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Abstract

Wildfires are an example of a phenomenon that can be investigated using point process theory.
We analyze public data from the National Forestry Commission. It consists of wildfire records,
specifically their coordinates and dates of occurrence in Mexico State from 2010 to 2018. The
spatial component was examined and we found that wildfires tend to cluster. Afterwards, a time
series analysis was conducted. This shows that the data comes from a stationary stochastic process.
Finally, some spatio-temporal features that demonstrate the point process’ regular behaviour in
space and time were investigated. This research could be a reference to describe wildfire behaviour
in a specific space and time.
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1 Introduction

Wildfires are complex phenomena with serious socio-
environmental consequences, including economic and
biodiversity losses, among others. Anthropogenic fac-
tors are responsible for nearly all wildfires in Mexico
State, according to data from the National Forestry
Commission (Conafor, its Spanish acronym) [1] (see
Figure 1).
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Figure 1: Mexico State wildfire causes (2010-2018).

There is plenty of specialized literature available
on wildfires (see [2] and [3]). The authors of [4] use
a logistic regression model to assess the risk of wild-
fire in Puebla, Mexico, taking into account land cover,
meteorological, topographic, and social variables. Us-
ing two different data sources: Conafor’s open data
and Modis’ (Moderate Resolution Imaging Spectrora-
diometer) data, the authors of [5] show that wildfire
spatial patterns in Mexico tend to cluster. The spatial
and temporal relationships between Conafor’s wild-
fire records from 2005 to 2015 and the Standardized
Precipitation-Evapotranspiration Index (SPEI) were
investigated [6]. Machine learning techniques were
used to determine the wildfire propensity in Mexico
using Conafor’s open data [7].

The spatio-temporal behaviour of wildfires could
be critical for improving fire management strategies.
The point processes approach can be used to model
random events in time, space, or space-time, such as
wildfires. In this study, we used point processes theory
to describe the spatio-temporal behaviour of wildfires
in Mexico State from 2010 to 2018.
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2 Point processes basic theory
A point process is a random set in which the number of
points and their locations are both random [8, p. 12].
A point process could occur in any completely sepa-
rable metric space S, such as d-dimensional Euclidean
space Rd.

Definition 1 (Point process). The point process
Y , with state space S, is a measurable mapping
from a probability space (Ω,F ,P) to the measure
space of the point process’ realizations equipped with
the counting measure,

(
Y#
S ,B

(
Y#
S

)
, µ#

)
. Where

Y#
S = {µ# : B (S) → N | µ#(A) < ∞, A ∈ B (S)} is

the space of all finite counting measures on B (S).

The commutative diagram in Figure 2 illustrates
the point process definition.

(Ω,F ,P)
(
Y#
S ,B

(
Y#
S

)
, µ#

)

(N,P (N))

Y : ω 7→ Y (ω,·)

YA : ω 7→ YA(ω)

Y −1(φ−1
A (B)) 7→φ−1

A (B) : Y −1

φA : µ# 7→ µ#(A)

Y −1
A : B 7→ Y −1

A (B)
φ−1
A : B 7→ φ−1

A (B)

Figure 2: Commutative diagram of point process definition.

The mapping φA takes measures µ# ∈ Y#
S and

maps them into µ#(A). As a result, the mapping φA in
terms of the point process Y is φA : Y (ω, ·) 7→ Y (ω,A).

Furthermore, the commutative diagram reveals
the equivalences: Y (ω,A) = φA (Y (ω, ·)) = YA(ω)

and Y −1
A (B) = Y −1

(
φ−1
A (B)

)
, for any B ∈ P (N), [9,

pp. 8–9], [10, p. 13]. The following are some funda-
mental properties of a point process [10, pp. 7–8]:

i. Is additive, this is

Y (ω,A1 ∪A2) = Y (ω,A1) + Y (ω,A2),

whenever A1∩A2 = ∅, A1, A2 ⊂ S and of course

Y (ω,∅) = 0.

ii. Is locally finite

P (Y (ω,A) < ∞) = 1,

for any A ⊂ S.

iii. Is simple

P (Y (ω, {s}) ≤ 1) = 1,

for any point s ∈ S.

For simplification, we will write Y (ω,A) = Y (A)

in the foregoing. When the point process Y is ob-
served, we have a point pattern denoted by Y .

