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Abstract. In this contribution, a new form of semianalytical results related to inertial objects 

that are traversing homogeneous infinite structures, introduced in previous author’s work, is 

used to analyze one-, two- and three-layer models of the railway track. The aim of these 

analyses is determination of the critical velocity of a moving force and of the onset of instability 

of moving masses or oscillators. As one of the most important conclusions, it will be shown that 

in the case of two moving proximate masses, damping can act in the opposite direction than 

expected and owing to the dynamic interaction, the onset of instability can be shifted deeply 

into the subcritical velocity range. 
 

 

1 INTRODUCTION 

The increase in the circulation speed of railway vehicles and capacity of the railway network, 

led to an increase in dynamic loads on the railway and the consequent acceleration of the 

degradation rate. Numerical models of the railway track are fundamental tools for the study of 

their dynamic behaviour. The use of three-dimensional finite element models is common 

practice, but reduced models are still relevant, due to simplicity of implementation, results 

interpretation, and low computational cost. According to classification from [1], these models 

can be named as one-, two- or three-layer models. Extensions to even more layers are also 

possible. This paper focuses on comparison between these models. It should be noted that the 

one-layer model is in fact a classic Winkler-Pasternak beam. The comparison will focus on the 

critical velocity and instability of moving mass or masses. Extensions to moving oscillators is 

straightforward. 

The moving load problems are fundamental problems in structural dynamics. But problems 

with moving forces should be distinguished from moving masses or oscillators, because there 

is a fundamental difference in solution methods and undesirable effects that can appear if 

inertial effects are considered in the moving load or not. With respect to this, the term 

commonly used as “moving loads” is ambiguous. Under the assumption of linear homogeneous 
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infinite structure, the fundamental differences between moving forces and moving inertial 

objects are the following: (i) For moving forces the initial instant is not essential because the 

steady-state regime is readily achieved; therefore, solution methods can neglect the transient 

vibrations. In addition, superposition is possible, and thus the problem can be solved for one 

acting force and then superpose the results to get the response for a set of forces. (ii) For moving 

inertial objects, the initial instant is essential, because without solving for transient vibrations 

the instability issues would remain completely hidden. Superposition of results is not possible 

unless the moving objects are quite apart. For proximate objects, the dynamic interaction is of 

utmost importance because it can significantly affect the onset of instability. 

Published works on instability issues are generally dedicated to infinite structures. In [2-3] 

conditions for instability are determined by D-composition method but full deflection shapes 

of the beam are not presented. It is assumed that the mass is in permanent contact with the beam. 

In [4-5] non-linear contact spring is introduced. Deflection shapes are determined numerically, 

and instability is again analyzed by the D-composition method.  

Regarding a sequence of moving masses, double Fourier transform in which the possibility 

of instability is hidden was implemented in [6]. Sequence of moving oscillators on infinite beam 

has been dealt with in [7] using Green’s function method and D-composition method to 

determine the conditions for instability. D-composition method is also used in recent work [8]. 

Whereas in [7] a contact spring was used, in [8] it was again assumed that the moving mass is 

in permanent contact with the beam.  

The problem of dynamic interaction between proximate moving masses requires further 

attention from an analytical perspective. It is essential to establish the conditions under which 

superposition is possible and whether the dynamic interaction leads to instability at lower 

velocity than expected. This can be achieved by exploiting the new form of result presentation 

published by the author [9-11]. In these approaches the notion of the critical velocity is vital 

[12-13]. Summary of semianalytical approaches related to such studies can be consulted in [14]. 

The solution presented in this paper is conceptually different from that in [7-8] because the 

full vibration shapes are determined semianalytically and not numerically, and the instability is 

identified directly from the so-called mass-induced frequency. This term must be distinguished 

from the natural frequencies of the system because the mass-induced frequency, or simply 

induced frequency, is induced by the mass movement, and is therefore dependent on its 

velocity. The final vibrations are presented using dimensionless parameters covering wide 

range of realistic scenarios. The safe distance between proximate masses, for which results 

superposition is possible, can be easily established, as well as the so-called critical distance 

between masses as the distance for which the lowest value of the imaginary part of an induced 

frequency is reached. One of the most important conclusions is that the external viscous 

damping can act oppositely than expected and together with the dynamic interaction shift the 

onset of instability deeply into the subcritical velocity range.  

In [9], the new presentation of the semianalytical solution was derived under the assumption 

of homogeneous initial conditions. In [10], the solution was extended to non-homogeneous 

initial conditions, and in [11], further details on the method and analysis of moving one- or two-

mass oscillators were presented. These works used Winkler-Pasternak beam and only one 

moving object: mass or oscillator. Extensions to proximate moving masses is included in [15-

16] for Winkler-Pasternak beam and two-layer model of the railway track, respectively. 

