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This paper proposes a clustering approach to predict the probability of a collision occurring in the proximity of planned road
maintenance operations (i.e., work zones). The proposed method is applied to over 54,000 short-term work zones in the state of
Maryland and demonstrates an ability to predict work zone collision probabilities. One of the key applications of this work is using
the predicted probabilities at the operational level to help allocate highway response teams. To this end, a two-stage stochastic
program is used to locate response vehicles on the Maryland highway network in order to minimize expected response times.

1. Introduction

Work zone collisions accounted for approximately 1.2 to 1.7
percent of all 2006-2013 crashes in the United States, amount-
ing to 67,523 incidents in 2013 [1]. These collisions resulted
in numerous injuries (e.g., over 47,000 in 2013), as well as
fatalities that occurred in about 1 percent of the cases. Mohan
and Gautam [2] performed a thorough analysis of work zone
accidents in the US between 1995 and 1997 and estimated the
direct costs resulting from worker and passenger injuries to
be approximately $6.2 billion, which composes only part of
the overall cost. Although this value may be somewhat lower
now given that annual work zone collisions have mirrored the
gradual downward trend of overall collisions [1], there are still
enormous safety and financial benefits that can be achieved
by avoiding or lessening the severity of such accidents. Here
we consider two ways in which transportation agencies may
mitigate the impact of work zone collisions:

(i) Optimally allocating response teams. Transportation
agencies could allocate response vehicles in accor-
dance with anticipated risks at work zones and

thereby reduce the time it takes to reach the scene of
an accident. This would improve their ability to assist
injured motorists, clear blocked traffic lanes, and help
prevent additional secondary accidents.

(ii) Adjusting work zome characteristics. Transportation
agencies could identify risky work zone projects in the
planning phase and adjust work zone characteristics
in order to improve their safety and operational
performance.

Both of these applications depend on the ability to quantify
how work zone characteristics affect collision occurrence risk
in work zones, which is precisely the focus of this paper.
We briefly describe how this fits into the broader context
of work zone research and focus in particular on two
types of approaches which may be employed to model this
relationship: statistical modeling and machine learning.
Existing work zone research tends to be oriented
towards mobility or safety applications. The mobility-
oriented research generally focuses on the effect of work
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zones on traffic capacity, queuing delays, and other perfor-
mance metrics [3-8], as well as optimizing controllable work
zone parameters [9-14]. Research focused on safety com-
monly describes how work zones affect collision frequency
[15-18], severity [19-23], or both [24-28]. In particular, this
paper examines how work zone characteristics (e.g., duration,
time of day, and number of lanes) impact the likelihood
of work zone collisions occurring. Here we review the two
prevailing methodologies used to quantify this relationship,
considering each approach separately.

(i) Statistical Modeling. The majority of literature in
this area uses regression techniques to model the
relationship between explanatory variables describing
work zones and the frequency with which incidents
occur, employing traditional maximum likelihood
and Bayesian methods to estimate the parameters.
However, least squares regression is not ideal for rep-
resenting the relationship between work zone char-
acteristics and crash frequency, because it assumes
normally distributed errors and the dependent vari-
able (i.e., number of crashes) is not continuous [29].
While isolated examples of linear regression models
exist in the literature (e.g., [30]), researchers have
found that discrete models with Poisson-distributed
responses are better suited for modeling crash fre-
quency. Accordingly, the Poisson and related models
(e.g., Negative Binomial (NB), Poisson-lognormal,
and zero-inflated Poisson and NB) are more prevalent
in the literature [29]. The Poisson model’s primary
deficiency is that it has poor estimation performance
when the variance is greater than the mean (i.e.,
overdispersion), which the NB model addresses by
specifying a gamma distribution for the error term
[29]. There are numerous applications of the NB
model [31-36], focusing on different aspects of crash
frequency modeling (e.g., location within a work
zone, time of day, duration, fatal/injury/property
damage crash classifications). For example, Venu-
gopal and Tarko [32] estimate work zone crash fre-
quency based on traffic levels, work zone lengths,
work duration, on/off ramps, and classification of
work zones, observing that there is not a statis-
tically significant difference in crash rate for day
and nighttime work zones. From a slightly different
perspective, Srinivasan et al. [33] use the NB models
to predict crash modification factors, while Yang et
al. [37] incorporate concepts of measurement error
in the NB modeling framework. However, NB models
are susceptible to underdispersion for small datasets,
which Poisson-lognormal models seek to counter
[24, 25, 38]. Finally, zero-inflated models attempt
to address the fact that work zone datasets do not
contain many incidents (i.e., the response variable
primarily takes the value of zero), which can cause
overdispersion. The zero-inflated approach generally
uses two states: one where accidents can occur and the
other where they cannot. Binary choice models (e.g.,
binary probit or logit) are often used to determine
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which system the state is in, and Poisson and NB
approaches are used to model crash frequency for the
state in which accidents are allowed [39-43].

