The
convergence criterion imposed was 1�10�7 for the velocities and 1�10�4 for the pressure. Gaussian
elimination (i.e., a direct solver) is used for the inversion of the Jacobian matrix, which is formed by
analytically differentiating the residuals RiC and RiM with respect to the nodal unknowns ui , vi ,wi ,
and pi .

The finite element code was written in FORTRAN 90. The solution of the linearized system of
equations with Gaussian elimination is the most time-consuming step in the execution of the com-
putational code. A parallel direct solver has been written for this purpose. It is based on the serial
frontal solver introduced by Irons [26] and later extended by Hood [27] and has been ported to a
distributed parallel computing environment.

The production runs have been performed on the SGI ICE machine (Sunnyvale, CA, USA) at
the George Mason University. The machine is composed of 640 Intel processors (Santa Clara, CA,
USA) running at 2.3 GHz. Each node contains two processors, and the nodes are grouped into 80
blades or nodes of eight cores each node (two quad-core Xeon processors Harpertown E5440 series,
Intel). It reaches a peak performance of 6 TFLOPS. The main memory has a capacity of 1.25 TB.
Disk storage capacity is 28 TB, and scratch disk capacity exceeds 36 TB. The interconnection net-
work is composed of two InfiniBand interconnects (10/20 Gb/s); one interconnect is dedicated to
I/O and the other to MPI traffic. The operating system is the Suse Linux Enterprise 10 (Novell,
Waltham, MA, USA) tuned for SGI.

The current performance of FEM3D is such that using 256 cores for 24 h is needed for successful
convergence at each Reynolds number with the problem size of Table I. Preliminary runs have also
been performed on a Cray XT5 system (Seattle, WA, USA; Kraken, located at Oak Ridge National
Laboratory) and BlueGene (IBM, Armonk, NY, USA; located at NCAR).

Two-dimensional computations have also been made with FEM3D by using one element in the
´-direction. In this way, the deviation of the three-dimensional results from the expected values
obtained from two-dimensional numerical experiments may be evaluated on a fair basis, where the
only difference is going to be the dimensionality of the flow and everything else is the same.

3.2. FEFLO

FEFLO was conceived as a general-purpose computation fluid dynamics code based on the
following principles:

- Use of unstructured grids (automatic grid generation and mesh refinement);
- Finite element discretization of space;
- Separate flow modules for compressible and incompressible flows;
- Arbitrary Lagrangian–Eulerian formulation for moving grids;
- Edge-based data structures for speed and the use of limiting and upwinding;
- Optimal data structures for different architectures;
- Bottom-up coding from the subroutine level to assure an open-ended, expandable architecture.

The code has been ported to vector, shared-memory parallel (via OMP [28]) and distributed-memory
parallel (via MPI [29]), machines. The usual difficulties associated with the first-order operators
are treated via limiting and upwinding for the advection operator [30] and fourth-order damping
for the divergence constraint [31, 32]. The equations are advanced in time by using the following
projection-type solver:

(a) Advective–diffusive prediction: vn! v�

�
1

�t
C vn � r �r�r

�
.v� � vn/C vn � rvnCrpn Dr�rvnI (15)

(b) Pressure correction: pn! pnC1

r � vnC1 D 0I (16)

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2012; 68:1102–1125
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vnC1 � v�

�t
Cr.pnC1 � pn/D 0I (17)

which results in

r2.pnC1 � pn/D
r � v�

�t
(18)

(c) Velocity correction: v�! vnC1

vnC1 D v� ��tr.pnC1 � pn/. (19)

The solution is advanced in time by using local time steps with a Courant number of Cou D 5,
until steady state is reached. Note that at steady state, the residuals of the pressure correction van-
ish, which implies that the result does not depend on the time step �t . The implicit advection
system is advanced using an lower–upper symmetric Gauss–Seidel relaxation. The pressure equa-
tion is solved using linelet [33] and diagonally preconditioned conjugate gradient algorithms with
projective pressure prediction [34].

For FEFLO, the mesh shown in Figure 3 was used. The total number of elements and points was
23.13 million tetrahedra and 3.98 million points, respectively, and the distance from the wall for
the first element was hn D 0.9 � 10�3. The current performance of FEFLO is such that using one
processor for 24 h is needed for successful convergence at each Reynolds number with the mesh
shown in Figure 3.

Figure 3. The three-dimensional unstructured mesh used in FEFLO along with a detailed look in any plane
perpendicular to the ´-axis.

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2012; 68:1102–1125
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4. RESULTS AND DISCUSSION

The results of this work are the three-dimensional computations of FEM3D and FEFLO with the
use of the methodology described in the previous section and the two-dimensional computations of
FEM3D. The three-dimensional results are compared for their deviation from the two-dimensional
results. In addition, the three-dimensional results are compared with the available laboratory exper-
iments performed by Armaly et al. [3], which have been obtained using a test section with the same
geometry as Figure 1. Additional comparisons have been made with the laboratory data of Lee and
Mateescu [5] who used a test section with a similar geometry as Figure 1.

Finally, the validity of the two-dimensional computations of this work is compared with the avail-
able numerical experiments by Erturk [7], in order to support the reliability of the computations
of this work and the credibility of the conclusions. This is the first time that three-dimensional
computations are scrutinized for their accuracy from all possible sources.

