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Abstract. The Discrete Element Method (DEM) is very useful to describe the heterogeneous 

microstructure of geomaterials at particle scale. Fatigue loading induces multi-crack growth in 

materials such as cement and asphalt concretes, rocks, etc. However, the rate of fatigue crack 

growth is usually below the smallest particle size, which complexifies the description of a 

continuous loss of stiffness. In the present work, a new contact model which relates the loss of 

stiffness of a contact to any scale of crack growth is proposed. This relation is obtained with 

the theoretical release of energy at a crack tip and the energy released due to contact stiffness 

degradation. Thus, a Paris law like criterion is adapted to characterize the crack growth rate. 

The model is first validated for theoretical pre-cracked plates under cyclic loading. Then, the 

analysis is extended to experimental results comparison. Finally, the consistency of these 

preliminary results is associated to more complex and practical perspectives of the proposed 

numerical approach. 

1 INTRODUCTION 

Most of the theoretical and numerical tools for the analysis of fatigue cracking problems are 

based on fracture mechanics, which relies on energetic concepts of continuum mechanics. The 

incremental evolution of the systems is usually described in terms of relatively slow 

propagation of cracks which are precisely defined in space and in time. The transposition of 

these concepts for the analysis of geomaterials, mostly composed by heterogeneous assemblies 

of different particles, presenting an uncountable number of voids and defects is not 

straightforward.  

DEM[1] simulations are very useful to represent the behavior of heterogeneous materials, 

describing the mechanical interactions by means of contact forces and displacements. The 

simplest representation of a crack is expressed by aligned contacts without tension forces. 

Hence, the crack definition is fundamentally based on a particle dimension. The representation 
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of a crack propagation of a sub-particle length (often the case in fatigue analysis) demands an 

apparent reduction on contact stiffness (at the proximity of a crack tip) to be described.  

In this work, a contact constitutive model whose behavior depends on its own rate of release 

of energy is presented in section 2. The energetic consistent approach is then associated to the 

classical fatigue crack growth criterion Paris’ law in section 3. In section 4, the DEM 

simulations are compared to theoretical and experimental results which are followed by the 

conclusions and perspectives of the study. 

2 DISCRETE ELEMENT APPROACH 

The simulations are performed with PFC 5.0[2] which is based on the work of Cundall[1]. For 

more information about the algorithms see reference[2]. All examples are performed in quasi-

static conditions. The contact law which is proposed in the following sections is programmed 

based on the linear bond contact model[2].  

2.1 Basic damageable contact model 

In DEM, materials are described as a group of particles connected by contacts through which 

particles interact with each other. The normal and tangential components of the contact force 

are governed by Eq. 1, where δn  and δs  are respectively the normal and tangential relative 

displacement (with time derivation δ̇n and δ̇s), kn and ks are the normal and tangential stiffness 

of contact, cn and cs are the normal and tangential viscous damping coefficient (see Fig. 1[3]). 

 
 (a) (b) (c) 

Figure 1: (a) the contact model, (b) particle relative displacement, (c) the resulant force. 

 Fn=knδn+cnδ̇n (1) 

Fs=ksδs+csδ̇s 

On the present simulations, the damping parameters are relative small values of 

cn=cs=0.141√knm (where m is the mass of one particle) to avoid disturbing viscoelastic effect. 

One may adopt a state variable D to describe the loss of stiffness of a contact during crack 

propagation. An intact contact is represented by D=0, whilst D=1caracterizes a broken contact. 

Hence the value of normal and tangential stiffness are dependent on the value of this quantity 

D (referred as “damage”): 

 kn=(1-D)kn0 (2) 
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 ks=(1-D)ks0 

where kn0 and ks0 are the values of the normal and tangential stiffness for an intact material. 