Another class of advanced statistical techniques
includes random parameter [44-47], generalized
additive [48, 49], Markov switching [50-52], and
hierarchical models [53, 54]. We do not spend exten-
sive time discussing these methods here, primarily
because existing literature in this area focuses on non-
work zone crash frequency modeling applications,
which is not the focus of this paper.

The models described thus far are primarily useful for
predicting the number of crashes that will occur in a
work zone over a period of time. As Yang, Ozbay, Xie,
and Bartin [55] point out that sometimes it is useful
to frame the problem in terms of crash probability
(also referred to as crash risk) instead, where the goal
is to predict the probability that a work zone will
encounter a collision based on its characteristics. In
this case, the response variable is binary (i.e., accident
or no accident) rather than a positive integer (i.e.,
number of collisions). Logistic regression is a popular
approach for handling binary responses, examples
of which include Al-Ghamdi [56], Harb et al. [57],
and Bham et al. [58]. However, when modeling crash
risk for short work zone durations, the estimates are
often biased because there are rarely crashes during
the specified time period [55]. Being able to estimate
crash probabilities for short durations is one of the
core objectives of this paper and has not been studied
extensively in the literature. To the best of our knowl-
edge, the only paper which addresses this problem for
short durations is Yang, Ozbay, Xie, and Bartin [55],
which implements a rare event logistic regression
model to account for the biases. They illustrate this
approach by considering 466 work zones along a 25-
mile section of the New Jersey Turnpike.

Machine Learning. An alternative approach to model
relationships between work zone characteristics and
incident risks is through machine learning tech-
niques, including neural and Bayesian neural net-
works, support vector machines, and clustering.
However, existing work zone research employing
these techniques tends to focus on characterizing
work zone capacity, delays, incident duration, and
other metrics rather than quantifying crash risks
(e.g., [59-64]). For example, Jiang and Adeli [61] use
neural network models to assess work zone capacity,
concluding that they can estimate the WZ capacity
with less than 10% error with this approach. In terms
of work zone safety, the literature deals primarily
with crash counts (not crash probability) for generic
roadway incidents that do not consider the specific
characteristics of work zones. Examples of this are
Xie et al. [65] and Abdulhafedh [66], both of which
compare neural network approaches to traditional
NB models, noting that the neural networks show
superior predictive capability in their case studies.
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Li et al. [67] perform a similar comparison using
support vector machines (SVM) and find that the
SVM approach better estimates crash frequency in
comparison to an NB model. They also point out that
although neural networks and SVMs provide similar
prediction capabilities, the SVM approach does not
overfit the data. From a clustering approach, Ma and
Kockelman [20] group road segments with similar
characteristics and use a linear regression model to
estimate crash frequency within each cluster. Other
clustering applications include roadway crashes [68,
69] and safety projects [70], but to our knowledge
current literature does not include papers which
cluster work zones based their characteristics in order
to infer crash risk.

Despite many different modeling approaches and per-
spectives, the majority of literature focuses on either work
zones or crash frequency independently, with comparatively
little research dedicated to modeling collision frequency/risk
based on work zone characteristics. Within this niche body
of research, most papers conclude that increased vehicle
demand, work zone length, and duration all increase the
number of collisions that occur at a work zone over a period
of time [71]. However, we are more interested in determining
the probability of a collision rather than the number of
collisions that occur. This poses problems when considering
short time durations with classical statistical approaches due
to the fact that accidents occur so infrequently. The one
paper that addresses this issue (i.e., the rare event logistic
regression approach by Yang, Ozbay, Xie, and Bartin [55])
showed good performance in a case study, although the
model was tested on a single corridor with less than 500 work
zones. While machine learning models appear promising
based on closely related studies, none of them have been
applied specifically to estimating collision probabilities based
on work zone characteristics. Accordingly, we focus on this
underresearched area and present a clustering approach to
estimate the probabilities of work zone collisions, which
is useful for determining where to best locate response
teams and identifying work zone characteristics that can
be modified to reduce collision probabilities. We make the
following contributions:

