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Abstract. A novel ‘two-surface’ gradient-extended damage-plasticity model taking into
account damage anisotropy in the logarithmic strain space is derived in a thermodynam-
ically consistent manner. In addition, the concept of an additive split is followed, while
the weak form of the linear momentum is stated with respect to Lagrangian quantities.
Hence, the mapping between these two spaces is additionally addressed here. Moreover,
in order to overcome mesh-dependency, the invariants of the second order damage tensor
are gradient-enhanced using the micromorphic approach. In addition, some aspects of the
numerical implementation are discussed. A numerical example considering an asymmet-
rically notched specimen illustrates the model’s behavior as well as its ability to deliver
mesh-independent results.

1 INTRODUCTION

For several decades, much research has been conducted in the field of anisotropic dam-
age from both an experimental and a modeling point of view. Since experimental studies
have shown that, for instance, in the case of non-proportional loading paths isotropic
damage models reach their limitations, there is an enormous need of anisotropic damage
models. Further, if one considers forming processes, besides non-proportional load paths
also large deformations occur. Especially in the field of metal forming, coupled models
for damage with plasticity at finite deformations are of utmost importance to better un-
derstand these processes and to predict local phenomena such as stress peaks.
The field of Continuum Damage Mechanics (CDM) is a well established modeling ap-
proach to counteract these problems by means of phenomenological material models. In
fact, CDM is still an active field of research and led to coupled anisotropic models at
large deformations in the recent past, for instance, for initially isotropic materials using
a damage tensor (e.g. [1]) or anisotropic materials using several scalar damage variables
(e.g. [2]). Moreover, while for the infinitesimal theory the kinematics in connection with
a second order damage tensor are relatively clear, the finite strain theory offers way more
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conceptual ways to deal with finite elasto-plasticity combined with anisotropic damage.
In addition to the modeling difficulties, it is known that so-called local damage mod-
els suffer from severe mesh-dependency when considering structural examples. A possi-
ble solution technique is to take additional length scales into account by means of e.g.
gradient-extended material model formulations. A certain subclass of those approaches
is the micromorphic approach [3, 4], which has proven to avoid mesh-dependency for dif-
ferent cases of damage models (see e.g. [5, 6]).
To this end, a coupled damage-plasticity model using a second order damage tensor in
the sense of CDM is discussed. For this purpose, the material formulation takes place
in the logarithmic strain space and further assumes the elastic strain to be additively
decomposable. Following the micromorphic approach, a novel gradient-extension of the
damage tensor’s invariants is discussed to counteract mesh-dependency. First, several fun-
damental aspects for the constitutive framework are presented (Sec. 2), followed by the
thermodynamically consistent derivation of the material model in Sec. 3. In Sec. 4, some
remarks on the numerical implementation are given, also including a brief description
of the transformation of constitutively dependent quantities between logarithmic and La-
grangian space. Finally, a numerical example investigates the proposed gradient-extended
material model in Sec. 5.

2 GOVERNING EQUATIONS

Logarithmic strain measures. As widely accepted in the field of finite elasto-
plasticity, the total deformation gradient can be multiplicatively decomposed into an
elastic and plastic part F = FeFp. In addition, the polar decomposition of Fp = RpUp

into a proper orthogonal part and a positive definite stretch part is introduced.
Since the aim of this contribution is to state the material model formulation in terms of log-
arithmic strain measures, the elastic logarithmic strain is introduced as
ε̆e := 1/2 ln(F T

e Fe ). However, in order to express the rate of ε̆e depending on total
and inelastic deformations, the rate of Up has to be considered rather than its logarith-
mic counterpart ln(Up). To circumvent this problem, the concept of an additive split
of the deformation is followed, which is ‘surprisingly close’ to the multiplicative version
according to [7]. With this approach at hand, the elastic strain is defined as