Based on the components of the contact force, the resultant force 𝐹 and its orientation with 

respect to the tangential direction are calculated by: 

 F=√Fn
2+Fs

2 (3) 

 θ= tan-1 Fn

Fs
 (4) 

The projection of the contact displacement on the direction of the resultant force is obtained by 

the following expression: 

 δ=δn sin θ +δs cos θ (5) 

Both quantities F and δ are related by the relation, 

 F=k0(1-D)δ (6) 

where k0 depends on kn0, ks0 and the direction θ as shown in reference[3] 

 k0=
kn0ks0

kn0 cos2 θ+ks0 sin2 θ
 (7) 

2.2 Relation between damage and crack propagation  

In the following analysis, one may consider an elastic material with a Young’s modulus E 

described by a monodisperse ensemble of particles of diameter dc organized in a bi-dimensional 

regular square-packing (see Fig. 2b). In this configuration, a straight crack of a length a0 (for 

example) may be represented by a sequence of contacts presenting D=1, that is to say, contacts 

which are totally broken (Fn=Fs=0). The propagation of this crack may then appear as a loss 

of stiffness (0≤D≤1) of the contact located as near as possible of the initial crack tip. The 

propagated distance ac (as indicated in Fig. 2a) become equal to the diameter dc when D=1. For 

any other value of the damage variable, one can clearly identify that 0≤ac≤dc. The relation 

between the propagated distance  ac  and the damage variable D is fundamental to a fine 

description of the crack propagation and must rely on an energy balance. 

The energy release rate G at crack tip[4] is defined as the rate at which the energy U is 

transformed during the crack extension per unity of propagated surface dA. In two dimensions, 

it can be expressed as: 

 G=
∂U

∂A
=

1

w

∂U

∂a
 (8) 

where w is the thickness of the structure and da is a differential of crack extension. 

2.2.1 Infinitesimal crack extension   

For a small crack extension, the energy which is released is not large enough to affect 

considerably the stress and strain around the crack tip. In order to analyze this case, one may 

define a radial axis with its origin at the crack tip (as shown in Fig. 2) following the crack 
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extension. The opening force F as function of the opening displacement δ presents a triangular 

shape[5], as shown in Fig. 3.  

 

 
 (a) (b) 

Figure 2: Cracked plate and its discrete element description: (a) plate with edge crack, (b) square-packing sample. 

 

The energy U released during a crack extension dc corresponds to the triangular area under 

the curve F(δ). The energy Uc released during a crack extension ac (0≤ac≤dc) corresponds to 

the triangular colored area shown in Fig. 3. During the fracture process the energy release rate 

G remains constant, following Eq. 9, it leads to   

 G=
U

wdc
=

Uc

wac
 (9) 

The relation ac/dc can be obtained from Eq. 9. The crack extension ac  causes a force 

decrease from its maximum value F0 to a value Fi. In the particle description, the force decrease 

is associated to a damage evolution. Based on Eq. 6, the maximum force F0=k0δ0 is obtained 

before any propagation of the crack ( D=0  ,  ac=0 ), whilst Fi=(1-D)k0δi . Considering the 

previous elements, one may have: 

 
ac

dc
=

Uc

U
=1- 

Fi

F0
=1-(1-D)

δi

δ0
 (10) 

The diagram F×δ is globally described by two slopes. The first is k0 (or more generally 

(1-D)k0 for a damaged contact) which represents a contact property. The second depends on k0 

and also on surrounding state around the crack tip. For an infinitesimal crack extension, the 

second slope can be simply defined as  k0/p, where p remains constant during the fracture 

process. The maximum displacement δmax can be geometrically obtained based on δ0 or any 

other displacement δi by the relation: 

 δmax=δ0(1+p)=δi[1+p(1-D)] (11) 

From Eq. 11, the relation δi/δ0=(1+p)/[1+p(1-D)] can be introduced in Eq. 10 and one may get 

the following straightforward equation which relates the contact damage 𝐷 and the force release 

variable 𝑝 to the infinitesimal crack propagation 𝑎𝑐: 

 
𝑎𝑐

𝑑𝑐
= 1 − (1-D)

1+𝑝

1+𝑝(1-D)
=

1−(1-D)

1+𝑝(1-D)
 (12) 

Eq. 12 can be rewritten as 
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 1-D=
(1-

ac

dc
)

(1+p
ac

dc
)
 (13) 

where the contact relative stiffness 1 − 𝐷  is directly related to an infinitesimal crack 

propagation divided by the particle diameter 𝑎𝑐/𝑑𝑐. In Fig. 3b, Eq. 13 is presented for various 

𝑝 values (0 ≤ 𝑝 ≤ ∞). 