(i) We propose a scalable, unsupervised learning
approach to predict the probability of a collision
occurring at a short-term work zone. In contrast
to most classical regression approaches which
do not explicitly calculate crash risk/probability
and are not appropriate for short-term durations,
this machine learning approach clusters all work
zones based on salient characteristics, calculates a
collision probability for each cluster, and assigns new
work zones to existing ones with similar features.
Furthermore, it yields collision predictions without
having access to current traffic volumes or work zone
lengths and would easily scale to larger work zone
datasets (e.g., see [72] for a clustering application
involving 1 billion data points).

(ii) We present an integrated approach which combines
both work zone collision risk predictions and action-
able response recommendations, which is intuitive
and applicable for practitioners. This approach takes
historic information about work zones and returns
the optimal allocation of highway response teams,
which could be readily implemented by an agency
such as the Coordinated Highways Action Response
Team [73], an example of which is illustrated in the
case study using the previously described approach
and a stochastic optimization model.

The remainder of this paper is organized in the following
manner. We begin by discussing the historical work zone
and collision dataset that is used for model development in
subsequent sections. Next, we describe clustering methods
and explain how we determine the number of clusters and
quantify model performance. We then apply this clustering
framework to the work zone data set, noting how different
approaches affect the model performance. Afterwards, we
discuss example applications, focusing on optimally locating
highway response vehicles by using the work zone incident
probabilities as an input to a stochastic optimization model.
Finally, we draw conclusions and suggest future steps to
extend the research.

2. Materials and Methods

2.1. Data. Data describing work zones (WZs) and collisions
that take place in their proximity (i.e., within 1 mile distance)
were collected from the Regional Integrated Transportation
Information System [77] and Coordinated Highways Action
Response Team [73], whose joint objective is to improve
operations of Maryland’s highway system. We focus on those
WZs that were set up and cleared in less than one day,
which account for about 99% of all the WZs observed during
2010-2015. The resulting dataset considered in our analysis
includes 54,463 WZs (Figure 1) and 380 WZ collisions. In
most cases, a WZ had one or two lanes closed, and those
closures took place along either the main or shoulder lanes
(Figure 2). Furthermore, maintenance work lasted for 6 hours
on average (Figure 3). In order to minimize negative effects
on mobility and safety, only about 7% of the maintenance
work was conducted during the peak-periods (7-9 AM and
4-6 PM). It is worth noting that about 72% of the work was
done in daylight (Figure 3) and that WZs were typically set
up on weekdays (Figure 4)

The observed 380 WZ collisions occurred at a very
small subset of all the recorded WZs. There were hardly
any WZs with more than one collision; however, a few
observed as many as three collisions (Figure 5). The highest
number of WZ collisions took place on Thursdays, while
far fewer occurred on Saturdays and Sundays (Figure 6),
which is unsurprising due to lower maintenance activity
over the weekends (Figure 4). The seasonal distribution of
WZ collisions (Figure 6) implies that most took place in
summer and fall, which is expected due to higher mainte-
nance activities during these seasons (Figure 4). Additionally,
Figure 7 shows a visual representation of Average Annual
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TaBLE 1: Input variables considered in the analysis of WZ collisions.

(1) Day of the week when the WZ was opened (nominal)

(2) Season of the year when the WZ was operational (nominal)
(3) Road class (nominal: MD, I, US)

(4) Duration of the WZ during the peak hours (continuous)

(5) Duration of the WZ during the off-peak hours (continuous)
(6) Duration of the WZ in daylight (continuous)

(7) Duration of the WZ at night (continuous)
(8) Total number of lanes (ordinal)

(9) Number of main lanes closed (ordinal)
(10) Number of shoulder lanes closed (ordinal)
(11) Number of median lanes closed (ordinal)
(12) Average annual daily traffic (AADT) (ordinal)

FIGURE 1: Heat map showing locations of over 54 thousand WZs that took place in Maryland during 2010-2015. The pie chart indicates that

majority of WZs were setup along MD and Interstate roads.
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FIGURE 2: Most WZs would have one or two lanes closed, while closures of more than four lanes were very rare and typically occurred close
to toll plazas. For the most part, closures affected main and shoulder lanes.