All three-dimensional computations are reported at the plane of symmetry as is the case with
the laboratory experimental results. Because the results of the laboratory experimental data were
reported in graphs, these graphs have been optically scanned and interpolated to produce the rele-
vant cited quantities. In the following sections, the three-dimensional results of the code FEM3D are
used for the comparison with the two-dimensional computations because the same code produced
the two-dimensional results as well. A brief comparison of the codes FEM3D and FEFLO is made
at the end of Section 4.4.

4.1. Validity of the two-dimensional calculations of this work

The two-dimensional computations of FEM3D are compared with available numerical results in the
literature in order to enhance the reliability of the conclusions. A recent work by Erturk [7] rep-
resents the most comprehensive numerical study of the two-dimensional backward-facing step at
steady state. Among the many cases that this author computed was also the geometry of the sym-
metry plane of Figure 1. Our computations are compared with Erturk’s in Tables II–IV. The highest
deviation of the results of this work from those of Erturk’s are observed in the computation of the
detachment position x2 at ReD1000 (8.5%) (Figure 1). For the rest of the Reynolds numbers, the
deviation is of the order of 7.5%. Regarding the reattachment positions x1 and x3, the highest
deviations are 2.2% and 3.4%, respectively, at Re D 1000.

It should be noted that the deviation is computed as jx�y j =H with x the value of Erturk’s work,
y the value of this work, and H the height of the big channel as shown in Figure 1. It is concluded
that the two-dimensional results of this work may be regarded as accurate. They are the basis for
the comparison with the three-dimensional results. That is, the deviation of all three-dimensional
results that are reported in the next section is calculated as jx�y j =H with x the three-dimensional
value and y the two-dimensional value of this work.

Table II. Reattachment length x1, lower wall.

3D computations 2D computations 2D computations Lee and Mateescu experiment [5]/
Re FEM3D/FEFLO FEM3D Erturk [7] Armaly et al. experiment [3]

100 1.3923=1.36 1.3919 1.3963 —=1.41
200 2.3727=2.35 2.3759 2.3772 —=2.29
300 3.2321=— 3.2311 3.2306 —=3.11
400 3.9971=3.87 3.9707 3.9675 —=4.03
500 4.6551=— 4.5809 4.5783 4.51=4.86
600 5.1981=4.66 5.0637 5.0669 5.09=5.49
648 5.4133=5.24 5.2689 — 5.36=6.07
700 5.6163=— 5.4569 5.4652 5.49=6.25
800 5.9331=5.70 5.8018 5.8135 6.32=6.94
900 6.1893=— 6.1165 6.1337 6.67=7.64
1000 6.4271=6.07 6.4143 6.4365 7.49=8.06
1050 6.5547=— 6.5611 7.71=8.54

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2012; 68:1102–1125
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Table III. Detachment position x2, upper wall.

3D computations 2D computations 2D computations Lee and Mateescu experiment [5]/
Re FEM3D/FEFLO FEM3D Erturk [7] Armaly et al. experiment [3]

500 4.1643/— 3.9561 4.0335 3.75/4.17
600 4.3652/4.09 4.1594 4.2315 4.24/4.58
648 4.4699/4.39 4.2695 — 4.51/4.86
700 4.5745/— 4.3801 4.4537 4.58/4.99
800 4.7477/4.60 4.6043 4.6797 5.21/5.56
900 4.9017/— 4.8289 4.9092 5.56/6.32
1000 5.0691/4.86 5.0533 5.1387 6.42/6.84
1050 5.1657/— 5.1655 6.67/7.29

It should also be noted that the two-dimensional computations of FEM3D are mesh independent.
When the elements in both the x-direction and y-direction are doubled, the numerical results do not
change in the first two decimal points.

An interesting issue with the two-dimensional computations for this flow is that all authors who
performed computations in the range 100 6 Re 6 800 observed a steady increase in the reat-
tachment length x1 of the eddy along the lower wall. This phenomenon has also been reported by
Armaly et al. [3]. However, the computations of all authors starting with Osswald et al. [35, p. 694],
Kim and Moin [18, p. 321], Kaiktsis et al. [36, p. 503] until Erturk [7, p. 641] show a change in
the slope of x1 with respect to the Reynolds number for Re > 400. The consequence is that the
reattachment length x1 is systematically underpredicted with respect to the experimental measure-
ments for calculations at Re > 400. Indeed, the measurements by Armaly et al. [3] show a steady
increase of x1 with respect to Re without any appreciable change in the slope up to ReD1200. This
observation has been further confirmed in the experiments of Lee and Mattescu [5, p. 711], although
they report two-dimensional results without three-dimensional effects.

Intuitively, one expects a change in the slope atReD400 because a second eddy appears along the
upper wall, which hinders the development of the eddy along the lower wall. All two-dimensional
calculations account for this phenomenon. A very comprehensive discussion on that issue has been
performed by Tylli et al. [6, p. 3840] and Williams and Baker [9, p. 1172]. Because of the fact that
Armaly et al. [3] have reported three-dimensional effects in their experiments for Re > 400, this
issue of change of slope has remained unresolved so far. In the next subsection, we address this
discrepancy once again with the additional information from three-dimensional computations that
predict the eddy along the upper wall (Figure 4).