In order to generate models, some assumptions
about a point process must be made. Stationarity and
isotropy are the most important assumptions. The for-
mer refers to statistical invariance under translations,
whereas the latter refers to statistical invariance under
rotations [10, p. 16], [11, pp. 146–147]. Nonetheless,
some research on non-stationary and anisotropic pro-
cesses has been conducted (see [12] and [13, ch. 5]).

Definition 2 (Stationary point process). A point pro-
cess Y on S is stationary if, for any fixed s ∈ S, the
distribution of the process Y + s is identical to the
distribution of Y .

2.1 Poisson process
The general Poisson point process in some space S can
be defined as follows [10, p. 12], [11, pp. 300–301].

Definition 3 (Poisson process). The Poisson process
Y on S with intensity measure Λ is a point process
such that:

i. For every compact set A ⊂ S, the random vari-
able Y (A) ∼ Poisson (Λ(A)).

ii. If A1, . . . , An ⊂ S are disjoint compact sets,
then Y (A1), . . . , Y (An) are independent random
variables.

Where the intensity measure Λ is defined, for any
A ⊂ S, as Λ(A) = E (Y (A)).

If the state space is S = R2×R+ and the expected
value of the point process Y in S × T , with S ⊂ R2

and T ⊂ R+, can be written as follows:

E (Y (S × T )) = λ µL(S) µL(T ),

where λ > 0 and µL is the Lebesgue measure, then we
have the spatio-temporal homogeneous Poisson point
process [14, pp. 9–10].

The simplest stochastic mechanism for generating
point patterns is the homogeneous Poisson point pro-
cess. As a data model, it is almost never plausible.
Regardless, it is the fundamental reference or bench-
mark model of a point process [8, p. 53].

The homogeneous Poisson point process is also
known as complete spatial (or spatio-temporal) ran-
domness. Additionally, the Poisson point process is
stationary and isotropic [10, p. 16].
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Figure 3 depicts a spatial point pattern generated
by a homogeneous Poisson point process.

  Y(A) ~ Poisson
λ = 100 ∗ µL(A)



Figure 3: Simulation of a spatial homogeneous Poisson process.

3 Point pattern’s data analysis
Distances between points are a straightforward way to
examine a point pattern. The most common statistics
used in exploratory analysis of a point pattern are as
follows.

3.1 Empty-space function F

Let Y be a stationary point process on S. The
shortest distance between a given point s ∈ S and
the nearest observed point yi ∈ Y is denoted as
d(s,Y ) = mini {‖s− yi‖}. It is called the empty-
space distance, spherical contact distance, or simply
contact distance [8, p. 83], [10, pp. 21–22], [11, pp.
261–262]. Note that

d(s,Y ) ≤ r ⇔ Y (Br(s)) > 0, (1)

where Br(s) is the neighborhood of radius r cen-
tered on s.

yi

s

Br(s)

d(s,Y )

r

Figure 4: Empty-space distance illustration.

In other words, as shown in Figure 4, the empty-
space distance satisfies the logical equivalence of the
biconditional 1, d(s,Y ) > r ⇔ Y (Br(s)) = 0.

Moreover, because {Y (Br(s)) > 0} is measurable,
the event {d(s,Y ) ≤ r} is measurable, implying that
the contact distance is a well-defined random element.

Definition 4 (Empty-space function F ). Let Y be a
stationary point process on S. The empty-space func-
tion F is the cumulative distribution function of the
empty-space distance

F (r) = P (d(s,Y ) ≤ r) .

If Y is a homogeneous Poisson process on Rd with
intensity λ, then the empty-space function is

F (r) = 1− exp
(
−λ µL (B1(0)) rd

)
,

where r ≥ 0, µL (B1(0)) =
πd/2

Γ( d
2+1)

denotes the volume
of the unitary d-ball in Rd and Γ is the usual gamma
function.

3.2 Nearest-neighbour function G

The nearest-neighbour distance, denoted by di =

mini ̸=j

{
‖yi − yj‖

}
, is the distance between each

point yi ∈ Y and its nearest neighbour in the set
Y \{yi}, [8, p. 90], [10, pp. 51–52]. It is worth noting
that di can also be written as di = d (yi,Y \{yi}), [11,
p. 262]. This distance is depicted in Figure 5.

yi

di

Figure 5: Nearest-neighbour distance illustration.