Daily Traffic (AADT) on the Maryland road network in 2013,
indicating that a wide range of AADT values are observed,
and highlighting the spatial distribution of high-volume
roads. Based on this descriptive analysis of available data,
we selected twelve input variables (Table 1) that might affect
safety levels in the proximity of a WZ and thereby influence
occurrence of a collision. The correlation between a subset of
these variables and the number of WZ collisions is provided
in Figure 8 and indicates relatively weak correlation between
the WZ collisions and other variables.

2.1.1. Data Processing. Data preprocessing can significantly
improve performance of the clustering algorithm presented
in the following section. Categorical variables were modeled
using their binary counterparts, and the peak and day
duration of a WZ were divided by its overall duration because
we are interested in predicting the one-hour probability of
a collision. The off-peak and night durations were removed
from the model as redundant information (e.g., relative peak
and relative off-peak add up to one), and all the variables were
normalized in order to enhance performance of the clustering

approach presented in the next section. The WZ features used
for clustering are presented in Table 2.

Note that WZ lengths were not available for the 54,000
WZs considered in this study, but since WZ lengths have
been shown to influence crash frequency [71], we expect
that including this variable in the future would improve the
model accuracy. Additionally, a variety of other temporal
variables would likely enhance model performance (e.g.,
speed variance and weather), but these characteristics would
be unavailable ahead of time, and the proposed approach
focuses on predicting the crash probability at a future work
zone. Along these lines, it may be worth considering using
hourly volume profiles [78] instead of AADT, as it would
allow the model to account for the average hourly volumes
during the specific work hours (e.g., 7 AM to 9 AM). Of
course, like the AADT, the volume profiles would only help
give a rough idea about the future volumes, because these
volumes would be affected by the presence of the work zone.

2.2. Methodology. The objective is to use historical data in
order to predict the probability of a collision occurring within



Journal of Advanced Transportation 5

Probability Density

Duration of Work Zones Split in Total Work Zone Durations
0.35 : : : : 100 : :
. . . . 90 | g
03F - S S
: : : : 80 1
02| B T . . ol |
aver%ige: 6.0 hr 60 | |
R ||| A st deviation: 2.5 hr 1 %
. . ;"‘j 50 4
0.15 w0l |
01k Al - 30+ E
‘ ‘ ‘ 20 ]
005} - e -
‘ ‘ 10} -
0 = . ) 0 | |
10 15 20 Day vs. Night Peak vs. Offpeak

Duration of Work Zones [hr]

logistic
normal

[ ] empirical

tlocationscale

FIGURE 3: Duration of WZs and split in total work zone hours in day/night and peak/oft-peak. Seventeen continuous distributions were fitted
to WZ duration [74], and the probability density functions of those distributions that best fit in terms of Bayesian information criterion are
shown in the figure on the left. Sunrise and sunset times for the dates of maintenance work and geographic locations of WZs are computed
using MATLAB toolbox from SCRIPPS Institute of Oceanography [75].
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than one collision.
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FIGURE 7: Visual representation of AADT in 2013 for the road links in Maryland.
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TABLE 2: Input variables used for WZ clustering.
Variable Description Columns
(1) Season Season of year 3
(2) Road type Type of road (I, US, MD) 3
(3) Weekend Equals 1 for Saturday or Sunday, otherwise 0 1
(4) Lanes The number of all, main, shoulder and median lanes 1
(5) AADT Average annual daily traffic 1
(6) Peak Peak duration / overall duration 1
(7) Day Day duration / overall duration 1
O Historical WZ O Historical WZ O Newly-scheduled WZ
X Historical WZ with a collision R Historical WZ with a collision
P=1/18 P=2/12 P=1/18 P=2/12
Opgo oo o= O g
] O o X OO o O o
0 X[ 0o O X g
[m] DDDD [m] O m] DDDD
(] T . [}
O o E o® O
oo¥® 4
P=3/11 P=3/11

(a) Historical (unclustered) work zones
sion probabilities

(b) Clustered WZs and corresponding colli-

(c) Newly scheduled WZ is attributed to the
closest cluster

FIGURE 9: Graphical description of the methodology via a trivial example including 2 dimensions, 3 clusters, and 41 data points (i.e., WZs).
After clustering historical WZs, for each cluster, we compute the number of WZs with at least one collision over the total number of WZs
within the cluster. A newly scheduled WZ is attributed to the cluster with the most similar features. The predicted probability of a collision
occurring at this WZ corresponds to the ratio computed for the cluster it was attributed to.