εe :=
1

2
ln(C)︸ ︷︷ ︸
=: ε

− 1

2
ln(Cp)︸ ︷︷ ︸
=: εp

(1)

with the total and plastic right Cauchy-Green tensors C(p) = F T
(p)F(p). Noteworthy, the

elastic logarithmic strains ε̆e and εe are only equal if and only if C and Cp commute and
further Fp = Up holds. Nevertheless, the split (1) is very well tested for quite different
material behaviors in the literature and shows good agreement with experimental obser-
vations, even for anisotropic plasticity.
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Mapping of second order damage tensor. In the case of a purely elasto-plastic
material behavior, the energy ψ is usually assumed as an isotropic function of F T

e Fe or,
in the case of logarithmic strains, as an isotropic function of ε̆e. In contrast, the damage
tensor is usually stated with respect to the current or reference configuration and further
is assumed to be positive semi-definite. Here, the latter assumption is followed and the
referential second order damage tensor Dr is introduced. However, this means that a
mapping to the intermediate configuration is required.
Two mapping strategies are considered here, namely symmetry-preserving (e.g. [8]) and
mixed-variant mappings (e.g. [9]). While the latter prevent undesired inelastic scaling
effects, only the former preserve the symmetry of the damage tensor D in the interme-
diate configuration in general, which is beneficial for the formulation of ψ in terms of
its integrity basis. Each advantage is desirable in the case of damage, which is why a
mapping combining both is preferable. Thus, the following mapping is stated

D = RpDrR
T
p = RpDrR

−1
p (2)

which will be used within this work. For further derivations, please note that the eigen-
vectors of D and Dr transform according to nD

i = Rp n
Dr
i .

Micromorphic approach. To overcome the severe mesh-dependency, an additional
internal length scale is introduced. In this context, the micromorphic approach suggested
in [3, 4] offers a quite general way to account for additional gradient influences within
the formulation of (local) material models. For this purpose, n additional unknowns -
summarized within d̄ := (d̄1, . . . , d̄n), which is referred to here and in the following as
the micromorphic damage vector - are introduced in general. These additional so-called
nonlocal variables are strongly coupled to the local variables of the material model, for
instance, the damage variable D in the case of scalar isotropic damage models (see e.g.
[5]). The gradient influence is then taken into account by an additional field equation -
similar to the strong form of linear momentum - introduced for the micromorphic field.
In case of damage, this field equation is given as (cf. [5])

Div(Ξ0i)− ξ0i = 0 in B0 (3)

Ξ0i · n0 = 0 on ∂B0 (4)

with the Lagrangian divergence operator denoted by Div(•), the ’generalized’ stresses Ξ0i

and ξ0i as well as the outward normal vector n0 with respect to the reference configura-
tion. The domain of the body in the reference configuration is denoted by B0.

Invariant-based gradient-extension. Several approaches based on the micromorphic
one exist in the literature to gradient-enhance local damage material models. While for
scalar isotropic damage models it seems natural to gradient-extend the scalar damage vari-
able D, several possibilities exist in the case of anisotropic damage. Besides the approach
to extend the components of the damage tensor (e.g. [10]), also the gradient-extension
of the damage hardening variable is possible (see [6]). The latter one is beneficial from
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a computational point of view, since only one additional degree of freedom has to be
considered. However, as discussed in the just mentioned work, this leads to problems for
the formulation of the damage yield criterion. To circumvent this situation, the invariants
of the second order damage tensor are used for the gradient-extension. Hence, the local
damage vector d := (d1, d2, d3) containing the local counterparts to d̄i is introduced here
as

d1 = tr(D), d2 = tr(D2), d3 = tr(D3). (5)

Noteworthy, due to the mapping in Eq. (2), it holds true that tr(Di) = tr(Di
r) with

i ∈ {1, 2, 3}. As a consequence, three micromorphic degrees of freedom d̄1, d̄2, d̄3 have to
be considered in addition to the displacement field. To the best knowledge of the authors,
such an approach based on the invariants of the damage tensor in connection with the
micromorphic approach has not yet been used in the literature.

Weak forms. For the numerical implementation, the weak form of both the displace-
ment field and the micromorphic field have to be solved, which read under consideration
of Eqs. (3) and (4) in the reference configuration

gu(u, d̄, δu) :=

∫
B0

S : δE dV −
∫
B0

f0 · δu dV −
∫
∂tB0

t0 · δu dA = 0 (6)

gd̄(u, d̄, δd̄) :=

∫
B0

ξ0i · δd̄ dV +

∫
B0

Ξ0i : Grad
(
δd̄
)

dV = 0 (7)

with the second Piola-Kirchhoff stress tensor S, the short hand notation
δE := sym(F TGrad(δu)), the volume force f0, the traction t0 and the test functions δu
and δd̄, respectively. Further, the Lagrangian gradient operator is denoted by Grad(•).