4.2. The reattachment length of the eddy along the lower wall

The computations of the reattachment length x1 of the eddy along the lower wall are given in Table II
along with the data of other authors for comparison. It is a well-known fact in the literature that the
flow for Re 6 400 is two-dimensional for the expansion ratio of Figure 1. This fact has been estab-
lished by Armaly et al. [3]; it has been verified by two-dimensional calculations of the same authors
in the same paper, and it has been undisputed ever since. The results of this work verify once again
this fact. The deviation of the three-dimensional results is less than 2.6% with respect to the two-
dimensional computations of this work. The corresponding measurements by Armaly et al. [3] also
deviate less than 12.1% with respect to the calculations for Re 6 400.

The deviation of the three-dimensional computations from the two-dimensional ones increases
from 7.4% at Re D 500 to a maximum of 15.9% at Re D 700 and then monotonically decreases up
to 0.6% at Re D 1050. That is, the three-dimensional computations may be called two-dimensional
along the plane of symmetry for the computational domain of Figure 1. This is the first time that
three-dimensional computations are reported to be so close to two-dimensional calculations.

It should be noted, though, that the results of the code have been obtained in the following way. A
solution at a very low Reynolds number was computed first (Re D 0.02); this solution was used as
an initial guess for a higher Reynolds number and so on (zero-order continuation). At each Reynolds
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Figure 4. Comparison of two-dimensional and three-dimensional computations of this work along with
experimental data and demonstration of the blockage effect in the geometry of Armaly et al. [3].

number, five iterations were necessary for successful convergence of the code without observing any
anomaly in the sequence of the iterations. The computational results were also mesh independent.
When the number of elements in the ´-direction are doubled, the results did not change in the first
two decimal points along the plane of symmetry. This behavior of the code leads to the conclusion
that the computational results are reliable in the whole range of Reynolds number studied.

The deviation of the experimental measurements by Armaly et al. [3] with respect to the
two-dimensional computations starts at 27.9% (ReD500) and increases monotonically to 198%
(ReD1050). The situation is somehow different for the experimental data of Lee and Mateescu [5].
The deviation is negligible for Re 6 700 (less than 9%), grows to 55% for 8006Re 6 900, and
goes to almost 115% for 1000 6 Re 6 1050. The results of Lee and Mateescu [5] have been
obtained with an aspect ratio of 1:40 and an expansion ratio of 1:2. The difference in the expan-
sion ratio between the two experimental test sections should be negligible, as pointed out in the
calculations by Erturk [7, p. 652]. However, the aspect ratio of Lee and Mateescu [5] is big-
ger than that of Armaly et al. [3], so that it is expected that their results are closer to the two-
dimensional calculations.

A deviation in the reattachment length of up to one unit of height between three-dimensional
measurements and two-dimensional computations may be regarded as acceptable from an engineer-
ing point of view, in order to consider the data by Lee and Mateescu [5] as two-dimensional. After
all, they call their experiments two-dimensional, although they avoid a comparison between two-
dimensional and three-dimensional results in their work apart from one case at Re D 800 where
a direct comparison of reattachment and detachment positions is made (p. 714 of their work).
They support the two-dimensional nature of their experiments intuitively by choosing a relatively
high aspect ratio (p. 705 of their work), and they present two-dimensional calculations of veloc-
ity profiles at Re D 800 (p. 709 of their work), which show a very good agreement between
computations and data.

On the other hand, the situation with the measurements of Armaly et al. [3] is more compli-
cated than that of Lee and Mateescu. A maximum deviation of two units of height is relatively high
compared with the deviation of the measurements by Lee and Mateescu [5] to call the data two-
dimensional. Armaly et al. [3] clearly made the point of three dimensionality in their experiments.
They based their argumentation on the fact that spanwise velocity profiles at Re > 400 (p. 483 of
their work) show a strong disturbance near the lateral wall, which is not the case for the correspond-
ing spanwise velocity profiles at Re < 400 (p. 479 of their work). They also made two-dimensional
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computations that show no increase in the reattachment length for Re > 500 (pp. 488 and 490 of
their work), which was used as an additional argument to support three dimensionality in the data.

In view, though, of the fact that our three-dimensional calculations are very close to the two-
dimensional computations and that the two-dimensional computations of this work underpredict
the data of Armaly et al. [3] by a margin of half a unit of height at Re D 800 and two units of
height at Re D 1050, the three-dimensional character of their data should be reevaluated (Table II).
After all, the data of Armaly et al. [3] are called two-dimensional in a later work by Nie and
Armaly [10, pp. 4714 and 4717].

Finally, Figure 4 depicts the results of Table II. As discussed in the previous section, the blockage
effect of the secondary eddy is evident in the length of the primary eddy in the three-dimensional
calculations of this work because of the fact that the results deviate less than 16% from the two-
dimensional computations. This is shown for the first time in the geometry of the experiment of
Armaly et al. [3]. In the same figure, the data of Armaly et al. [3] are shown along with those of Lee
and Mateescu [5].

The issue of three dimensionality of the experimental data of Armaly et al. [3] is further elu-
cidated in the discussion of the results regarding the eddy along the upper wall downstream
of the step.

