
Chapter 63
Encapsulation Component and Its
Incidence into Scientific Software
Performance

G. Omar Pizarro-Vasquez , Felix Barahona , and Miguel Botto-Tobar

Abstract Performance is considered an important feature rather than the applica-
tion of programming techniques for better software design inmost scientific software
developers. Therefore, the problem arises if the software is developedwithout consid-
ering a specific paradigm or some programming technique when performing mainte-
nance; tasks related to this activity are complicated, since almost no onewould under-
stand the source code. The goal of this research is to verify the performance of the
softwarewith orwithout an encapsulation component.An ex-post-facto experimental
methodology has been implemented, carrying out a descriptive analysis of the data
and then concluding by verifying the hypothesis by means of a robust test. This work
was carried out by running algorithms written in the programming language Java
by using three data groups in different conditions to analyze their behavior. Results
show is that the application of the encapsulation component of the object-oriented
paradigm does affect the execution of the scientific software performance.

G. O. Pizarro-Vasquez (B) · F. Barahona
Universidad Politécnica Salesiana, Guayaquil, Ecuador
e-mail: gpizarro@ups.edu.ec

G. O. Pizarro-Vasquez
Research Group in Software Engineering and Knowledge Engineering (GIISIC), Guayaquil,
Ecuador

M. Botto-Tobar
Eindhoven University of Technology, Eindhoven, The Netherlands

Research Group on Artificial Intelligence and Information Technologies (IATI), Universidad de
Guayaquil, Guayaquil, Ecuador

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
Á. Rocha et al. (eds.), Communication, Smart Technologies and Innovation for Society,
Smart Innovation, Systems and Technologies 252,
https://doi.org/10.1007/978-981-16-4126-8_63

709

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-4126-8_63&domain=pdf
https://orcid.org/0000-0002-0731-4550
https://orcid.org/0000-0003-3297-8401
https://orcid.org/0000-0001-7494-5224
mailto:gpizarro@ups.edu.ec
https://doi.org/10.1007/978-981-16-4126-8_63


710 G. O. Pizarro-Vasquez et al.

63.1 Introduction

63.1.1 Object-Oriented Paradigm

Object-oriented paradigm (OOP) has been the design principle of many program-
ming languages [1]. The idea behind OOP was derived mainly from the represen-
tation of knowledge in the human brain according to the real world. According to
this paradigm, everything can be modeled as an object, which is composed of: iden-
tity, state and behavior. This allows us to make software design more accessible by
information systems developers and architects.

Unhelkar [2] presents six fundamentals of Software Engineering, which are also
those of OOP, such as: classification, polymorphism, abstraction, inheritance, associ-
ation and encapsulation. Classification refers to the grouping of identified entities or
potential objects; polymorphism, as the runtime featurewith respect to an instantiated
object when understanding amessage sent by another object; abstraction, understood
as the classification of objects that are identified as classes; inheritance, which results
from classes that have been generalized; the association, as the characteristic that
allows to relate classes; and encapsulation, a feature that is taken into account in this
research work, such as the one that locates data and prevents it from being directly
exposed to the rest of the system, improving quality and reuse because the data is
accessed through calls to operations (methods or functions) of a class and shows the
set of “data and code” depending on its visibility (public, private or protected).

63.1.2 Software Scientific Development

Scientific software development refers to the analysis, design, implementation,
testing and deployment of software applications for scientific research purposes,
for example in the field of physics, biology, medical analysis, data science, among
others. The need for continuous experimentation and validation of techniques (e.g.,
simulations) prior to the publication of scientific results has led to the emergence of
the field of scientific software development as an important method for researchers
to be successful in multiple fields [3].

According to Arvanitou [4], most of the code implemented for scientific software
does not follow a guideline with respect to some paradigm that allows considering
some non-functional requirement, such as, coupling, scaling, modularity, among
others, since the efficiency of the execution of an algorithm prevails over design
techniques.

Hypothesis: Encapsulation component within the object-oriented paradigm
(OOP) impacts on the performance of a scientific software.

The paper is organized as follows: Sect. 63.2 presents the materials and methods:
data source and runtime environment are mentioned. Section 63.4 describes the



63 Encapsulation Component and Its Incidence into Scientific … 711

results obtained, and finally, Sect. 63.5 presents our conclusions and recommenda-
tions.

63.2 Materials and Methods

63.2.1 Experimental Design

This research is based on code of Pizarro’s Master’s Thesis [5], not yet published;
in which, an ex-post facto experimental study was carried out, with simulated data
for the generation of batches with orders (instances from [6] which contains index
of place where are items) and their respective collection in a rectangular warehouse
with one cross aisles (see Fig. 63.1).

