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Abstract. High-fidelity computations of turbulent flows at high-pressure supercritical fluid
conditions present significant challenges. Besides the inherent broadband nature of the flow, the
rapid variation of thermophysical properties across the pseudo-boiling region can result in addi-
tional complexities in terms of strong localized density gradients, spurious pressure oscillations,
non-linear behaviour of fluids, and amplification of aliasing errors. Different research groups
have utilized distinct approaches to achieve numerical stability, mostly resorting to upwind-
biased schemes, artificial dissipation and/or high-order filtering. However, in these strategies,
stability is achieved at the expense of artificially suppressing part of the turbulent energy spec-
trum. In this regard, this work aims to explore the suitability, in terms of stability and accuracy,
of recently proposed energy-preserving schemes for scale-resolving simulations of supercritical
turbulence. For ideal gases, such type of methods have been demonstrated to provide stable
and accurate computations of turbulence by preserving kinetic energy and/or other quantities
of physical relevance. However, their extension to real-gas thermodynamic frameworks is still
in its infancy, and consequently requires to be carefully investigated. To this objective, this
work analyzes the performance of different classical and energy-preserving discretizations under
ideal-gas conditions, and carries out an initial assessment of their performance at high-pressure
supercritical fluid regimes. The results obtained indicate that their extension to real-gas ther-
modynamics is not straightforward, and consequently motivate the necessity to develop new
solutions able to satisfy the desired stability and accuracy requirements.

1 INTRODUCTION

Supercritical fluids operate within high-pressure thermodynamic spaces in which intermolec-
ular forces and finite packing volume effects become important. In this regard, it is important to
distinguish between supercritical gas-like and liquid-like fluids [1, 2]: (i) a supercritical liquid-like
fluid is one whose density is large, and whose transport coefficients behave similar to a liquid; (ii)
the density of supercritical gas-like fluids is smaller, and their transport coefficients vary similar
to gases. This set of thermophysical characteristics presents very interesting properties that can
be leveraged to achieve turbulent regimes in microfluidic devices [3], which is, for example, very
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important for microscale energy applications since turbulence is a very efficient flow mechanism
for enhancing mixing and transfer rates [4].

The non-linearity of real-gas thermodynamics, however, imposes significantly complex chal-
lenges, mainly in terms of numerical stability, to the discretization schemes utilized for com-
putationally studying the turbulent flow motion of supercritical fluids. In particular, the rapid
(smooth) variations of density, viscosity and thermal conductivity across the pseudo-boiling
region result in spurious pressure oscillations that can contaminate the numerical solution and
even lead to a blow-up of the computations. This is further complicated by the multiscale nature
of turbulence, which necessitates dedicated numerical schemes that are simultaneously: i) ex-
empt of artificial dissipation, to properly capture the significantly wide range of spatio-temporal
flow scales, and ii) non-linearly stable, to prevent unbounded amplification of aliasing errors.
Therefore, the numerical solution of supercritical fluids turbulence ultimately requires methods
that are (i) able to represent the wide range of turbulent scales (non-dissipative), ii) non-linearly
stable, (iii) free of artificial pressure oscillations, and (iv) computationally fast (efficient).

Standard numerical approaches employed for solving the compressible equations of fluid mo-
tion have been historically based on discretizing the conservative (divergence) formulation of
the Navier-Stokes equations, in conjunction with stabilizing methods that can be categorized
in two main groups: (i) filtering [5, 6, 7] based on high-order filters applied to the conserved
variables to achieve stability and robustness, however, at expenses of suppressing part of the
turbulent scales; and (ii) upwind-biased methods developed mostly for capturing shocks, such as
HLLC [8] and WENO schemes [9], which are known to add exceedingly high levels of artificial
dissipation into the numerical solutions. On the other hand, kinetic-energy preserving schemes
based on split forms of the convective term, like the one proposed by Kennedy & Gruber [10]
and later shown to be energy-preserving by Pirozzoli [11] — referred to as KGP hereinafter—,
are becoming a popular choice for solving compressible turbulence [12]. These methods have
been shown to be stable and non-dissipative for a wide range of ideal-gas flow configurations at
high Reynolds numbers [13], but they are yet to be assessed for supercritical fluids turbulence.