4.3. The detachment position of the eddy along the upper wall

The computations of the detachment position x2 of the eddy along the upper wall are given in
Table III along with the data of other authors for comparison. This is the first time that three-
dimensional computations are reported for the eddy along the upper wall for this flow and are
compared with the work of other authors. The results of Table III are depicted in Figure 5.

The maximum deviation between the three-dimensional and two-dimensional computations is
20% at 500 6 Re 6 650. The deviation decreases monotonically for higher Reynolds numbers up
to 1.5% at Re D 1000. At Re D 1050, the results of both computations are almost identical. The
three-dimensional computations are again very close to the two-dimensional ones as in the previous
subsection.

The experiments of Armaly et al. [3] deviate from the two-dimensional computations by 21.4%
at Re D 500. The deviation increases monotonically to 212.4% at Re D 1050. This result is consis-
tent with the previous discussion regarding the reattachment length x1. The experiments of Lee and
Mateescu [5] deviate from the two-dimensional calculations by less than 25% at 5006Re6 700.

Figure 5. Comparison of two-dimensional and three-dimensional computations of this work along with the
experimental data for the detachment position x2 of the secondary eddy.
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The deviation then increases monotonically from 60.6% to 150% at 8006Re6 1050. This be-
havior is again consistent with the previous observations for x1. However, the deviation of both
experimental measurements from the two-dimensional calculations is higher in the case of the
detachment position x2 than in the case of the reattachment length x1.

4.4. The reattachment position of the eddy along the upper wall

The computations of the reattachment position x3 of the eddy along the upper wall are given in
Table IV along with the data of other authors for comparison. The results of Table IV are depicted
in Figure 6.

The highest deviation of the three-dimensional computations with respect to the two-dimensional
ones is at ReD500 (22.8%). The deviation decreases to 12.3% at ReD700 and increases slightly
up to 15.6% at ReD 1050. The results of the computations are very close to the two-dimensional
calculations, as was the case for x1 and x2.

The experiments of Armaly et al. [3] show a deviation from the two-dimensional computa-
tions of between 19.4% and 42.1% in the region 5006Re 6 900. The deviation increases up to
106.2% at Re D 1050. These results show a good agreement of the experimental measurements
with the two-dimensional calculations. This is the first time that this fact has been observed because
most authors have compared only the calculations of the reattachment length x1. This observation
sheds more light to a better understanding of the three-dimensional effects of the measurements by
Armaly et al. [3]. In the case of the reattachment position x3, the measurements may be regarded

Table IV. Reattachment position x3, upper wall.

Re 3D computations 2D computations 2D computations Lee and Mateescu experiment [5]/
FEM3D/FEFLO FEM3D Erturk [7] Armaly et al. experiment [3]

500 5.8657/— 6.0943 6.0663 6.79/5.90
600 7.2235/6.00 7.4164 7.3951 8.06/7.19
648 7.8239/7.39 8.0265 — 8.33/7.84
700 8.4881/— 8.6113 8.5886 8.47/8.19
800 9.5849/9.20 9.7257 9.6991 9.86/9.31
900 10.6593/— 10.7867 10.7562 10.42/10.42
1000 11.6797/10.38 11.8112 11.7770 11.12/10.90
1050 12.1547/— 12.3122 — 11.18/11.25

Figure 6. Comparison of two-dimensional and three-dimensional computations of this work along with
experimental data for the reattachment position x3 of the secondary eddy.
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as two-dimensional because of the relatively small deviation (up to one unit of height) from the
two-dimensional calculations. In the experiments of Lee and Mateescu [5], the deviation from the
two-dimensional calculations is between 13.4% and 113.2% in the range of 500 6 Re 6 1050.
The deviation drops from 69.5% to 13.4% at 500 6 Re 6 800 and grows monotonically to 113.2%
at ReD1050. These measurements show less deviation than the corresponding ones for positions
x1 and x2. This is also evident by inspecting Figures 4–6. This observation is carried out in this
work for the first time.

A possible explanation of the closer agreement of the laboratory experiments with the two-
dimensional calculations at position x3 may be the fact that the flow phenomena at positions x1
and x2 are much more complicated than at position x3 because one eddy reattaches and another
one detaches. After all, positions x1 and x2 are very close to each other with x2 preceding x1 as
calculated in this work and also observed by Armaly et al. [3, p. 480]. At position x3, only one eddy
reattaches, and the flow assumes a parabolic one-dimensional profile further downstream. This flow
situation makes the measurements in the case of position x3 by far simpler rather than in the case of
positions x1 and x2. Although there is no doubt about the accuracy of the experiments and the meth-
ods used by both research groups, it is expected that, in case of deviations from two-dimensional
results, the most vulnerable positions should be x1 and x2 rather than x3.

It should be noted that x2 and x3 are closely related to each other because their difference is
the length of the secondary eddy of the flow. These positions are measured separately in both the
numerical and laboratory experiments. As the secondary eddy appears after a certain Reynolds num-
ber is reached, this phenomenon is associated with the detachment position x2, which is critical in
the evolution of this eddy. By studying the deviation of the detachment and the reattachment of the
secondary eddy separately, one gets a complete picture of the flow in the whole domain, which may
be hindered if only the deviation of the length of the secondary eddy would have been taken into
account.