Definition 5 (Nearest-neighbour function G). Let
Y be a stationary point process on S. The nearest-
neighbour function G is the cumulative distribution
function of the nearest-neighbour distance

G(r) = P (d (s,Y \{s}) ≤ r | s ∈ Y ) ,

where r ≥ 0 and s is any location in the state space S.
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If Y is a homogeneous Poisson process on Rd with
intensity λ, then the nearest-neighbour function is

G(r) = 1− exp
(
−λ µL (B1(0)) rd

)
.

In this case, we have that F (r) = G(r), i.e., under
complete spatial randomness, the points of the Poisson
process are independent of each other, so conditioning
does not affect them. Therefore, F is equivalent to
G, [8, p. 91].

3.3 Intensity

The intensity function describes the first-order prop-
erties of a point process [15, p. 623], [16, p. 57].

The average number of points per spatial (or
spatio-temporal) unit defines the intensity of a point
process. In this regard, intensity is analogous to the
expected value of a random variable [10, p. 26].

Similarly, we can investigate the analogue of a
point process’ variance or covariance throughout the
second-order properties.

As we will see in the following, the intensity mea-
sure Λ of a point process Y is clearly a set function,
whereas the “instantaneous” intensity function λ is an
atomic function.

Definition 6 (First-order intensity). Let Y be a point
process on S. The first-order intensity is defined as

λ(s) = lim
ν(ds)→0

E (Y (ds))

ν (ds)
,

where ν is a suitable measure on (S,B (S)) and ds

defines a infinitesimally small region around s.

If Y is a point process on Rd with intensity mea-
sure Λ, it satisfies

Λ(A) =

∫
A

λ(s) µL (ds) ,

for some function λ and any A ⊂ Rd. Then λ is called
the intensity function of Y [10, p. 27]. If λ is con-
stant, then Y is said to be homogeneous, otherwise is
said to be inhomogeneous [17, p. 40]. Likewise, if the
intensity function exists, we can interpret it as follows:

P (Y (ds) > 0) ≈ E (Y (ds)) ≈ λ(s) µL (ds) .

The K function and pair correlation are both
second-moment properties, so the second-order inten-
sity must be defined [16, p. 57].

Definition 7 (Second-order intensity). Let Y be a
point process on S. The second-order intensity is de-
fined as

λ2(s,u) = lim
ν(ds)→0
ν(du)→0

E (Y (ds) Y (du))

ν (ds) ν (du)
.

We already have the fundamental elements for
defining the following pair of second-order properties.

3.4 K function
The K function counts the number of locations within
a certain radius of a given point (see Figure 6), [11, p.
226], [18, p. 171]. Ripley defined it in [19]. We present
the following definition [8, p. 92], [16, pp. 57–58].

Definition 8 (K function). Let Y be a stationary and
isotropic point process on S with intensity λ. The K

function is defined as

K(r) =
1

λ
E (Y (Y ∩Br(s)\{s}) | s ∈ Y ) ,

where r ≥ 0 and s is any location in S.

s r

Figure 6: K function illustration.

If S = Rd and the point process Y is assumed to
be stationary, then hold λ2 (s,u) = λ2 (s− u). Also,
if Y is isotropic, hence λ2(s − u) = λ2(r), where
r = ‖s − u‖. These conditions implies that [15, p.
633], [16, p. 58],

λ K(r) =
d µL (B1(0))

λ

∫ r

0

λ2(z) z
d−1 dz. (2)

The above expression provides a relationship be-
tween the K function and the second-order intensity
under the assumptions of stationarity and isotropy.

If Y is a homogeneous Poisson process on Rd, then
the K function is [10, p. 38],

K(r) = µL (B1(0)) rd.
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3.5 Pair correlation function g

In general, the pair correlation function is a quotient
of probabilities; that is, the probability of observing a
pair of points separated by a given distance is divided
by the same probability, assuming a Poisson point pro-
cess [8, p. 94]. In the strictest sense, it is neither a
distribution nor a correlation function [16, p. 57].

Some authors consider the pair correlation func-
tion to be the most informative second-order property
because it provides information more simply than, say,
the K function [20, p. 218]. We present the following
definition [10, pp. 33–34], [17, p. 41].