a future WZ (e.g., road maintenance work scheduled for the
next week), based on the underlying assumption that WZs
with similar features should have comparable safety levels.
Accordingly, we take the set of 54,000 WZs observed in
the past (Section 2.1) and partition it into clusters of WZs
with similar features (Table 2). After grouping WZs with
similar characteristics, we calculate the collision probability
for each cluster by counting the number of WZs where
at least one collision occurred and dividing it by the total
number of WZs within that cluster. Thus, the probability of
a collision occurring at a future WZ can be predicted by
assigning it to the closest cluster (in terms of its features)
and looking up that cluster’ observed collision probability, a
process that is illustrated in Figure 9. The relation between
predicted overall collision probability denoted by P and one-
hour predicted collision probability delivered by the model
(i.e., P,) is computed as

P=1-(1-p)", M

where D is duration of the observed WZ.

The historical data can be partitioned into clusters of WZs
with similar features via classical k-means clustering [79, 80].
Given a set of observations (x,,...,X,), where observation x;
is a d-dimensional vector of variables describing ith WZ, the
k-means clustering seeks to partition these observations into

ksets S = {S;,...,S;} so as to minimize the within-cluster
sum of squares. More formally, WZs are clustered by solving
an optimization problem

S - @

arg min

S I=1x€S;
where g is the mean of points in §;. Since finding an exact
solution to the above problem is NP-hard, many efficient
heuristic techniques have been devised over the past 50
years. We apply k-means++ algorithm [81], which employs a
randomized seeding technique to select initial cluster centers
in a way that reduces the chance of the algorithm getting stuck
in a suboptimal solution (Algorithm 1). However, even the
k-means++ algorithm is not guaranteed to find an optimal
solution in instances that include many dimensions and data
points. To alleviate this problem, we perform clustering 100
times using different initial cluster centers selected by the k-
means++ technique and choose the one with the smallest cost
function for further analysis.

To evaluate the model, the dataset is first separated into
training and testing datasets. Upon selecting the number of
clusters (discussed below), the k-means++ algorithm is used
to cluster the training data into k discrete groups. Each point
in the test dataset is then associated with its most similar
cluster from the training dataset in order to compute the
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Procedure k-means++

repeat

Select centers for k clusters by using randomized seeding technique

Assign each point to the closest cluster center
Compute new cluster centers using assigned points
until Convergence (cluster centers did not change during the last step)

ALGORITHM 1: Outline of the k-means++.

forecasted probability of a collision. These points are then
ordered from lowest to highest probability (i.e., decreasing
in safety) and separated into a specified number of groups,
referred to as quantiles. For quantile i, the mean of the
forecasted probability can be calculated (denoted F;), which
can be compared to the actual probability of collision (found
by computing the ratio of work zones from quantile i which
had at least one collision to the number of work zones
in i, denoted A;). More specifically, the symmetric mean
absolute percentage error (SMAPE) is used to quantify the
error between the actual and forecasted probabilities across
all quantiles, which is computed as

|Fi - Al

(3)
El+|af

SMAPE = Zl

where 7 is the number of quantiles.

In order to determine the number of clusters to use,
we employ three different methods: Elbow, Silhouette, and
Cross-Validation. In the Elbow method, the number of
clusters is increased until the improvement in the objective
function becomes marginal. The Silhouette method [82]
requires computing each points similarity to both its own
cluster and the others. This measure is computed as

b —a.
s = ’7611’ (4)

max (a;, b;)

where g; represents the average dissimilarity of data point i
with all other data within the same cluster, and b, is the lowest
average dissimilarity of the data point i to any cluster of which
i is not a member. A value of s; close to 1 implies that the
point was appropriately clustered; values close to 0 mean that
the points are on the border of two clusters, whereas negative
values imply misclustering. The third approach is based on
cross-validation, where the training dataset is divided into
training and cross-validation sets. The model is then trained
using the new, reduced training dataset, and evaluated by
using the cross-validation dataset. After selecting the number
of clusters, the model is retrained using the entire (undivided)
training set.