The order grouping algorithms were: Random (batches are formed randomly),
First Come First Served (FCFS) batches are formed according to the orders come up
to the capacity of the cart, Strict Order Picking (SOP) a batch is formed with a single
order, Greedy 1 (G01) are ordered from the highest to the lowest number of items
of each order and batches are created, Greedy 2 (G02) are ordered from the lowest

Fig. 63.1 Rectangular
warehouse with one cross
aisles



712 G. O. Pizarro-Vasquez et al.

to the highest and batches are created and Greedy 3 (G03) are grouped according to
the closest orders and batches are created.

There is a heuristic that was applied to two groups of experimental data after
having a set of solutions obtained with the algorithms explained in the previous
paragraph, this heuristic is called Local Search (LS) with four variants: 1 × 0 two
batches are taken randomly and a single-random order is taken out from each batch
then exchanged if is into cart capacity; 1 × 1 two random batches are taken and a
random order is taken from each batch then exchanged; 2 × 1 two random batches
are taken and two random orders are taken from one batch and one random order
from another batch is then exchanged; and, 2 × 2 two random batches are taken
and two random orders are taken from one batch and another two random orders are
taken from another batch, then exchanged.

It should be noted that exchanges are made if the verification of the cart’s capacity
is fulfilled; otherwise, the exchange is not made, another batch is sought until the
exchange can be made.

Routing algorithmswere: S-Shape (the route through thewarehouse is like a letter
S) and Largest Gap (the products are collected first at the top and then the products
at the bottom, in general).

63.3 Simulations

Three simulations were run running the order grouping algorithms together with the
routing algorithms in three groups:

• Group 1. Constructive Algorithms (Random, SOP, FCFS, Greedy 01—G01,
Greedy 02—G02 and Greedy 03—G03) with S-Shape and Largest Gap.

• Group 2. Random constructive algorithm (Random) and heuristic Local Search
(1 × 0, 1 × 1, 2 × 1, 2 × 2) with S-Shape and Largest Gap.

• Group 3. Greedy constructive algorithms (G01, G02 and G03) and heuristic Local
Search (1 × 0, 1 × 1, 2 × 1, 2 × 2) with S-Shape and Largest Gap.

The specification of the detailed experimentation in the previous paragraphs can
be seen in Fig. 63.2.

The source code of the warehouse configuration with several cross aisles for this
research is implemented in Java [7] based on a Perl code from the research works of
[8–10].

For data analysis, the statistical programming language named R was used, and
RStudio [11] was used as IDE.



63 Encapsulation Component and Its Incidence into Scientific … 713

Fig. 63.2 Scientific research design

63.4 Results

63.4.1 Data Analysis Exploration

Prior to apply a hypothesis testing to the experimental data, it is necessary to verify
them in a descriptive way and thereby check the statistical results of the hypothesis
test.

In all boxplot plots (Figs. 63.3, 63.4 and 63.5), there have been applied the loga-
rithm of base 10 with respect to the axis of the execution times (in nanoseconds),
so that they can be displayed in an adequate way, as shown in graphs, since previ-
ously they could not be appreciated in a better way due to the amount of aberrant
data obtained in experiments. In these three groups, it can be observed data and its
execution times with encapsulation is slightly higher than execution times without
encapsulation.

The following tables show the values of means, trimmed means to 10% and
variances of execution times (in nanoseconds) of each group that were previously
visualized. In Tables 63.1, 63.2 and 63.3, it can be seen how the experimental data
where encapsulation was applied in the source code is greater than the experimental
data in which encapsulation was not applied.

In figures of the density of execution times (Figs. 63.6, 63.7 and 63.8), both with
encapsulation and without encapsulation, it is evident that they don’t have a normal



714 G. O. Pizarro-Vasquez et al.

Fig. 63.3 Box plot of group 1 experimental data

Fig. 63.4 Box plot of group 2 experimental data

distribution, which allows us to deduce that an alternative other than a parametric
hypothesis testing.

63.4.2 Hypothesis Testing

Graphically, these three groups of experimental data don’t have a normal distribution;
whichwas verified in the three groups of experimental data, usingLilliefors normality
test (Kolmogorov–Smirnov) [12], the null hypothesis being that “the experimental
data have a normal distribution”:



63 Encapsulation Component and Its Incidence into Scientific … 715

Fig. 63.5 Box plot of group 3 experimental data

Table 63.1 Descriptive experimental data from group 1

With encapsulation component (ns) Without encapsulation component (ns)