It should be also noted that the comparison of the three-dimensional results of the two codes
shows in most cases a deviation of less than 40% between them at all Reynolds numbers apart from
the reattachment length x3 at Re D 600 and Re D 1000 where the deviation is one unit of height.

4.5. The effects of lateral walls

The effects of lateral walls are a very important issue in fluid mechanics both for numerical and
laboratory experiments. De Brederode and Bradshaw [8] made a thorough study on this subject for
laboratory experiments of separated flows, which is still followed in the literature [37, p. 105103-2].
It is beyond the scope of this work to even touch upon this issue. After all, there are two works
in the literature [9, 11] that studied this issue extensively for the same geometry as in this work.
Their results have been accepted as possible causes for the three-dimensional effects observed in
the experiments of Armaly et al. [3] in a very recent paper by Schäfer et al. [1, p. 87].

However, the simple fact that the flow under consideration is expected to be distorted near the
lateral wall and that it should attain gradually its two-dimensional configuration as it approaches the
plane of symmetry should be kept in mind. In this work, we investigated this behavior of the flow by
calculating streamlines along planes parallel and normal to the lateral wall. The results are depicted
in Figures 7 and 8 for Reynolds numbers 800 and 400 because the streamlines for these Reynolds
numbers are representative for the flow configurations with one (primary eddy at Re6400) and two
(both primary and secondary eddies at Re>400) eddies.

It can be clearly observed from the figures that this expected phenomenon is indeed verified by
our three-dimensional calculations. The streamlines shown in Figure 7 are reported for the first time
because the codes of this work are capable of predicting both eddies. For both Reynolds numbers,
the distortion of the flow is of the same nature close to the lateral wall as shown in Figures 7(a)
and 8(a) in the sense that eddies are formed both along the lower and upper walls. However, as the
flow develops away from the lateral wall, the two-dimensional characteristics of the flow are recov-
ered completely, as has been discussed in the previous subsections. That is, the secondary eddy
disappears at ReD400 as the flow distances from the lateral wall. On the other hand, the secondary
eddy is kept throughout the whole spanwise direction at ReD800.
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Figure 7. Computed streamlines at Re D 800. (a) In planes parallel to the lateral wall at spanwise locations
´D 8.8, ´D 4, and ´D 0 (plane of symmetry); (b) in a plane normal to the lateral at location y D 0.99 along
with the streamlines in the plane of symmetry; (c) in a plane normal to the lateral wall at location yD0.01
along with the streamlines in the plane of symmetry; (d) in planes normal to the streamwise direction of the

flow at locations x D 1, 3, ..., 13 along with the streamlines in the plane of symmetry.

Figure 8. Computed streamlines at Re D 400. (a) In planes parallel to the lateral wall at spanwise loca-
tions ´ D 8.8, ´ D 4, and ´ D 0 (plane of symmetry); (b) in a plane normal to the lateral wall at location
y D 0.99 along with the streamlines in the plane of symmetry; (c) in a plane normal to the lateral wall at
location yD0.01 along with the streamlines in the plane of symmetry; (d) in planes normal to the streamwise

direction of the flow at locations x D 1, 3, ..., 13 along with the streamlines in the plane of symmetry.
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It should be noted that the high distortion of the flow near the lateral wall has been shown in the
work of other authors (Chiang and Sheu [11, p. 182]; Williams and Baker 1997 [9, p. 1171]) as
well. However, the use of a very fine mesh close to the lateral wall (as shown in Table I) along with
the ability of the finite element method to perform well near boundaries with abrupt changes has
enabled the penetration of the secondary eddy up to the plane of symmetry at ReD 800 and has
obstructed the penetration of the secondary eddy in the plane of symmetry at ReD400.

The distortion of the flow close to the lateral wall with respect to the formation or not of the
secondary eddy may be studied deeper by observing the calculated streamlines in a plane normal
to the transverse direction of the flow and close to the upper wall of the domain. This is shown in
Figures 7(b) and 8(b). In Figure 7(b), it can be clearly seen that the limiting streamlines of the sec-
ondary eddy penetrate in the spanwise direction up to the point where the high distortion takes place
close to the lateral wall. In Figure 8(b), there exists no secondary eddy, so that the high distortion
near the lateral wall disappears in the interior of the domain because of the action of the streamlines
that are parallel to the symmetry plane.

Limiting streamlines may also be observed in connection with the primary eddy of the flow as
well. This is shown in Figures 7(c) and 8(c). In this case, the situation is completely analogous for
both Reynolds numbers because the primary eddy exists in both cases. The limiting streamline of
the primary eddy penetrates all the way up to the high distortion close to the lateral wall, as is the
case with the limiting streamlines of the secondary eddy. This observation leads to the conclusion
that there is no secondary flow associated with the eddy along the upper wall as was believed so far
in the literature based on the calculations of Chiang and Sheu [11] and Williams and Baker [9].

Finally, computed streamlines are shown along planes perpendicular to the streamwise direction
of the flow in Figures 7(d) and 8(d). These figures verify the existence of a secondary flow that has
also been observed by Chiang and Sheu [11] and Williams and Baker [9]. This secondary flow is
associated with the high distortion of the flow close to the lateral wall. It is confined up to a max-
imum of approximately two dimensionless units of lengths so that it affects by no means the flow
phenomena in the plane of symmetry.