Real-gas thermodynamic modeling frameworks come with additional challenges. Classical
numerical schemes are unable to maintain pressure equilibrium with constant velocity and pres-
sure, a fact which is true even for ideal-gas models [14]. This is further exacerbated by the
non-linear thermodynamics of real gases, leading to the well-known problem of pressure oscilla-
tions [15, 16, 17]. Some specific strategies that have been developed to deal with the above issues
include: (i) double-flux scheme [18] based on the concept of “frozen thermodynamics”, which
fixes the internal energy within the time-integration step to artificially enforce pressure equilib-
rium, at the expenses of modifying the thermodynamics; (ii) pressure-based approaches [19, 15]
that evolve the pressure equation, rather than e.g., the total energy, to prevent pressure os-
cillations; (iii) Lacaze et al. [17] proposed a hybrid methodology evolving pressure and energy
without proper conservation of enthalpy; and (iv) filters, similar to the strategies described for
ideal gases above, which is an undesirable solution due to its inherent loss of accuracy.

The objectives of this work are twofold: (i) assess the performances, in terms of energy conser-
vation and pressure oscillations, of several state-of-the-art methods under ideal-gas conditions,
and (ii) explore the extension of energy-preserving schemes to high-pressure supercritical fluid
regimes. First, in Section 2, the flow physics modeling of supercritical fluids is presented. Next,
the discretization frameworks considered in this work are described and numerically analyzed in
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Section 3. Furthermore, the numerical results are presented in Section 4. Finally, in Section 5,
the work is concluded, and future directions are proposed.

2 FLOW PHYSICS MODELING

The flow physics modeling of supercritical fluids turbulence in terms of (i) equations of fluid
motion and (ii) real-gas thermodynamics is described in the subsections below.

2.1 Equations of fluid motion

The turbulent flow motion of supercritical fluids is described by the following set of conser-
vation equations of mass, momentum, and total energy

∂ρ

∂t
+∇ · (ρv) = 0, (1)

∂ (ρv)

∂t
+∇ · (ρvv) = −∇P +∇ · τ , (2)

∂ (ρE)

∂t
+∇ · (ρvE) = −∇ · q −∇ · (Pv) +∇ · (τ · v) , (3)

where ρ is the density, v is the velocity vector, P is the pressure, τ is the viscous stress tensor
for Newtonian fluids, E is the total energy, and q is the Fourier conduction heat flux.

2.2 Real-gas thermodynamics

The thermodynamic space of solutions for the state variables pressure P , temperature T ,
and density ρ of a single substance is described by an equation of state. One popular choice
for systems at high pressures, which is used in this study, is the Peng-Robinson equation of
state [20] written as

P =
RuT

v̄ − b
− a

v̄2 + 2bv̄ − b2
, (4)

with Ru the universal gas constant, v̄ = W/ρ the molar volume, and W the molecular weight.
The coefficients a and b take into account real-gas effects related to attractive forces and finite
packing volume, respectively, and depend on the critical temperatures Tc, critical pressures Pc,
and acentric factors ω. They are defined as

a = 0.457
(RuTc)

2

Pc

[
1 + c

(
1−

√
T/Tc

)]2
and b = 0.078

RuTc

Pc
, (5)

where coefficient c is provided by

c =

{
0.380 + 1.485ω − 0.164ω2 + 0.017ω3 if ω > 0.49,
0.375 + 1.542ω − 0.270ω2 otherwise.

(6)

The Peng-Robinson real-gas equation of state needs to be supplemented with the corre-
sponding high-pressure thermodynamic variables based on departure functions [21] calculated
as a difference between two states. In particular, their usefulness is to transform thermodynamic
variables from ideal-gas conditions (low pressure - only temperature dependant) to supercritical
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conditions (high pressure). The ideal-gas parts are calculated by means of the NASA 7-coefficient
polynomial [22], while the analytical departure expressions to high pressures are derived from
the Peng-Robinson equation of state as detailed in Jofre & Urzay [2].