 
 (a) (b) 

Figure 3: (a) contact force and displacement, (b) examples of Eq. 13 for different values of p. 

2.2.2 Generalization to any case of crack extension   

In many conditions, depending for example on the crack size, the particle size or the 

existence of multiple cracks, the value of 𝑝 cannot be taken as constant during the propagation 

process of one contact (where 𝑎𝑐  varies from 0  to 𝑑𝑐 ) as shown in Fig. 4. Thus, one may 

consider instead, the cumulative effect of the fracture process on the evolution of the relation 

between 𝐷  and 𝑎𝑐/𝑑𝑐 . The rate of increase of the damage 𝐷  with respect to the increase of 

crack propagation 𝑎𝑐 can be then obtained by simple derivation of Eq. 13, considering that 𝑝 

remains the same for an infinitesimal crack propagation, which leads to 

 ∆𝐷 ≈ ∆𝑎𝑐
(1+𝑝)

𝑑𝑐(1+𝑝
𝑎𝑐
𝑑𝑐

)2
 (14) 

3 IMPLEMENTATION OF A FATIGUE CRACK LAW 

In practice, Eq. 14 must be associated to a fatigue crack law. The implementation of Paris’ 

law[6] in discrete element simulations are discussed in the following section. 

3.1 Paris’ law 

In Paris’ law, the crack grow rate is defined as 

 
𝜕𝑎𝑐

𝜕𝑁
= 𝐶(∆𝐾)𝑀 (15) 
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where N is the number of loading cycles, ∆𝐾 is the stress intensity range, 𝐶 and 𝑀 are material 

parameters. 

 
   

Figure 4: Incremental formulation relating crack propagation and damage.  

A similar equation can be derived based on the classical relation of linear elastic fracture 

mechanics between stress intensity and energy release rate ∆𝐺 = (∆𝐾)2/𝐸 (in plane stress). In 

the following analysis, the loading is considered to vary from 0 until its maximum value and 

induce only tension at the crack tips, which means that ∆𝐺 ≡ 𝐺𝑚𝑎𝑥 − 0 = 𝐺. The Paris’ law is 

then adopted with the following expression: 

 
𝜕𝑎𝑐

𝜕𝑁
= 𝐶(𝐺𝐸)𝑀/2 (16) 

3.2 Paris’ law implementation in DEM  

After the application of the maximum amplitude of the cyclic loading as boundary conditions 

of the structure, the initial displacement and force (𝛿0, 𝐹0) are identified for the nearest contact 

at the crack tip. A very small release of energy is necessary to initialize the evaluation of the 

energy release rate. Hence, a value of 𝐷1 = 10−4 is imposed to the contact at crack tip, which 

leads to new values of displacement and force (𝛿1, 𝐹1). An initial value of 𝑝 = −𝑘0(𝛿1 −
𝛿0)/(𝐹1 − 𝐹0) is necessary to get an initial value of the crack propagation 𝑎𝑐 1 from Eq. 12.   

Starting at 𝑖 = 1, based on two states (present 𝑖 and past 𝑖 − 1) the following steps allow to 

describe the evolution to the state 𝑖 + 1 of the contact forces and displacements reproducing the 

effect of loading cycles 𝑁:  

a) Evaluation of the value of 𝑝 = −𝑘0(𝛿𝑖 − 𝛿𝑖−1)/(𝐹𝑖 − 𝐹𝑖−1);  

b) Determination of 𝑈𝑐 . Surface of the triangle (0,0); (𝛿𝑖−1, 𝐹𝑖−1) ; (𝛿𝑖, 𝐹𝑖) : 𝑈𝑐 =
1

2
|𝛿𝑖−1𝐹𝑖 − 𝛿𝑖𝐹𝑖−1|; 

c) Evaluation of the energy release rate 𝐺 (Eq. 8); 

d) Calculation of the crack increment ∆𝑎𝑐 (Paris’ Law, Eq. 16); 

e) Calculation of the damage increment ∆𝐷 (Eq. 14); 

f) Update of the values of crack size (𝑎𝑐 𝑖+1 = 𝑎𝑐 𝑖 + ∆𝑎𝑐) and damage (𝐷𝑖+1 = 𝐷𝑖 + ∆𝐷); 
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g) New quasi-static calculation to get (𝛿𝑖+1, 𝐹𝑖+1) and restart from (a). 