This behavior of the flow in three dimensions is verified once more in Figure 9. It is shown there
how the streamwise velocity varies at position y D 0.4851 in the spanwise direction at five different
streamwise locations (1 6 x 6 5) for the case of Re D 800. The value of the two-dimensional
calculation for the same location is also plotted in the same figure for comparison. There are wall
effects that cause a clear disturbance in the streamwise velocity. However, this disturbance fades

Figure 9. Computed spanwise values of the streamwise velocity at y D 0.48 at various streamwise locations.
The corresponding two-dimensional values of the streamwise velocity are also given.
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away as the flow approaches the plane of symmetry. This figure is very representative for all cases
of the flow studied in this work.

In addition, the variations of the length of the primary eddy at both Reynolds numbers are shown
in Figure 10, along with the variation of the length of secondary eddy atReD800 as a function of the
spanwise direction. The situation is analogous to the previous observations. There is a strong distor-
tion of the magnitudes close to the wall, which decays as the flow approaches the plane of symmetry.
The decay is faster for ReD400 because the flow possesses only one eddy and the flow phenomena
are less complex. However, the expansion ratio of 1:36.7 is adequate for higher Reynolds numbers
to attain two-dimensional values as there seems to be enough room in the spanwise direction for the
decay of the distortion according to the computations of this work.

The results in this figure show that the three-dimensional effects are unavoidable close to the
lateral wall for both Reynolds numbers. In the original work of Armaly et al. [3], this issue has
escaped their attention. They show results for Re < 400 up to ´D 8 (figures 8 and 9 of their work),
where any three-dimensional disturbance has disappeared, as is the case with Figure 10. They show
three-dimensional effects for higher Reynolds numbers by taking measurements closer to the lateral
wall where the variations are appreciable as in Figure 10. However, the numerical experiments of
this work show that the three-dimensional effects are an issue close to the wall even at ReD 400.
This issue is further elaborated in the next subsection.

4.6. Spanwise velocity profiles

In order to further elucidate the influence of the lateral wall, spanwise variations of the streamwise
velocity u are shown in Figures 11–13 for two different Reynolds numbers. Results of both compu-
tational codes are compared with the data of Armaly et al. [3] and the two-dimensional predictions
of FEM3D.

In Figure 11, the results at ReD397 are depicted. The agreement of the numerical experiments
with the laboratory data is relatively good (deviation of less than 8.1% with respect to the results of
FEM3D) for cases in Figure 11(a)–(d). There is a much higher deviation for the case in Figure 11(c)
with the experimental data. In Figures 12 and 13, the results at ReD648 are depicted. The agree-
ment between the computations and the experimental data is very good in most cases apart from the
case in Figure 13(c).

There is, though, a common behavior of the three-dimensional computations of both codes close
to the wall—irrespective of the difference of the codes in the value in the plane of symmetry—which

Figure 10. Spanwise variation of the lengths of the primary eddies at ReD400, 800 and of the secondary
eddy at ReD800. The corresponding two-dimensional values of the lengths are also given.
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Figure 11. (a)–(d) Variation of streamwise velocity u in the spanwise direction at various x-locations at
y D 0.7426 and Re D 397. Comparisons are made with the results of Armaly et al. [3] and the two different

codes (FEFLO and FEM3D) along with the corresponding two-dimensional values of FEM3D.

is consistently missing in the experimental data for the case of Re D 397. This fact has also been
observed with the discussion of Figure 10. The numerical results in Figures 11–13 show a strong
variation close to the lateral wall for both Reynolds numbers, which leaves the value of the stream-
wise velocity in the plane of symmetry unaffected. Although the experimental results show strong
variations close to the lateral wall at Re D 648 as well, this phenomenon has been used to support
the discrepancy of the two-dimensional calculations of Armaly et al. [3] with their measurements.
However, the results of both codes show that the strong variations of the flow phenomena close to
the lateral wall decay as the flow approaches the plane of symmetry (Figures 7–13), so that the devi-
ations of the experimental results may be attributed to the omnipresent background noise or other
issues inherent with the execution of laboratory experiments.

4.7. Shear stress distribution

The study of shear stress along the walls of the downstream channel is useful in the understanding
of the relative strength of the eddies. Figure 14 depicts the dependence of shear stress on the stream-
wise location downstream of the step at the plane of symmetry at Re D 800 both along the lower
and upper walls.
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Figure 12. (a)–(d) Variation of streamwise velocity u in the spanwise direction at various x-locations at
y D 0.2327 and Re D 648. Comparisons are made with the results of Armaly et al. [3] and the two different

codes (FEFLO and FEM3D) along with the corresponding two-dimensional values of FEM3D.

The shear stress along the lower wall attains a global minimum at the vortex center of the eddy.
Then, the shear stress grows monotonically until it attains a global maximum near the vortex center
of the eddy on the upper wall. In this region, the net height of the channel for forward flow reaches
a minimum, so that the rate of change in the streamwise velocity profile reaches a maximum. The
shear stress drops then and reaches a local minimum in the region of reattachment of the upper
eddy. There, it is expected that the flow is in its rearrangement phase to attain its one-dimensional
parabolic profile. The flow undergoes some sort of sudden expansion, so that the rate of change of
the streamwise velocity near the wall is smaller than in its fully developed one-dimensional config-
uration. Finally, the shear rate obtains its one-dimensional parabolic value as the flow proceeds to
the outflow of the domain.