3 CONSTITUTIVE FRAMEWORK

For the constitutive modeling, the plastic logarithmic strain with respect to the inter-
mediate configuration is defined as ηp := 1/2 ln(FpF

T
p ) = Rp εp R

T
p . With this quantity

at hand, the Helmholtz free energy is assumed to be additively decomposed as

ψ = ψĕ(ε̆e,D) + ψp(ηp, κp,D) + ψd(κd) + ψh(D) + ψd̄(d, d̄,Grad(d̄)). (8)

Within the assumed form of the energy, ψĕ represents the elastic energy contribution
and ψp the plastic contribution due to kinematic as well as isotropic hardening with the
accumulated plastic strain κp. Both are affected by the damage tensor D. Furthermore,
damage hardening is captured by the damage hardening variable κd within the energy ψd.
The energy associated with ψh can be seen as a penalty energy preventing the eigenvalues
ofD (and thus alsoDr) from exceeding the value one. Such an approach was already used
in the case of anisotropic damage in [6] at small strains. In contrast to the other energies,
the integrity basis is not expressed in terms of invariants but rather the eigenvalues of
D are used for ψh, i.e. ψh = ψ̄h(D1, D2, D3). Nevertheless, this still means that ψh

is an isotropic function of the second order damage tensor. The last term, namely ψd̄,

4



H. Holthusen, T. Brepols, S. Reese and J.-W. Simon

accounts for the gradient-extension and further ensures the strong coupling between d
and d̄. This general format can be further specified, having Eq. (5) in mind, since d is
only a function of D. Hence, the formulation of this energy contribution can be rewritten
as ψd̄ = ψ̄d̄(D, d̄,Grad(d̄)).

3.1 Derivation based on the isothermal Clausius-Duhem inequality

For the derivation of thermodynamic driving forces, the micromorphically extended
Clausius-Duhem inequality is used

−ψ̇ + T : ε̇+ ξ0i · ˙̄d + Ξ0i : Grad
(

˙̄d
)

︸ ︷︷ ︸
micromorphic extension

≥ 0 (9)

with the stress power expressed in terms of ε̇ and its stress-like conjugated driving force
T . Before inserting the total time derivative of ψ into the inequality, one has to note
that due to the additive split (1) the elastic strain is defined with respect to the reference
configuration. Thus, the elastic energy part in Eq. (8) is no longer a function of ε̆e
but rather εe. Since D is located in the intermediate configuration, Dr is utilized in
connection with εe. Consequently, the elastic energy contribution ψĕ in Eq. (8) is replaced
by ψe(εe,Dr).
After several mathematical operations, which are omitted here for brevity, the evaluated
time derivative of ψ yields the following(

T − ∂ψe

∂εe

)
: ε̇+ (T −X) : ε̇p +

=:Y︷ ︸︸ ︷
(Ye + Yp − Yh − Yd̄) : Ḋr

+Rp κ̇p +Rd κ̇d +

(
ξ0i −

∂ψd̄

∂d̄

)
· ˙̄d +

(
Ξ0i −

∂ψd̄

∂Grad(d̄)

)
: Grad

(
˙̄d
)
≥ 0.

(10)

Following the well-known Coleman-Noll procedure for the stress tensor T as well as sim-
ilar relations for the ‘generalized’ stresses in order to fulfill the inequality for arbitrary
processes, one may find

T =
∂ψe

∂εe
, ξ0i =

∂ψd̄

∂d̄
, Ξ0i =

∂ψd̄

∂Grad(d̄)
. (11)

Furthermore, the kinematic backstress tensor and the driving force associated with plastic
isotropic hardening are defined as

X := RT
p

∂ψp

∂ηp
Rp, Rp := −∂ψp

∂κp
. (12)

Analogously, the damage hardening force is introduced as Rd := −∂ψd/∂κd. The remain-
ing driving forces associated with the rate of the second order damage tensor Dr are
defined as

Ye := − ∂ψe

∂Dr

, Yp := −RT
p

∂ψp

∂D
Rp, Yh := RT

p

∂ψh

∂D
Rp, Yd̄ := RT

p

∂ψd̄

∂D
Rp. (13)
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Noteworthy, the driving forces introduced all have in common that they are defined with
respect to the reference configuration. It is further important to note that, since all en-
ergies are isotropic functions of their arguments, one can show that the plastic rotation
tensor Rp is not needed to compute any of these forces. Moreover, the rate of Rp does
not occur within the Clausius-Duhem inequality. Hence, this tensor plays no role in the
actual model and remains undetermined, which is considered as an advantage.
To guarantee the non-negativeness of the remaining dissipation inequality, a set of evolu-
tion equations for the plastic and damage related quantities are presented in the following.
For both processes, associative laws are assumed.