Crack tips identification. Following the above steps till the first contact totally loses its 

stiffness, that means crack propagates through the first contact, then the next contact in whose 

contact domain the crack continually grew is identified as the contact with the maximum normal 

force within the region that is a circular scope taking the previous crack tip contact as center 

and four times diameter as radius. 

4 SIMULATION RESULTS  

Two examples of fatigue analysis are presented in the following sections. The first is a 

theoretical pre-cracked plate and the second is an experimental pre-cracked concrete beam (both 

are submitted to cyclic stresses). 

4.1 Comparison with theoretical results 

The analysis of a theoretical 2𝑏 × ℎ rectangular plate with double edge cracks (Fig. 5a) is 

adopted to verify the consistence of the formulation presented in the previous section. A cyclic 

stress loading with amplitude 𝜎 drives the fatigue of the structure. The response of the system 

is analyzed by means of the propagation of the cracks (initial dimension 𝑎0) and the relative 

displacement at the extremities 𝛿̅. 
The theoretical results of the rate of crack increase 𝜕𝑎/𝜕𝑁 are obtained from the application 

of the Paris’ law (see Eq.  15) for ∆𝐾 calculation[7] 

 ∆𝐾 ≡ 𝐾 − 0 = σ√𝜋𝑎(1.122-0.561ξ-0,205ξ
2+0.471ξ

3-0.190ξ
4)/√1-ξ  (17) 

where ξ = 𝑎/𝑏. Hence, a numerical explicit scheme completes the determination of the crack 

length at each step (𝑎𝑖+1 = 𝑎𝑖 + (𝜕𝑎/𝜕𝑁)∆𝑁) and the corresponding number of cycles (𝑁𝑖+1 =
𝑁𝑖 + ∆𝑁). 

The evaluation of the displacement 𝛿̅ is obtained through the release of energy of the system. 

At each step, the increment of the cracks ∆𝑎 = (𝜕𝑎/𝜕𝑁)∆𝑁 induces a release of energy ∆𝑈 

 ∆𝑈 = 2𝑤𝐺∆𝑎 = 2𝑤
𝐾2

𝐸
∆𝑎 (18) 

The release of energy of the structure correspond to the triangular surface indicated on Fig.  5b, 

which means that: 

 ∆𝑈 =
𝜎(2𝑏𝑤) ∆�̅�

2
 (19) 

Finally, with the equality of Eq.  18 and Eq.  19, the increment on the displacements at each 

step can be calculated 

 ∆𝛿̅ = 4
𝐾2

𝐸

∆𝑎

𝜎(2𝑏)
 (20) 

Hence, a numerical explicit scheme completes the determination of the displacement 𝛿̅ at each 

step (𝛿�̅�+1 = 𝛿�̅� + ∆𝛿̅). 

For the simulations, a plate with the following dimensions is considered: 𝑏 = 50𝑚𝑚, ℎ =
160𝑚𝑚 , unitary 𝑤 = 1𝑚 , 𝑎0 = 12𝑚𝑚 . Different particle dimensions are considered 𝑑𝑐 =
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1𝑚𝑚, 2𝑚𝑚 and 4𝑚𝑚 with a simple square packing. The material present a Young’s modulus 

𝐸 = 10 𝐺𝑃𝑎, which corresponds to 𝑘𝑛0 = 𝑘𝑠0 = 1010𝑁/𝑚 and fatigue parameters: 𝑀 = 1.25 

and 𝐶 = 10−12𝑚(𝑃𝑎√𝑚)
−𝑀

. The amplitude of stress considered is 𝜎 = 1 𝑀𝑃𝑎. 

 
 (a) (b) 

Figure 5: (a) Plate geometry under imposed stress and (b) schematic response of the structure in terms of stress 

and displacements.  