Media Trimmed
mean

Variance Media Trimmed
mean

Variance

SOP 1,024,637.6 984,356.9 1.07E+12 862,458.2 804,322.5 1.52E+12

Random 718,507.1 686,736.8 8.47E+11 599,995.9 576,146.4 4.37E+11

FCFS 738,722.7 722,968.7 1.28E+11 647,044.9 605,959.2 8.28E+11

G01 1,555,259.4 1,087,353.7 3.56E+14 952,754.1 862,217.4 2.40E+12

G02 1,320,236.1 1,017,183.3 1.09E+14 848,957.1 814,291.2 8.64E+11

G03 5,504,069.7 4,530,229.5 1.20E+14 4,935,173.2 4,415,207.6 2.52E+13

Table 63.2 Descriptive experimental data from group 2

With encapsulation component (ns) Without encapsulation component (ns)

Media Trimmed
mean

Variance Media Trimmed
mean

Variance

LS
1 × 0

9,557,378 8,472,821 2.69E+14 7,483,487 6,780,018 4.16E+13

LS
1 × 1

2,154,638 2,064,382 1.98E+12 1,801,292 1,707,401 2.00E+12

LS
2 × 1

18,266,779 15,728,281 4.20E+14 14,671,111 12,794,689 2.18E+14

LS
2 × 2

38,733,059 29,950,634 3.52E+15 30,546,922 24,013,919 1.71E+15



716 G. O. Pizarro-Vasquez et al.

Table 63.3 Descriptive experimental data from group 3

With encapsulation component (ns) Without encapsulation component (ns)

Media Trimmed
mean

Variance Media Trimmed
mean

Variance

LS
1 × 0

19,684,438 15,891,130 1.25E+15 16,845,381 13,864,973 4.58E+14

LS
1 × 1

4,103,574 3,677,788 1.32E+13 3,971,539 3,346,910 1.89E+13

LS
2 × 1

23,209,315 20,085,973 8.91E+14 20,067,883 17,582,944 4.41E+14

LS
2 × 2

40,754,879 31,027,295 4.21E+15 34,820,637 26,843,721 2.46E+15

Fig. 63.6 Density diagram of the experimental data from group 1

Fig. 63.7 Density diagram of the experimental data from group 2



63 Encapsulation Component and Its Incidence into Scientific … 717

Fig. 63.8 Density diagram of the experimental data from group 3

In Groups 1, 2 and 3, the following conclusion is reached: “with a value of signif-
icance close to zero (<2.2e−16), it can be concluded that the null hypothesis is
rejected; therefore, the data do not have a normal distribution”.

Since these three groups of data do not follow a normal distribution; the require-
ment to apply the non-parametric hypothesis test must be proved, verifying the
null hypothesis: “homogeneity of the variance in the data”, using the Bartlett
homoscedasticity test recommended in [13, 14].

In Groups 1, 2 and 3, the following conclusion is reached: “with a value of signif-
icance close to zero (<2.2e−16), it can be concluded that the null hypothesis is
rejected; therefore, the variance is not homogeneous”.

Since it does not meet the two previous requirements: neither the assumption of
normality nor homogeneity in the variance, now it will be statistically verified if the
meanof execution timeswith the code implementedwith encapsulation is greater than
the mean of the execution times with the source code without encapsulation, using
function proposed by Yuend [15] robust hypothesis test of two dependent groups,
with null hypothesis: “the mean of the execution times of each group is equal”:

In Groups 1, 2 and 3, the following conclusion is reached: “with a significance
value close to zero and a difference of means bounded with a positive value, it can
be concluded that the null hypothesis is rejected; therefore, the bounded mean of
each group is different and that the mean of the execution times with encapsulation
is greater than the mean of the execution times without encapsulation”.

63.5 Conclusions

The impact on how the source code is implemented, considering encapsulation or not,
on the execution times of scientific software (hypothesis about this research); It has



718 G. O. Pizarro-Vasquez et al.

been shownstatistically that the execution timesof the source codewith encapsulation
are greater than the execution times of the source code without encapsulation.

According to a study [4] where it has not been considered as amatter of interest by
the scientific software development community to consider programming techniques;
In this research work, it is shown that if considered, it would affect the performance
of the software, specifically if encapsulation is included in all defined classes.

In scientific software one of the most important feature is performance; therefore,
a paradigm more in line with this type of computer solution must be sought; as the
procedural paradigm. From this, it is recommended to carry out future research imple-
menting a solution following the object-oriented paradigm and the same solution to
implement it considering the procedural paradigm.

Acknowledgements Thanks toUniversidad Politécnica Salesiana, due to the financial contribution
to this research work, which is within the framework of the research project: “ACISoft—Computa-
tionalAnalysis in Software Engineering” carried out in theResearchGroup of Software Engineering
and Knowledge Engineering (GIISIC).