Plastic evolution equations. For simplicity, but without loss of generality, a von
Mises-type yield criterion in the so-called effective continuum is assumed which reads

Φp =

√
3J̃2 − (σy0 − R̃p) ≤ 0 (14)

with J2 := 1/2 tr(dev(T −X)2) being the second invariant of the deviator of the driving

force and ˜(•) = (•)|D=0 refers to effective quantities. The initial yield stress is denoted
by σy0. Based on this criterion, the evolution equations are as follows

ε̇p = γ̇p
∂Φp

∂T
= γ̇p

3√
12J̃2

dev(T̃ − X̃) : M−1, κ̇p = γ̇p
∂Φp

∂Rp

=
γ̇p
fd

(15)

with the plastic multiplier γ̇p. In the above, invertible mappings in terms of a fourth or-
der tensor M and the scalar degradation function fd are introduced, which relate effective
and damaged quantities, i.e. T = M : T̃ and Rp = fd R̃p. Finally, the set of plastic
constitutive equations is closed by the Karush-Kuhn-Tucker (KKT) conditions Φp ≤ 0,
γ̇p ≥ 0 and Φpγ̇p = 0.

Damage evolution equations. The damage criterion for the onset of damage is denoted
by (cf. [6])

Φd =
√

3
√
Y+ : Ad : Y+ − (Y0 −Rd) ≤ 0. (16)

Here, Y0 denotes the initial damage threshold and further Y+ =
∑3

i=1〈Yi〉M nY
i ⊗nY

i refers
to the positive part of the driving force, where Yi and nY

i are the eigenvalues and eigenvec-
tors of Y , respectively. The Macaulay brackets are given as
〈(•)〉M = ((•) + |(•)|)/2. In addition, and in line with [8], the damage yield criterion
is extended by a fourth order damage tensor Ad in order to provide more flexibility for
the modeling of damage evolution. Different choices for this tensor are possible, while for
the time being the components with respect to the Cartesian basis system are given as
Adijkl = (δik − Drik)(δjl − Drjl), where δij denotes the Kronecker delta. Following again
the associative concept, the evolution equations for the damage quantities read as follows

Ḋr = γ̇d
∂Φd

∂Y
= γ̇d

3

Y0 −Rd

Q+(I −Dr)Y+(I −Dr)Q+, κ̇d = γ̇d
∂Φd

∂R
= γ̇d (17)
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where γ̇d denotes the damage multiplier andQ+ =
∑3

i=1〈Yi〉H nY
i ⊗nY

i with 〈(•)〉H denot-
ing the Heaviside step function. Thus, Y+ can be alternatively expressed as
Y+ = Q+Y Q+. In analogy to plasticity, the KKT conditions are introduced as Φd ≤ 0,
γ̇d ≥ 0 and Φdγ̇d = 0. Please note that in Eq. (17)1 it was used that√
Y+ : Ad : Y+ = (Y0 − Rd)/

√
3 follows from the KKT conditions for a damage step

(γ̇d > 0). Although this reformulation does, of course, not change the solution, a divi-
sion by zero is avoided, which may occur using

√
Y+ : Ad : Y+ within the local Newton

iteration.