Additionally, these three methods are helpful in deter-
mining the relevant model scenarios. In the base scenario,
we assume that all the variables are of equal importance and
thus are normalized from 0 to 1. To explore the influence
of individual variables, we inflate their normalized values
and study how this affects the clustering results. Thus,
the Elbow, Silhouette, and Cross-Validation methods help

provide insight into the number of clusters and appropriate
variables to use.

3. Results and Discussion

The proposed clustering approach may overfit the data (i.e.,
memorize data points rather than detect patterns). In order to
check for possible overfitting, it is helpful to train models with
various sizes of training data and then check the behavior
of the test error. When overfitting occurs, the error should
significantly decrease as the training dataset size increases,
but if the model is able to generalize well (i.e., does not
overfit), further changes in training dataset size should not
result in a meaningful reduction of test error. The results for
the base scenario are presented in Figure 10 and imply that
the model does not overfit the data for training sets greater
than 50% of the entire dataset. Thus, the employed clustering
approach may be used to predict WZ collision probabilities.

3.1. Number of Clusters. Selecting the number of clusters
is essential for obtaining satisfactory results. After some
preliminary experiments, the lower and upper bound on the
number of clusters were set to 8 and 21, respectively. It should
be noted that if a model includes few clusters, the WZs in
each cluster may be quite diverse. This results in relatively
small differences among mean collision probabilities in each
cluster. Consequently, even if the accuracy of clustering is
very high, the model cannot be employed for predictions.
On the other hand, having many clusters should (in theory)
improve the prediction accuracy. However, if some clusters
do not include enough data points with collisions (due
to relatively few collisions in the entire dataset), then the
estimated collision probabilities may be inaccurate for these
clusters. Therefore the upper bound on the number of clusters
should correspond to the size of the training set and the
number of collisions in the entire dataset.

As argued before, the authors considered three methods
to select the number of clusters: Elbow, Silhouette, and
Cross-Validation. The accuracy of each was estimated using
a relative difference between the error of the model indicated
by the method and error of the best model selected using a test
set. The results for each method were computed for different
scenarios and for different training dataset sizes (due to the
overfitting analysis only the results for training dataset sizes
greater or equal of 50% of entire dataset size were taken into
consideration), which are summarized in Table 3.
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TABLE 3: Aggregated accuracy metrics of various methods for selecting the best model (smaller numbers indicate better accuracy).
Silhouette Cross-Validation Elbow
Mean 0.36365 0.40575 0.44222
Std. dev. 0.28405 0.42113 0.43249
0.5 -
0.45
0.4
0.35
£ 03
s3]
0.25
0.2
0.15
0. 1 1 1 1 1 1 ]
10 20 30 50 60 70 80

Size of training set [% of data]

Test error - scenario 0

FIGURE 10: Predicted and actual mean collision probability for the base scenario.

The results indicate that the Silhouette method has the
best accuracy and smallest standard deviation amongst the
three measures, meaning that it is less prone to changes of
scenario or training dataset size and, consequently, more
reliable. Accordingly, the Silhouette method was chosen to
determine the number of clusters.

3.2. Choosing a Scenario. The base scenario assumes that
all the features are equal, but in actuality some may have a
larger impact on the predicted values and others. In order
to verify this, different scenarios were created and tested. In
each scenario some features are more (or less) important than
others, and the proximity in dimensions corresponding to
these features has a greater impact on the attribution of WZs
to certain clusters. A list of tested scenarios is presented in
Table 4, while errors associated with the performance of the
best model in each scenario are shown in Figure 11.
Scenarios 1-7 imply that AADT can deteriorate model
accuracy. Specifically, increasing the importance of AADT
inflates errors regardless of the data size. Conversely, sce-
narios 4, 6, and 7, which correspond to lanes, day/night,
and peak/off-peak, are characterized by relatively smaller
errors. Scenarios 8 and 9 and to some extent 11 show that
AADT has no significant impact on model accuracy. In fact,
reducing the significance of AADT or completely removing
it does not affect the accuracy. This is unsurprising because
AADT represents an average annual measure, which may be
a poor indicator of traffic volumes during particular hours of
road maintenance work. Moreover, scenarios 10-12 indicate

that WZ hours of operations are highly relevant, as models
that emphasize day/night and peak/off-peak values provide
more accurate predictions. Finally, scenarios 13 and 14 show
that the number of lanes, day/night, and peak/oft-peak data
have a crucial impact on prediction accuracy. However,
performance of all these models is comparable, so we use the
Silhouette method to select both the number of clusters and
the best scenario.