References

1. T. Rentsch, Object oriented programming. ACM SIGPLAN Notices 17(9), 51–57 (1982).
https://doi.org/10.1145/947955.947961

2. B. Unhelkar, Software Engineering with UML. CRC Press (2017)
3. H. Hourani, H. Wasmi, T. Alrawashdeh, A code complexity model of object oriented program-

ming (OOP), in 2019 IEEE Jordan International Joint Conference on Electrical Engineering
and Information Technology (JEEIT) (IEEE, 2019), pp. 560–564. https://doi.org/10.1109/
JEEIT.2019.8717448

4. E.M. Arvanitou, A. Ampatzoglou, A. Chatzigeorgiou, J.C. Carver, Software engineering prac-
tices for scientific software development: a systematic mapping study. J. Syst. Softw. 172,
110848 (2021). https://doi.org/10.1016/j.jss.2020.110848

5. G.O. Pizarro-Vasquez, E.G. Pardo, Resolution of the problem of optimization of the batching
and routing of orders in warehouses with multiple transversal aisles (unpublished)

6. S. Henn, S. Koch, K.F. Doerner, C. Strauss, G. Wäscher, Metaheuristics for the order batching
problem in manual order picking systems. Bus. Res. 3(1), 82–105 (2010). https://doi.org/10.
1007/BF03342717 LNCS Homepage, http://www.springer.com/lncs. Last accessed 21 Nov
2016

7. G.O. Pizarro-Vasquez, Repository of source code of the TFM research project in Java. https://
github.com/omarjcm/warehouse, [Online; accedido 25-Febrero-2021]

8. C.A. Valle, J.E. Beasley, Order batching for picker routing using a distance approximation.
arXiv preprint arXiv:1808.00499 (2018)

9. C.A. Valle, J.E. Beasley, A.S. da Cunha, Modelling and solving the joint order batching and
picker routing problem in inventories. Springer International Publishing, Cham (2016), pp. 81–
97. https://doi.org/10.1007/978-3-319-45587-7

10. C.A. Valle, J.E. Beasley, A.S. da Cunha, Optimally solving the joint order batching and picker
routing problem.Eur. J.Oper.Res.262(3), 817–834 (2017). https://doi.org/10.1016/j.ejor.2017.
03.069

11. G.O. Pizarro-Vasquez, Statistical analysis source code repository in R. https://github.com/oma
rjcm/poo-research, [Online; accedido 25-Febrero-2021]

https://doi.org/10.1145/947955.947961
https://doi.org/10.1109/JEEIT.2019.8717448
https://doi.org/10.1016/j.jss.2020.110848
https://doi.org/10.1007/BF03342717
http://www.springer.com/lncs
https://github.com/omarjcm/warehouse
http://arxiv.org/abs/1808.00499
https://doi.org/10.1007/978-3-319-45587-7
https://doi.org/10.1016/j.ejor.2017.03.069
https://github.com/omarjcm/poo-research


63 Encapsulation Component and Its Incidence into Scientific … 719

12. G.E. Dallal, L. Wilkinson, An analytic approximation to the distribution of Lilliefors’s test
statistic for normality. Am. Stat. 40(4), 294–296 (1986). http://www.jstor.org/stable/2684607

13. M.S. Bartlett, R.H. Fowler, Properties of sufficiency and statistical tests, in Proceedings of the
Royal Society of London. Series A—Mathematical and Physical Sciences, vol. 160, no. 901
(1937), pp. 268–282. https://doi.org/10.1098/rspa.1937.0109, https://royalsocietypublishing.
org/doi/abs/10.1098/rspa.1937.0109

14. O. Gonzales, Parametric and non-parametric mathematical modelling techniques: a practical
approach of an electrical machine identification. Ecuadorian Sci. J. 5(1), 30–36 (2021). https://
doi.org/10.46480/esj.5.1.86

15. P. Mair, R. Wilcox, Robust statistical methods in R using the WRS2 package. Behav. Res.
Methods 52(2), 464–488 (2019). https://doi.org/10.3758/s13428-019-01246-w

http://www.jstor.org/stable/2684607
https://doi.org/10.1098/rspa.1937.0109
https://royalsocietypublishing.org/doi/abs/10.1098/rspa.1937.0109
https://doi.org/10.46480/esj.5.1.86
https://doi.org/10.3758/s13428-019-01246-w

	63 Encapsulation Component and Its Incidence into Scientific Software Performance
	63.1 Introduction
	63.1.1 Object-Oriented Paradigm
	63.1.2 Software Scientific Development

	63.2 Materials and Methods
	63.2.1 Experimental Design

	63.3 Simulations
	63.4 Results
	63.4.1 Data Analysis Exploration
	63.4.2 Hypothesis Testing

	63.5 Conclusions
	References