3 DISCRETIZATION FRAMEWORKS

3.1 Energy-preserving schemes

In this framework, the equations of fluid motion introduced in Section 2.1 are numerically
tackled by adopting a standard semi-discretization procedure, i.e., they are firstly discretized
in space and then integrated in time. Spatial differential operators are treated using centered
finite-differencing formulas; a second-order centered scheme is used in this paper, although the
results can be easily generalized to formulas of any order that satisfy a discrete summation-
by-parts rule. The temporal errors that arise due to the time-integration scheme (in this case
a Runge-Kutta method) are assumed to be kept under control by using sufficiently small time
steps [23].

The convective terms of Eqs. (1)-(3) can be rewritten with a common structure

C =
∂ρujϕ

∂xj
, (7)

where ϕ is the transported scalar. The derivation of kinetic-energy-preserving (KEP) meth-
ods relies on the preliminary observation that the general convective term in Eq. (7) can be
equivalently expressed as follows, using the product rule [12]

CD =
∂ρujϕ

∂xj
, (8)

Cϕ = ϕ
∂ρuj
∂xj

+ ρuj
∂ϕ

∂xj
, (9)

Cu = uj
∂ρϕ

∂xj
+ ρϕ

∂uj
∂xj

, (10)

Cρ = ρ
∂ujϕ

∂xj
+ ϕuj

∂ρ

∂xj
, (11)

CL = ρϕ
∂uj
∂xj

+ ρuj
∂ϕ

∂xj
+ ϕuj

∂ρ

∂xj
. (12)

Equation (8) is the usual divergence (conservative) form, whereas linear combination of
Eqs. (8)-(12) are consistent expressions of the nonlinear convective term. However, the corre-
sponding discretization behave differently due to product rule, which does not hold for discrete
operators. These differences clearly emerge when considering induced quantities such as kinetic
energy. In this regard, convective terms for mass and generic variable ϕ can be expressed as

M = ξMD + (1− ξ)MA, (13)

C = αCD + βCϕ + γCu + δCρ + ϵCL, (14)

where ξ is an arbitrary coefficient and α + β + γ + δ + ϵ = 1, and MD and MA are divergence
and advective forms in continuity equation.
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To ensure that the nonlinear terms do not spuriously contribute to the global kinetic energy
balance, the satisfying condition leads to following constraints, with a two-parameter family of
possible energy-preserving formulations [12, 10]

α = 1/2− δ,

β = ξ/2,

γ = δ,

ϵ = 1−ξ
2 − δ.

(15)

Here the attention will be focused on the so-called KGP split form, which is obtained by
setting ϵ = 0 (sufficient condition for local conservation) and β = γ = δ = 1/4 [10, 11]. When
applied to the continuity and momentum equations, the KGP scheme globally preserves kinetic
energy by convection and locally and globally preserves mass and momentum. In terms of
the energy equation, total energy is evolved and the KGP splitting is applied to the enthalpy
h = e + P/ρ. This choice leads to conservation of internal energy, and has proved to be
particularly robust in previous works [12]. Alternative formulations (both in terms of the split
formulation and the energy equation) are not studied here and are left for future work.

3.2 Pressure-equilibrium-preserving schemes

Another topic that has received considerable attention is the pressure-equilibrium-preserving
(PEP) property of numerical schemes. Under ideal gas conditions, i.e., ρe = P/(γ − 1), the
pressure-evolution equation can be easily obtained from the internal energy equation, and reads
(here shown for a 1D inviscid case)

∂P

∂t
= −∂Pu

∂x
− (γ − 1)P

∂u

∂x
. (16)

Additionally, the one-dimensional velocity-evolution equation can be derived by subtracting the
mass equation multiplied by velocity from the momentum equation, yielding

∂u

∂t
= −1

ρ
(
∂ρuu

∂x
+

∂P

∂x
− u

∂ρu

∂x
). (17)

Based on Eqs. (16)-(17), it can be deduced that when the initial pressure and velocity are
spatially constant (with density varying in space), then neither pressure nor velocity change in
time; it is therefore highly desirable that this equilibrium is discretely preserved in numerical
simulations, leading to the concept of PEP schemes.