Definition 9 (Pair correlation function g). Let Y be
a point process on S with intensity function λ and
second-moment density g2. The pair correlation func-
tion g is defined as

g(s,u) =
g2(s,u)

λ(s) λ(u)
,

for any s,u ∈ Y , where the second-moment density is
such that

ν[2](C) =

∫
C

g2(s,u) ν (ds) ν (du) ,

for any compact set C ⊂ S × S, where ν is a suitable
measure on (S,B (S)) (e.g., if S = Rd, so ν = µL), and
ν[2](A1 × A2) = E (Y (A1) Y (A2)) − E (Y (A1 ∩A2)),
with A1, A2 ⊂ S, is the second factorial moment mea-
sure of Y .

If Y is stationary and isotropic, it follows from 2
that [16, p. 58], [20, p. 219],

g(r) =
K ′(r)

µL (B1(0)) d rd−1
.

We can define g graphically by taking two con-
centric circles with radius r and r + ∆r, where ∆r is
a small increment, and counting the points that fall
within the ring (see Figure 7), [11, pp. 225–226].

s r +∆r

r

Figure 7: Pair correlation function g illustration.

If Y is stationary and isotropic, the expected num-
ber of locations in the ring is λ K(r +∆r) − λ K(r).
Dividing it by the expected value of points assuming
a Poisson process, we obtain

g∆r(r) =
λ (K(r +∆r)−K(r))

λ µL (B1(0))
(
(r +∆r)

d − rd
)

=
K(r +∆r)−K(r)

µL (B1(0))

(
d∑

k=0

(
d

k

)
rd−k (∆r)

k − rd

) .

(3)
All binomial expansion components in the denom-

inator of the second line in 3 lose significance except
for d rd−1∆r, so

g∆r(r) ≈
K(r +∆r)−K(r)

µL (B1(0)) d rd−1∆r
.

Taking the following limit, we get

lim
∆r→0

g∆r(r) ≈ lim
∆r→0

K(r +∆r)−K(r)

µL (B1(0)) d rd−1 ∆r

=
K ′(r)

µL (B1(0)) d rd−1

= g(r).

If Y is a homogeneous Poisson process on Rd, then
the pair correlation function is g(r) = 1.

4 Wildfires’ data analysis
Conafor data are licensed for free use (see details in
https://datos.gob.mx/libreusomx). It includes
wildfire geographical coordinates and dates, as well as
variables like forest type affected and severity, among
other things.

4.1 Spatial analysis

This spatial analysis focuses on the F and G functions
to determine whether the wildfire spatial point pattern
is aggregated, complete spatial random, or regular. In
addition, the intensity was estimated to support the
evidence about point pattern behavior.

Plotting the spatial point pattern is a good start-
ing point for understanding its behavior. Figure 8
shows the spatial point pattern. The wildfires do not
appear to be the result of a Poisson process.

There are multiple ways to prove if a point pattern
comes from a Poisson point process (see [11, ch. 10]).
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Figure 8: Spatial point pattern of Mexico State wildfires.

The simulation envelopes provide a formal way to
decide if the spatial pattern comes from the Poisson
process. It is equivalent to performing a hypothesis
test. The simulation envelopes are obtained under the
assumption of a Poisson process [8, pp. 98–99], [11, pp.
268–271], [18, pp. 161–163].

If the empirical curve falls within the envelope,
we can conclude that the point pattern comes from a
Poisson process.

Figures 9 and 10 show the estimated F and G func-
tions, as well as the theoretical functions for the Pois-
son process and simulation envelopes. For this, we use
the R package spatstat [21].

Clearly, the spatial point pattern does not follow
the Poisson model.
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Figure 9: Estimated F function and simulation envelopes.
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Figure 10: Estimated G function and simulation envelopes.

In Figure 9 note that F̂obs(r) < Ftheo(r), i.e., the
point pattern has longer empty-space distances than a
Poisson process. This suggests a clustered point pat-
tern [8, p. 86]. While in Figure 10 we observe that
Ĝobs(r) > Gtheo(r), i.e., the point pattern has shorter
nearest-neighbour distances than a Poisson model, in-
dicating a clustered pattern [8, p. 91].