This distribution of shear stress along the lower wall of the step is characteristic of Re > 700. For
Re 6 400, there is no global maximum because the eddy along the upper wall is nonexistent. In the
region 500 6 Re < 700, the maximum of the shear stress is a local one because the eddy along the
upper wall is weak.

The shear stress along the upper wall attains a global maximum near the vortex center of the eddy,
as expected. It is interesting to observe the sharp gradient of the shear stress right over the step and
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Figure 13. (a)–(d) Variation of streamwise velocity u in the spanwise direction at various x-locations at
y D 0.7426 and Re D 648. Comparisons are made with the results of Armaly et al. [3] and the two different

codes (FEFLO and FEM3D) along with the corresponding two-dimensional values of FEM3D.

Figure 14. Calculated shear stress distribution along the lower and upper walls at Re D 800.
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its rapid monotonic decrease to zero at the detachment point of the eddy. The fact that the region
around the maximum is relatively flat and that the absolute value of the maximum is low shows the
weakness of this eddy compared with the eddy along the lower wall.

This is the reason why the eddy along the upper wall disappears at higher Reynolds numbers, as
first observed by Armaly et al. [3]. However, this eddy adds to the complication of flow for as long
as it appears, as discussed in the previous subsections, especially at the position of the detachment.
The distribution of shear stress in Figure 14 along the upper wall is characteristic of all Reynolds
number studied. It should be noted, though, that for Re 6 400 the global maximum is a negative
number, as the eddy is nonexistent.

It is interesting to compare the three-dimensional results of this work with the two-dimensional
ones, with regard to the values of the global extrema and their corresponding positions. The results
are given in Tables V and VI. It should be noted that the deviation of the three-dimensional com-
putations, regarding the magnitude of shear stress, from the two-dimensional ones is defined as
jx � y j =y with x the three-dimensional results and y the two-dimensional result.

Regarding the main recirculation region along the lower wall, it is observed that the location of
the global minimum of the three-dimensional computations deviates less than 5% from the two-
dimensional results in all Reynolds numbers studied apart from Re D 700 and Re D 800 where the
deviation is 5.6% and 7.7%, respectively (Table V). The deviation of the magnitude of the global
minimum is less than 5% in the regions 100 6 Re 6 500 and 900 6 Re 6 1050. The deviation
increases slightly in the region 6006Re 6 800 (up to 8.5% at Re D 700).

Regarding the position of the global maximum along the lower wall, the deviation is less than
22% in the whole range of Reynolds numbers. Actually, the deviation decreases monotonically

Table V. Shear stress @u=@y, lower wall, results of this work.

Re 3D computations 2D computations 3D computations 2D computations
global minimum/ global minimum/ global maximum/ global maximum/
x-position x-position x-position x-position

100 �4.5078/0.7291 �4.4923/0.7286 — —
200 �5.4023/1.3514 �5.4109/1.3552 — —
300 �5.7997/2.0455 �5.8748/2.0549 — —
400 �6.1019/2.6933 �6.2752/2.7120 — —
500 �6.4412/3.3578 �6.7612/3.3743 — —
600 �6.9282/4.0224 �7.4244/4.0131 — —
648 �7.2474/4.2668 �7.8509/4.2445 — 6.7039/6.3692
700 �7.6507/4.5238 �8.3039/4.4679 6.5675/6.7620 7.3804/6.5481
800 �8.6613/4.9596 �9.2975/4.8826 8.0825/7.0522 8.7790/6.8820
900 �9.9237/5.2942 �10.3809/5.2617 9.7259/7.2757 10.1413/7.1600
1000 �11.1799/5.6278 �11.4635/5.6268 11.1761/7.4959 11.3841/7.4651
1050 �11.7074/5.7155 �12.0109/5.7351 11.7240/7.5850 11.9742/7.5786

Table VI. Shear stress @u=@y, upper wall, results of this work.

Re 3D computations 2D computations
global maximum/x-position global maximum/x-position

100 �3.9180/1.7628 �3.8685/1.7645
200 �2.2039/2.5836 �2.1302/2.5678
300 �1.0795/3.4000 �0.9402/3.4024
400 �0.2143/4.2000 0.0025/4.2000
500 0.5099/5.0000 0.7719/5.0000
600 1.1144/5.7531 1.3589/5.8000
648 1.3607/6.1307 1.5916/6.2038
700 1.6012/6.6000 1.7994/6.6940
800 2.0086/7.4897 2.1669/7.5712
900 2.3426/8.2879 2.4763/8.3640
1000 2.5686/9.0305 2.7331/9.1270
1050 2.6218/9.3370 2.8441/9.5038

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2012; 68:1102–1125
DOI: 10.1002/fld



3D LAMINAR BACKWARD-FACING STEP FLOW 1123

from 21.4% (at Re D 600) to 0.6% (at Re D 1050). The deviation in the magnitude of the global
maximum is again highest at Re D 700 and Re D 800 (11.7% and 12.4%, respectively). The devi-
ation decreases from 8.6% at Re D 800 to 2.13% at Re D 1050. Overall, the deviation of the
three-dimensional calculations from the two-dimensional ones is in most cases less than 10% for
the magnitude of the extrema and less than 22% for their corresponding position, so that the results
for the shear stress of the three-dimensional numerical experiment of this work may be regarded as
two-dimensional in the plane of symmetry.