In the case of KEP schemes, the discrete total energy equation can be considered as the sum
of kinetic and internal energy equation, and thus the semi-discrete internal energy equation is

∂ρe

∂t
+

Ĩ|(m+1/2) − Ĩ|(m−1/2)

∆x
+ P

u|(m+1) − u|(m−1)

2∆x
, (18)

where Ĩ is the internal energy flux and m denotes the cell index. In the KEP approach described
in Section 3.1, the internal energy flux can be expressed as follows

Ĩ|(m±1/2) =
ρ|(m±1) + ρ|(m)

2

e|(m±1) + e|(m)

2

uj |(m±1) + uj |(m)

2
. (19)
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Figure 1: 1D Advection test with P0 = 1Pa, u0 = 1m/s and ρ0 = 2kg/m3 on a domain of
length L = 1, comparing KGP (dotted line) and Shima et al. (dashed line) convective schemes.
Results after 11 cycles for normalized (a) density, (b) pressure and (c) velocity.

Hence, by substituting Eq. (19) and the ideal-gas relation into the discrete internal-energy
equation, Eq.( 18), the discrete counterpart of Eq. (16) can be obtained, and reads

∂P

∂t
|(m) =

[
ρ|(m+1) + ρ|(m)

] [
u|(m+1) + u|(m)

] [
(P/ρ)|(m+1) + (P/ρ)|(m)

]
2∆x

(20)

−
[
ρ|(m−1) + ρ|(m)

] [
u|(m−1) + u|(m)

] [
(P/ρ)|(m−1) + (P/ρ)|(m)

]
2∆x

−(γ − 1)P |(m)

[
u|(m+1) + u|(m−1)

]
2∆x

.

Assuming that the initial pressure and velocity are spatially constant and density varies in
space, Eq. (20) indicates that the physical pressure equilibrium cannot be numerically guaran-
teed, as ∂P/∂t|(m) ̸= 0. Recently, Shima et al. [14] proposed a flux formulation for the internal
energy (while keeping, e.g., KGP split for momentum) able to ensure that ∂P/∂t|(m) = 0:

Ĩ|(m±1/2) =
ρe|(m±1) + ρe|(m)

2

uj |(m±1) + uj |(m)

2
=

P |(m±1) + P |(m)

2(γ − 1)

uj |(m±1) + uj |(m)

2
. (21)

Numerical results reported in Figure 1 highlight the difference between KGP and PEP (Shima
et al.) schemes in terms of preventing pressure oscillations for a 1D advective inviscid test with
constant velocity and pressure under ideal gas conditions.

The appearance of pressure oscillations under real-gas frameworks is further exacerbated by
the complexities of the thermodynamic model and has been a cause of concern and investigation
over the last decade [15, 16, 17]. The extension of the approach reported above for real-gas
frameworks becomes particularly involved due to the inherent non-linearity of the model and is
not shown here. To the authors’ knowledge, there is currently no PEP formulation available for
real-gas thermodynamics and high-pressure supercritical conditions.

3.3 Other methods

This sections covers other standard numerical approaches employed for solving the equations
of fluid motion for compressible flow considered and tested in this study.
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Within the filtering class, many types of approaches can be found in literature; most com-
monly, high-order implicit filters [5] or Gaussian filters [6] are applied to the conserved variables
at each time step. These filters introduce numerical dissipation but are generally successful in
stabilizing the solution (when a non-linearly unstable scheme is used). For comparison purposes,
this work will focus on the second-order Gaussian filter (viz. representative of general symmetric
convolution filters) [24]:

φ̄ = φ+
△̄2

24

∂2φ

∂x2i
+O(△̄4), (22)

where φ̄ is the filtered variable and △̄ the filter width (i.e., mesh size). Even though higher-order
(possibly implicit) filters are obviously less dissipative, here the stencil is limited to a two-point
function for efficiency purposes; indeed, increasing the stencil width is known to significantly
deteriorate the parallel performances, especially when dealing with implicit spatial schemes [25].