The ratio between the elastic displacement of the plate without cracks 𝛿0̅ = ℎ𝜎/𝐸 and the 

displacements of the cracked plate 𝛿̅  represents the stiffness integrity of the sample (0 ≤
𝛿0̅/𝛿̅ ≤ 1). For 𝛿0̅/𝛿̅ = 1, the sample presents its total stiffness, completely intact, whilst 

𝛿0̅/𝛿̅ = 0 corresponds to a total loss of stiffness. In Fig. 6a, the evolution of this parameter is 

presented as a function of the number of cycles 𝑁. The initial value of 𝛿0̅/𝛿̅ ≅ 0.93 represents 

the effect of the initial edge cracks. The subsequent loss of stiffness is an effect of the 

propagation of the edge cracks. As an example, for particle dimension 𝑑𝑐 = 2𝑚𝑚 , the 

evolution of the length of the cracks (normalized by the plate dimension 𝑏) as a function of 𝑁 

is presented in Fig. 6b. 

 
 (a) (b) 

Figure 6: Comparisons between simulation and theoretical results: evolution of (a) the relative displacement for 

different particle diameters 𝑑𝑐, and (b) the relative crack length 𝑎/𝑏 for 𝑑𝑐 = 2𝑚𝑚 as functions of the loading 

cycles 𝑁. 
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In Fig. 6, the simulation results follow closely the theoretical predictions. The curves are 

continuous, which shows one the major advantages of the presented formulation, the model 

definition below the particle diameter dimension 𝑑𝑐. The small differences between theory and 

simulations increase with the number of cycles 𝑁 which is likely related to the accumulation of 

errors of the order one explicit scheme adopted in all incremental equations. 

4.2 Comparison with experimental results 

Bazant and Xu[8] analyzed pre-cracked concrete beams in three point bending fatigue tests 

(see Fig. 7a). A cyclic force is applied with a maximum amplitude 𝐹. The largest sample in this 

study with 𝐻 = 152.4𝑚𝑚, 𝐿 = 381𝑚𝑚, and 𝐹 = 4147.4𝑁 is compared to a DEM simulation. 

The material present a Young’s modulus 𝐸 = 27120𝑀𝑃𝑎 , and sample width w=38.1mm, 

which induces the following initial contact stiffness 𝑘𝑛0 = 𝑘𝑠0 = 1.033 × 109𝑁/𝑚.  

As initial crack, a value of 𝑎0 = 32.3𝑚𝑚 is considered, which corresponds to the value at 

𝑁 = 10 cycles, after the stabilization of the sample behavior. A particle diameter of 𝑑 = 2𝑚𝑚 

is adopted on the simulation. One may observe that 𝑎0 = 16𝑑 + 0.15𝑑, which represent 16 

contacts and one contact partially broken with an 𝑎𝑐/𝑑 = 0.15. From Eq. 13, we get a fairly 

precise value of initial damage 𝐷1 = 0.40 (for an average value of 𝑝 = 2.85) for the contact at 

the crack tip. 

The authors from tests[8]  identify experimentally the parameter 𝑀 = 9.27, which is the same 

adopted for the simulation. In Fig. 7b, the evolution of the relative crack length 𝑎/𝐻 as a 

function of the number of cycles 𝑁 is presented. Finally, a very good agreement between the 

experiment. 

 
 (a) (b) 

Figure 7: (a) Geometry of the three-point bending beam. (b) Evolution of the relative crack length 𝑎/𝐻 as a 

function of the number of cycles 𝑁. Comparison between test results[8] and DEM simulation. 

5 CONCLUSIONS 

- The paper presents a direct relation between a propagated crack length and the induced 

stiffness reduction in a contact scale. During contact rupture, the energy release rate at 

each step is precisely estimated based on the evolution of the forces and displacements 
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and integrated locally to the contact behavior, in an explicit numerical approach 

directly adapted in a DEM environment. 

- The crack propagation is continuously defined much below the particle scale, which is 

a key element to integrate usual fatigue laws based on energetic assumptions in DEM. 

- The simulation results are consistent to theoretical and experimental results of pre-

cracked samples under fatigue. 

- The contact law can be directly adapted to irregular granular meshes and 3D multi-

crack problems. 
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