The comparison of the three-dimensional results with the two-dimensional calculations for the
eddy along the upper wall shows a deviation of less than 10% in the whole range of Reynolds num-
bers studied for the position of the global maximum with the exception of Re D 1050 where the
deviation is 16.7% (Table VI). The comparison in the magnitude of the shear stress yields higher
discrepancies. The highest deviations are observed at Re D 400 (100%) and at Re D 500 (51.4%).
This result may be surprising because such high deviations are the exception in the comparisons
for the magnitude of shear stress made so far. It has been argued before though that the eddy along
the upper wall is a weak one. This eddy appears around Re � 400. It is expected that a three-
dimensional calculation may show its highest deviation in this parameter region where the inception
of the eddy occurs.

It is interesting that there is no deviation in the position of the global maximum in the range
400 6 Re 6 500. This fact verifies the accuracy of the three-dimensional calculations and shows
that some fine features of a strictly two-dimensional flow, like the extrema of the shear stress, are
almost impossible to be captured even by the most accurate three-dimensional simulation. The devi-
ation in the magnitude of shear stress is relatively high at Re D 300 (12.9%), Re D 600 (22%),
and Re D 700 (12.4%) compared with what has been reported so far regarding discrepancies in the
magnitude of shear stress.

This result enhances the previous discussion regarding susceptibility to deviations because of the
inception of the eddy rather than suggests three-dimensional effects because high deviations are
observed even at Re D 300, where everybody agrees in the literature that the flow is at least two-
dimensional up to Re D 400. The deviation in the magnitude of the shear stress drops to less than
8% in the region 800 6 Re 6 1050 where the eddy is relatively strong and can be detected by
three-dimensional calculations equally accurately as with two-dimensional computations.

5. CONCLUSIONS

The three-dimensional laminar backward-facing step flow has been studied in a computational do-
main that mimics actual laboratory conditions. The Reynolds number range was 1006Re 6 1050.
The geometry chosen was that of the test section introduced by Armaly et al. [3], who have
performed some of the most cited laboratory experiments on this subject. Two finite element
codes were used to solve the steady-state Navier–Stokes equations in order to enhance the
credibility of the results. Several comparisons have also been performed in order to check
the deviation of the three-dimensional computations from the ideal two-dimensional numerical
experiment.

It is reported for the first time that a three-dimensional numerical experiment can predict the
eddy along the upper wall of the channel upstream of the step under the laboratory experimental
conditions of Armaly et al. [3].

The results for the reattachment position of the eddy along the lower wall and the detachment and
reattachment positions of the eddy along the upper wall have been compared with two-dimensional
computations. The comparison shows that the high aspect ratio of 1:36.7 yields two-dimensional
results in the plane of symmetry of the computational domain for all three positions and for every
Reynolds number studied. The highest deviation has been observed for the detachment position of
the eddy along the upper wall at Re D 600. These are the first three-dimensional computations
for this flow that are so close to two-dimensional calculations. The results are in accordance with a
fundamental conclusion of De Brederode and Bradshaw [8, p. 33] who suggested an aspect ratio of
1:30 for negligible wall effects.
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The effects of lateral walls have been studied by computing streamlines in planes parallel and
perpendicular to the walls. It has been shown that the flow attributes are distorted very close to the
wall and assume their two-dimensional configuration in spanwise positions close to the symmetry
plane. Computations of shear stress distributions verify the two-dimensional configuration of the
flow in the plane of symmetry. The high deviation of the three-dimensional computations has been
observed in the global maximum of the shear stress along the upper wall at 4006Re 6 500, where
the inception of the eddy occurs.

The calculation of the eddy along the upper wall, in conjunction with the agreement between
three-dimensional and two-dimensional computations, has given the opportunity for a reevaluation
of the conclusions that have been made so far in the literature regarding the laboratory experiments.
It has been shown that the deviation of the measurements with respect to two-dimensional compu-
tations is from 21.4% (at Re D 500) up to two units of height (at Re D 1050) with regard to the
detachment position and up to one unit of height with regard to the reattachment position of the
eddy along the upper wall in the whole range of Reynolds numbers.

The good agreement of the experimental data with the two-dimensional and three-dimensional
computations regarding the reattachment position of the eddy along the upper wall shows that labo-
ratory experiments with aspect ratios higher than 36 reveal two-dimensional attributes in the plane of
symmetry with a deviation of less than half the unit of height for most Reynolds numbers. The most
vulnerable position of experimental data with respect to accuracy of measurement is the position of
the detachment of the secondary eddy.

In the near future, it seems possible that the tremendous increase of computational power may
permit the study of the direct numerical simulation of turbulence in domains with lateral walls
rather than the use of periodic boundary conditions in the spanwise direction as is common practice
today. In that respect, the results of this work may serve in testing appropriate numerical methods for
such applications.
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