Alternatively, upwind-biased methods (typically developed for capturing shocks), have been
often used to stabilize compressible simulations, either alone or in the context of hybrid meth-
ods (i.e., in conjunction with non-dissipative schemes, with sensor-based switching). Examples
include the HLLC [8] and WENO methods [9]. These schemes are generally thought to be un-
suitable for turbulence due to the high levels of artificial dissipation introduced into the solution.
The HLLC scheme is used as a prototype of a dissipative scheme for this work.

In the specific context of real-gas frameworks, a double-flux approach [18] was recently imple-
mented by Ma et al. [16]. In this method, the internal energy is fixed within the time-integration
step to artificially enforce pressure equilibrium, at the expenses of modifying the thermodynam-
ics, thus recovering the following relation between internal energy and pressure

e =
Pv

γ∗ − 1
+ e∗0, (23)

where e∗0 and γ∗ are in this case nonlinear functions of the thermodynamic states. Therefore,
these two variables are frozen both in space and time during each time step.

Table 1 summarizes the numerical methods analyzed and tested in this work.

4 NUMERICAL RESULTS

4.1 Taylor-Green Vortex (ideal-gas thermodynamics)

A 3D inviscid Taylor-Green Vortex (TGV) [26] test is preliminary conducted to assess the
energy-conservation properties of some of the approaches introduced in Section 1. Simulations
are conducted in a periodic cube of size 2π with 323 grid points, CFL = 0.3 and a fourth-order
Runge-Kutta scheme, using an ideal-gas thermodynamic model. Figure 2 clearly highlights the
advantage of employing the KGP scheme, which strongly preserves kinetic-energy throughout an
entire flow turn-over time, whereas the divergence approach leads to blow-up; although filtering
techniques and upwind scheme (HLLC) are also stable, the dissipation is significant and therefore
these schemes are unsuitable for studying supercritical high-pressure turbulence.

4.2 1D advection test (real-gas thermodynamics)

The 1D advection test proposed in [16] is carried out to assess the behaviour of numerical
methods in a real-gas framework, particularly in terms of pressure oscillations. The test is
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Numerical scheme Description References

Divergence Conservative discretization of convection [12]

C =
∂ρujϕ
∂xj

Eq. (8)

Divergence + filter Gaussian filter (conservative variables) [6]

ϕ̄ = ϕ+ △̄2

24
∂2ϕ
∂x2

i
+O△̄4 Eq. (22)

HLLC Upwind-biased shock-capturing scheme [8]

KGP Kinetic-energy preserving (KEP) [10, 11, 12]
C = 1/4CD + 1/4Cϕ + 1/4Cu + 1/4Cρ Eq. (14)

Shima et al. Pressure-equilibrium preserving (PEP) [14]

Ĩ|(m±1/2) =
ρe|(m±1)+ρe|(m)

2

uj |(m±1)+uj |(m)

2 Eq. (21)

Double-flux w/HLLC Frozen thermodynamics [16]

e = Pv
γ∗−1 + e∗0 Eq. (23)

Double-flux w/KGP e∗0 and γ∗ nonlinear functions

Table 1: Summary of numerical methods considered in this work.
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Figure 2: Results for inviscid 3D TGV [26]. Normalized kinetic energy for KGP (dotted blue
line), HLLC (dashed red line), divergence method (solid green line) and divergence with filtering
(dashed-dotted purple line) across normalized turn-over time tc corresponding to ∼ L/u = 2π s.
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Figure 3: 1D Advection test [16] under a real-gas framework in a domain of length L = 1. N2

is considered at P0 = 5MPa, u0 = 1m/s, smooth temperature profile given the harmonic wave
T = Tmin+Tmax