3.2 Particular choices of Helmholtz free energy terms

While the derivation of the model has been kept quite general so far, in what follows
particular choices will be made for the terms in Eq. (8). For the elastic energy, a quadratic
form with respect to εe is chosen. Furthermore, as pointed out for instance in [11], the
isochoric response of the Helmholtz free energy is assumed to be affected by the anisotropic
nature of damage. In contrast, the volumetric part is assumed to be only affected by
isotropic damage. Thus, it is influenced by the degradation function fd already introduced
in Eq. (15)2, which is an isotropic function of D (and so of Dr). In this regard, a great
benefit of logarithmic strains becomes evident, since their decomposition into deviatoric
and spherical parts is directly related to the decomposition into distortion and dilatation
(see e.g. [12]). Hence, the elastic energy is provided as

ψe = µe tr
(
dev(εe)

2(I −Dr)
)

+ fd
Ke

2
tr (εe)

2 . (18)

In the above, µe and Ke denote the shear modulus and bulk modulus, respectively. Simi-
larly, the plastic energy combining kinematic and nonlinear isotropic hardening is denoted
by

ψp = µp tr
(
dev(ηp)

2(I −D)
)

+ fd rp

(
κp +

exp(−sp κp)− 1

sp

)
(19)

with µp, rp and sp being the plastic material parameters. Since a von Mises-type yield
criterion is used here, no volumetric response for the backstress needs to be considered.
Further, the degradation function is specified as fd = 1−tr(D)/3. The remaining energies
associated with damage are given as

ψd = rd

(
κd +

exp(−sd κd)− 1

sd

)
+

1

2
Hd κ

2
d, ψh = Kh

3∑
i=1

(
−2
√

1−Di −Di + 2
)

(20)

where the material parameters rd, sd, Hd and Kh are introduced and both linear and
nonlinear isotropic hardening are considered. Finally, the micromorphic contribution to
the overall Helmholtz free energy is assumed to be of quadratic type and reads as follows

ψd̄ =
1

2

3∑
i=1

(
Hi (di − d̄i)2

)
+

1

2

3∑
i=1

(
Ai Grad(d̄i) ·Grad(d̄i)

)
(21)
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with the material parameters Hi and Ai with i ∈ {1, 2, 3}. While for sufficient large Hi

the strong couplings between di and d̄i are ensured, Ai introduce additional length scales
into the material model accounting for the nonlocal character of damage.

4 REMARKS ON THE NUMERICAL IMPLEMENTATION

The weak forms provided in Eqs. (6) and (7) are solved using the finite element method
with standard Q1 elements and are therefore discretized in both space and time. To
solve the resulting system of nonlinear equations, the Newton scheme is used on a global
level, which requires the material sensitivities ∂S/∂E, ∂S/∂d̄, ∂d/∂E, ∂d/∂d̄ (more
precisely: their algorithmically consistent counterparts are needed), where E denotes the
Green-Lagrange strain tensor. Since the material model is derived in the logarithmic
strain space, the material sensitivities with respect to the logarithmic strains are ob-
tained first and then transformed to their Lagrangian counterparts. With the relation
S = T : 2 ∂ε/∂C at hand, one can find

∂S

∂E
= 4

∂ε

∂C
:
∂T

∂ε
:
∂ε

∂C
+ T : 4

∂2ε

∂C∂C
,

∂S

∂d̄
= 2

∂ε

∂C
:
∂T

∂d̄
,

∂d

∂E
= 2

∂d

∂ε
:
∂ε

∂C
(22)

where it was utilized that ∂ε/∂C possess both minor and major symmetry. For the deriva-
tion of the transformation - at least for the purely mechanical part - the reader is kindly
referred to [13]. Noteworthy, the sensitivity ∂d/∂d̄ does not need to be transformed.
The local residual functions are obtained by the discretized evolution Eqs. (15) and
(17) within a time interval t ∈ [tn, tn+1] using the backward Euler method and ad-
ditionally the yield criteria (14) and (16). Thus, the internal variables which have
to be solved are ∆tγ̇pn+1 , εpn+1 , ∆tγ̇dn+1 , Drn+1 . Note that this is sufficient to en-
sure plastic incompressibility. However, in order to avoid a division by zero for the
local Jacobian, the (modified) damage criterion solved on a material point level reads:
Φ̄d = 3 Y+ : Ad : Y+ − (Y0 − Rd)

2 = 0. It is worth noting that, if damage is active
(γ̇d > 0), Φ̄d can be obtained by means of an equivalence transformation of Φd. For
the solution strategy, a combination of the classical trial step procedure in combination
with an active-set search strategy is pursued. The local Jacobian as well as the mate-
rial sensitivities within the logarithmic space are obtained with the help of the implicit
function theorem and the algorithmic differentiation tool AceGen. Thus, the four tangent
operators for the finite element method can be computed automatically in a consistent
manner.