3.3. The Best Model. The error for the model whose speci-
fications are determined using the Silhouette method for 3
quantiles is 2.95%, indicating a high level of model accuracy.
The accuracy for each quantile is shown in Figure 12(a), while
the SMAPE errors based on the number of quantiles for the
selected model are shown in Figure 12(b). While the number
of quantiles (the resolution of the model) is increasing,
the SMAPE errors also increase, meaning accuracy of the
model is reduced. It is worth noticing that for 4, 5, 6 and
7 quantiles the SMAPE errors are almost constant (from
9.84% to 10.88% with 10.5% mean), thus implying that if 11%
error is acceptable, it is possible to increase the resolution
of the model up to 7 quantiles. When the resolution of the
model increases above 7 quantiles, the error grows to an
unacceptable level as a result of an insufficient amount of
training data. Since the predicted probability of collision in
each quantile is computed by dividing the number of work
zones with a collision occurrence by the total number of WZs
in the quantile, when there are not enough WZs in a quantile,
even a single collision can significantly change predictions.
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TABLE 4: List of tested scenarios.
Scenario Description
0 Base scenario, all features equally important
1 Importance of seasons increased
2 Importance of road type increased
3 Importance of weekday/weekend increased
4 Importance of number of lanes increased
5 Importance of AADT increased
6 Importance of peak/oft-peak increased
7 Importance of day/night increased
8 Importance of AADT decreased
9 AADT data removed
10 Importance of peak/off-peak and day/night increased
1 Importance of peak/off-peak and day/night increased, AADT data removed
12 Uses only peak/off-peak and day/night data
13 Importance of number of lanes, peak/oftf-peak and day/night increased
14 Uses only number of lanes, peak/oft-peak and day/night data
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FIGURE 11: SMAPE-based errors associated with the best model in each scenario.

Accordingly, it is possible to increase the accuracy of the
model for higher resolutions by increasing the size of the
training dataset.

3.4. Example Application. Using the previously proposed
clustering approach to predict the probability of a colli-
sion occurring within a WZ, we now provide an illustra-
tive application of the proposed model. This hypothetical
case study pertains to the jurisdiction of the Coordinated
Highways Action Response Team, whose objective is to
improve operations of Maryland’s highway system. Suppose
that this agency has a list of planned maintenance work
for the following day and is interested in deploying a fixed
number of response units to tackle collisions that may happen

within these WZs. Clearly, we can assign these WZs to the
clusters derived in the previous section and consequently
estimate collision probability for each of the WZs scheduled
for the following day (Figure 9). Once these probabilities
are computed, the allocation of response units becomes a
stochastic facility location problem, which has been tackled
extensively in the operations research literature [83, 84]. In
order to solve this response team allocation problem based on
collision probabilities obtained from clustering, we formulate
a two-stage stochastic program [85], the details of which are
described in the Appendix.

In this illustrative example we randomly sample the 40
WZs that were used to test the clustering methodology and
pretend they represent the maintenance work scheduled for
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input for the two-stage stochastic model to optimally allocate 5 highway response teams.

the following day. Consequently, we assign the 40 WZs to
clusters built based on historical WZs (2010-2015), in order
to compute the collision probabilities associated with each of
the 40 newly-scheduled WZs (Figure 13(a)). Finally, using the
optimization model provided in the Appendix, we determine
the optimal location of the response units on the Maryland
highway network for the observed time period. Figure 13(b)
visualizes the optimal allocation when 5 response units are
available, and additional allocations are provided in the
Appendix (Figure 14) as the number of available response
vehicles is perturbed from this value. The optimal allocation
can be updated as the situation in the field evolves (e.g., one
WZ is cleared and another on is set up), by simply reapplying
the model given a new set of inputs (i.e., new configuration

of WZs and corresponding collision probabilities). Alterna-
tively, the proposed optimization model can be extended
into a multiperiod stochastic program [85], which would
better address dynamic relocation of response vehicles. This
extended model would also require the collision probabilities
estimated in this paper as inputs.