2 + Tmax−Tmin
2 sin (2π x) with Tmin = 100K and Tmax = 300K and reference density

ρ0 = 95.496 kg/m3 (corresponding to T = 200K). Results shown after 1 s for KGP (dotted
line) and HLLC (dashed line) convective schemes in conjunction with double-flux method for
thermodynamics: normalized (a) density, (b) pressure and (c) velocity.

performed with a domain length of L = 1m, 512 grid points and CFL = 1. The double-flux
approach outlined in Section 3.3 is employed in conjunction with both the HLLC scheme and
the KGP method. The results reported in Figure 3 show that the double-flux technique is
unable to suppress pressure oscillations when coupled with the KGP, while it achieves pressure
equilibrium when used with the dissipative HLLC. While KEP and PEP schemes are able to
preserve kinetic energy by convection irrespective of the thermodynamic model, they are unable
to prevent pressure oscillations in a real-gas framework, whether they are used in conjunction
with the double-flux model or not (results not shown here).

4.3 Assessment summary

Table 2 summarizes the properties satisfied in either ideal or real-gas frameworks for the
schemes presented within this work. Therefore, the enforcement of pressure equilibrium while
preserving kinetic energy needs further work, and future directions are outlined in Section 5.

5 SUMMARY, CONCLUSIONS & FUTURE WORK

This exploratory work has focused on identifying the discrete properties needed to accu-
rately simulate high-pressure supercritical fluids turbulence, and assessing the performance of
numerical schemes available in the literature in this regard. The properties identified mainly
correspond to: (i) stability against spurious pressure oscillations resulting from the inherent
non-linearities of real-gas thermodynamics, and (ii) low dissipation and conservation of kinetic
energy to properly capture the broadband nature of turbulence. In particular, several state-of-
the-art numerical schemes have been assessed in a 1D inviscid advection test at constant pressure
and velocity to verify the discrete pressure equilibrium behaviour, and in a 3D inviscid TGV
problem to analyze the discrete conservation properties.

The results obtained allow to conclude that the KGP scheme is able to preserve kinetic energy
for ideal- and real-gas conditions. However, this scheme is not able to avoid spurious pressure
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KEP PEP
Numerical Low
stability dissipation

Divergence × ◦ × ⊙
Divergence + filter × ◦ ◦ ×

HLLC × ◦ ⊙ ×
KGP ⊙ × ◦ ⊙
Shima ⊙ ◦ ◦ ⊙

Double-flux w/HLLC × ⊙ ⊙ ×
Double-flux w/KGP ⊙ × × ⊙

Table 2: Summary of numerical schemes assessment; ◦ property applies only to ideal-gas, ⊙
property applies also to real-gas, × property is not satisfied in any framework.

oscillations for ideal gases, a fact that is intensified by the non-linearities present in real gases
and resulting in blow-up of the solutions. The scheme proposed by Shima et al. [14] is also able to
conserve kinetic energy at the discrete level and in addition, it avoids the appearance of artificial
pressure oscillations in the case of ideal gases. Nonetheless, this scheme has been derived for
ideal gases, and consequently does not suppress spurious pressure oscillations at high-pressure
supercritical fluid conditions. On the other hand, strategies recently developed specifically for
this problem, like for example the double-flux scheme, are able to mitigate pressure oscillations,
but at the expenses of requiring artificial dissipation based on upwind-biased schemes and/or
additional terms in the equations of mass and momentum conservation. As a result, to the
authors’ knowledge, there is currently no method able to simultaneously conserve kinetic energy
and avoid artificial pressure oscillations for real-gas frameworks.

The preliminary results obtained in this work motivate the authors to (i) continue a careful
assessment of numerical methods for high-pressure supercritical fluids turbulence, and (ii) focus
on the development of PEP & KEP schemes for real-gas frameworks.
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