Figure 11 depicts the estimated intensity using a
Gaussian kernel with bandwidth of 17 km. It can be
used to locate wildfire hotspots.
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Figure 11: Estimated intensity.

4.2 Time series analysis

This time series analysis was carried out to describe
the temporal behavior of wildfires. Figure 12 displays
the daily number of wildfires. This immediately sug-
gests that the wildfire time series is seasonal.
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Figure 12: Time series of Mexico State wildfires.

The augmented Dickey-Fuller test is used to prove
that the time series is seasonal (see details in [22, pp.
169–173]). This test is included in the R package
tseries [23], where the null hypothesis is that the
time series is non-stationary, against the alternative
hypothesis that the time series is stationary.

Table 1 displays the results of the augmented
Dickey-Fuller test for the wildfire time series, with a
significance level of α = 0.05.

Test statistic p-value
-5.1037 < 0.01

Table 1: Augmented Dickey-Fuller test results.

4.3 Spatio-temporal analysis
To demonstrate clustering or regularity in a spatio-
temporal point pattern, the space-time inhomogeneous
K function (STIK) and space-time pair correlation
function (STPC) can be used [14, p. 6], [24]. We
employ the R package stpp [14] for this purpose.

On the assumption that the point process Y on
Rd is second-order stationary, that is, their first-order
and second-order properties are invariant under trans-
lations, the K function is [24, p. 45],

K(r) = d µL (B1(0))

∫ r

0

g(z) zd−1dz. (4)

In addition, a spatio-temporal point process
is second-order intensity reweighted stationary and
isotropic if its intensity function is bounded away from
zero, and its g function is solely determined by (u, v),
where u = ‖si−sj‖ and v = |ti− tj |, with si, sj ∈ R2,
ti, tj ∈ R+, [14, p. 3].

Let Y be a second-order intensity reweighted sta-
tionary and isotropic spatio-temporal point process
with intensity λ; then, from 4, its STIK function is,
[14, p. 6], [24, p. 45],

KST (u, v) = 2π

∫ v

0

∫ u

0

g(w, z) w dw dz,

where g(u, v) = λ2(u,v)
λ(si,ti) λ(sj ,tj)

is the spatio-temporal
pair correlation function g of Y .

For any inhomogeneous spatio-temporal Poisson
process with intensity bounded away from zero,

KST (u, v) = πu2v.

Figures 13 and 14 show the estimated STIK func-
tion in contour and perspective plots, respectively.

The values K̂ST (u, v) − πu2v were plotted in or-
der to use them as a measure of spatiotemporal ag-
gregation or regularity. According to [24, p. 45],
K̂ST (u, v)− πu2v < 0 indicates regularity.
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Figure 13: Estimated STIK function contour plot.
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Figure 14: Estimated STIK function perspective plot.

Figures 15 and 16 illustrate estimated STPC func-
tion in contour and perspective plots, respectively.

For a spatio-temporal Poisson point process,
g(u, v) = 1. This reference can be used to determine
how much more or less likely it is that a pair of events
will occur at specific locations than in a Poisson pro-
cess of equal intensity [14, p. 3].
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Figure 15: Estimated STPC function contour plot.
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Figure 16: Estimated STPC function perspective plot.

Surface behavior is regular; that is, there is yearly
seasonality at distances less than 10 km, implying
spatio-temporal regularity.

5 Conclusions and perspectives
The spatio-temporal point pattern of Mexico State
wildfires from 2010 to 2018 tends to cluster spatially,
as shown by Figures 8, 9, 10, and 11.

While the temporal behavior is stationary, as il-
lustrated in Figure 12 and Table 1, there is a yearly
wildfire season during the first semester of each year.

Finally, as shown in Figures 13, 14, 15, and 16, we
demonstrate that the spatio-temporal behavior is reg-
ular. This means that wildfires tend to occur in the
same season and in the same areas each year. This
regular spatio-temporal behavior suggests that the un-
derlying point process is predictable in some ways.

This research could be expanded by looking into
models such as spatio-temporal log-Gaussian Cox pro-
cesses [25], which can be used to make spatio-temporal
predictions.
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Appendix

This analysis was performed using the statistical pro-
gramming language R [26]. The developed code is
available in the repository:

https://github.com/LuisMunive/Spatio-tem
poral-point-process-analysis-of-Mexico-State
-wildfires.
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