5 NUMERICAL EXAMPLE

In order to investigate the model’s behavior as well as its ability to deliver mesh-
independent results, an asymmetrically notched specimen is studied. The computation
is conducted under plane strain conditions using 2D quadrilateral finite elements. The
boundary value problem is taken from the literature [14] and is illustrated in Fig. 1. The
specimen is clamped at its left side and loaded by a concentrated force at the node in the
middle of the right edge. In addition, the horizontal displacement degrees of freedom at
this very edge are constrained in such a way that they deform in the same way as the
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40

40

[mm]1

2

R5

R5

l =100

36 F1(t)

Figure 1: Geometry and boundary value problem.

node loaded by the single load does.
The material parameters for this example are partly taken from [5], otherwise chosen as:
µe = 55000 [MPa], Ke = 61666.6̄ [MPa], µp = 62.5 [MPa], rp = 125 [MPa], sp = 5 [-],
σy0 = 100 [MPa], Hd = 1 [MPa], rd = 5 [MPa], sd = 100 [-], Kh = 0.1 [MPa], Y0 = 2.5
[MPa] as well as Ai = 75 [MPa mm2] and Hi = 105 [MPa] with i ∈ {1, 2, 3}.
A mesh convergence study using 1624, 3592, 9667, 12704 and 13955 finite elements is
conducted and shown in Fig. 2, where u1 corresponds to the displacement of the right
edge. A clear trend towards a solution with a finite amount of energy dissipation can be
observed. Noteworthy, mesh refinement is strongly performed between the two notches.
In the process, damage starts to evolve at both notches and from that on progresses
towards the interior of the specimen. Three stages during this process are shown in Fig. 3
for the damage component Dr11 , where these stages are indicated by black rectangles in
Fig. 2. The corresponding accumulated plastic strain is shown as well. The remaining
damage components of interest (Dr22 , Dr33 , Dr12) are not shown here for brevity, however,
Dr22 evolves quite similar toDr11 , whereasDr33 reaches merely a value of approximately 0.9
due to the plane strain conditions. This is also the reason why the load-displacement curve
only drops to slightly less than ten percent of the maximum load achieved. Nevertheless,
this can be considered as a ‘fully broken’ state, since a clear crack path can be observed.
Furthermore, in Fig. 4 the convergence of the damage contour plots of two exemplary
meshes at the end of the simulation is shown. Although there are slight differences in the
area of the upper notch visible, these can be considered as negligibly small.

6 CONCLUSION

In this work, a thermodynamically consistent damage-plasticity model accounting for
the anisotropic nature of damage by means of a second order damage tensor was pre-
sented. Moreover, a novel gradient-enhanced framework based on the invariants of the
second order damage tensor and the micromorphic approach was discussed, in order to
tackle mesh-sensitivities caused by damage localization. Hence, three degrees of free-
dom in addition to the displacement field have to be considered within the finite element
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Figure 2: Normalized load-displacement curves (Fmax = 5.4631 [kN]).

0.0

1.0

D
r 1

1
[-

]

0.0

≥ 1.3

κ
p

[-
]

Figure 3: Three different stages of damage component Dr11 and accumulated plastic strain κp for the
finest mesh (13955 elements). The stages are indicated by black rectangles within Fig. 2.

method.
Based on the extended Clausius-Duhem inequality, expressions for the conjugated forces
associated with the gradient-extension and the stress tensor were derived. Within this
modeling approach, both logarithmic strains and an additive split of the elastic strain
were utilized for the kinematics. The remaining dissipation inequality is fulfilled for ar-
bitrary processes by means of associative evolution equations for the damage and plastic
variables, respectively. In order to be applicable in standard finite element formulations
based on Lagrangian quantities, the transformation from the logarithmic strain space was
additionally addressed, in particular the transformation of the (algorithmic consistent)
tangent operators. Finally, a numerical example demonstrated the behavior of the pro-
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3592 13955

0.0

1.0

D
r 1

1
[-

]

Figure 4: Exemplary comparison of damage contour plots Dr11 for different mesh refinements at the
end of the simulation (u1 = 16.5 [mm]) plotted with the corresponding mesh.

posed model on a structural level as well as the ability to cure the mesh-dependency. It
may be mentioned that a much more detailed study is currently in progress. In addition,
the consideration of finite element technology could be interesting in order to reduce the
computational effort (e.g. [15]).
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