In addition to optimal allocation of highway response
units, the proposed clustering method can be used to deter-
mine or adjust WZ parameters. Specifically, the presented
model could help modify WZ parameters (e.g., lanes closed,
day/night, and peak/off-peak duration) in order to meet
certain safety levels (e.g., keep the collision probability below
a specified threshold). For example, the easternmost WZ in
Figure 13(b) has higher collision probability than others, so
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FIGURE 14: Sensitivity analysis showing the optimal allocation of response teams when the number of available units is perturbed from m = 5.
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its features may be modified to improve its safety level. A
government agency might also introduce regulations to keep
accident probabilities below certain level or provide financial
incentives for those contractors who perform roadwork while
maintaining high safety levels.

4. Conclusions

This paper proposed a clustering approach to predict the
probability of a collision occurring in the proximity of
planned maintenance work, which is important for allocation
of highway response units. We presented the first applica-
tion of clustering in the analysis of WZ collisions, which
involved a large dataset of over 54,000 WZs in Maryland. The
model showed good prediction accuracy, and its potential
application was illustrated by optimally allocating response
units in the Maryland highway network. Namely, collision
probabilities determined via clustering were used as inputs
to a two-stage stochastic program to optimally deploy high-
way response teams. Additionally, the proposed clustering
approach can be used to adjust features of WZs to meet
specified safety levels.

The proposed clustering method has certain limitations
corresponding to the number of quantiles, so in some cases it
may be used for classification of WZs rather than to predict
the exact collision probabilities. Including more data would
allow for additional quantiles to be used (i.e., preparation
of higher-resolution models) and including additional WZ
features may be useful as well. It would also be interesting to
test clustering algorithms other than the k-means++, such as
k-medoids or c-means and compare their performance. For
the allocation of highway response teams, one could consider
a multiperiod extension of the stochastic model used in this

paper.

Appendix

The problem of allocating highway response units is modeled
as a two-stage stochastic integer program, with the goal to
locate m units in a way that would minimize the expected
response time to WZs where collisions occur. In the first
stage, we need to decide the location of response units,
which may be placed at any of the WZ locations (or in their
proximity). In the second stage, we assign these response
units to WZs depending on the collision occurrences in
each scenario and observe response times. More formally,
let I denote a set of WZs indexed by i and j. Let &; be a
random parameter indicating the probability of a collision
occurring at WZ i € I, which was estimated using the
proposed clustering approach. A particular realization of the
aforementioned random parameters is denoted by w € Q.
Define x; as an integer variable indicating the number of
response units located in the proximity of WZi € I. We define
J(w) < I as a set of WZ locations where collisions occurred
in a particular realization of random parameters w € (. Let
;j(w) be a binary variable which equals 1 if a response unit
located at WZ i € I is dispatched to WZ j € J(w), given a
particular realization of random parameters w € Q. Letd,;(w)
be the distance (or travel time) from WZi € ItoWZ j € J(w).
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We also definex = {x; | i € [} and & = {&; | i € I} as vectors
of |I| elements.
We formulate the first-stage problem as

min  E[Q(x,8)]
ezt

Xi
s.t. Zx,- <m,
iel

(A1)

(A.2)

where Q(x, §(w)) is the solution to the following second-stage

problem:
Q&)= min Y Y y;(wd;w)
iel jeJ(w)

y;i(@)€fo,1} (A.3)

s.t. Z Yij(w) <x; Viel (A4)
jel(@) '

Zyij (=1 Vje](w) (ps5)

iel
As argued above, the first-stage problem seeks to allocate
teams in order to minimize the expected response time
subject to vehicle availability constraint. The response time
for a particular realization of random parameters is computed
in the second stage. Constraints (A.4) ensure that vehicles
are dispatched only from locations where they are available,
while (A.5) guarantee that a response team is directed to each
WZ collision. To ensure feasibility of the second state, we
let m > |J(w)|, Yo € Q, which implies that the number
of response teams is greater or equal than the total number
of locations at which collisions occur simultaneously. This
condition, however, can be relaxed by extending the model
to consider priorities in serving collision locations. Finally,
the proposed two-stage stochastic model is implemented in
GAMS and solved in the extensive form using CPLEX solver.
We observe computation times of several seconds for the case
study involving 40 WZs, 5 response teams and 1,000 scenarios
(i.e., L,00O realizations of &). The corresponding optimal
allocation of response teams is provided in Figure 13(b),
with additional allocations shown in Figure 14 for different
numbers of available response teams.
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