Extension to plane foundation model used in [12-13] was conducted in [17]. 
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In this paper, the main conclusions about proximate moving masses are summarized. In 

Section 2, the problem to be solved is specified. In Section 3, solution of the problem is derived 

using integral transforms and methods of contour integration. In Section 4, some results are 

given, and the models are compared from several points of view. Finally, in Section 5 some 

conclusions from the studies presented are drawn. 

 

2 PROBLEM STATEMENT 

Layered models of the railway track are widely used due to their simplicity and 

computational efficiency. In these models, the rail, in form of a beam, is supported by linear 

spring-damper components and discrete masses (Fig. 1).  

 

a) 
 

b) 

 

c) 

 
Figure 1: Layered models of the railway track subjected to an axial force and traversing by two proximate 

masses acted on by vertical forces: a) one-layer; b) two-layer; c) three-layer model. 
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Realistic models with discrete supports can be replaced by equivalent models with 

continuous supports because differences in behavior would be noticeable only under high 

frequencies, particularly around the pinned-to-pinned value. As already mentioned, one-layer 

model reduces to the classical Winkler-Pasternak beam, but it can also have rigidly connected 

sleepers. 

Layered models subjected to a motion of two constant masses are depicted in Fig. 1, where: 

EI bending stiffness of the beam 

m mass per unit length of the beam 

N axial force acting on the beam axis, considered positive when inducing compression 

kp stiffness of the rail pads 

kb stiffness of the ballast layer 

kf  stiffness of the foundation (Winkler’s modulus in a one-layer model) 

ks shear stiffness (Pasternak’s modulus in a one-layer model) 

cp viscous damping coefficient of the rail pad 

cb viscous damping coefficient of the ballast layer 

cf  viscous damping coefficient of the foundation 

ms half sleeper mass 

mb ballast mass 

Pj moving force (j=1,2) 

Mj moving mass (j=1,2) 

d distance between forces/masses 

v velocity 

Assumptions and simplifications for the analysis are very similar for different models and 

can be consulted in previous works, [9-11,15-17].  

The equations of motion for the one-layer model are  

( ) ( ), , , ,
,

xxxx s xx tt f t f
EIw N k w mw c w k w p x t+ − + + + =  (1) 

for the two-layer model one more equation must be added 

( ) ( ) ( ), , , , , ,xxxx xx tt p t s t p sEIw Nw mw c w u k w u p x t+ + + − + − =  (2) 

( ) ( ), , , , , 0s tt p t s t p s f s s s xx f s tm u c w u k w u k u k u c u− − − − + − + =  (3) 

and for the three-layer model two more equations are needed, but the first equation is the 

same as before, meaning it is equivalent to Eq. (2) 

( ) ( ) ( ) ( ), , , , , 0s s tt p t s t p s b s b b s t b tm u c w u k w u k u u c u u− − − − + − + − =  (4) 

( ) ( ), , , , , 0b b tt b s b b s t b t f b f b t s b xxm u k u u c u u k u c u k u− − − − + + − =  (5) 

The loading terms is defined as 

( ) ( ) ( )( ) ( )

( ) ( )( ) ( )

1 1

1 1

2 2

2 2

i 3 /2

1 01,

i 3 /2

2 02,

, e

e

f f

f f

t

C A tt

t

C A tt

p x t P P M w t x vt

P P M w t x vt d

  

  





+ +

+ +

= + − −

+ + − − −

 

(6) 
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or equivalently as 

( ) ( ) ( )( ) ( )

( ) ( )( ) ( )

1 1 1 1

2 2 2 2

1 01,

2 02,

, sin

sin

C A f f tt

C A f f tt

p x t P P t M w t x vt

P P t M w t x vt d

  

  

= + + − −

+ + + − − −
 

(7) 

where: 

PCj moving constant force (j=1,2) 

PAj amplitude of moving harmonic force (j=1,2) 

ωf1 external frequency of moving harmonic force (j=1,2) 

φfj phase angle of external moving harmonic force (j=1,2) 

and the unknown displacement fields are: ( ),w x t , ( ),su x t  and ( ),bu x t , at the beam, sleeper 

and ballast level, respectively. x is the spatial coordinate and t is the time. It is of note that in 

Eqs. (1-5) all parameters are already considered in its distributed form. Eq. (7) is suitable for 

analysis of an equivalent finite beam, which is important for validation, while Eq. (6) is more 

adequate for analysis of infinite beams. 

 

3 PROBLEM SOLUTION 

Steps to be followed in the solution method are as follows. At first, masses displacements 

must be expressed using the beam displacement field, and thus, the chain rule has to be applied 

on the second derivative with respect to the time. Then, fixed coordinates are switched to 

moving ones; it was chosen to associate the origin of the moving spatial coordinate with the 

rear mass. After that, dimensionless parameters can be introduced. The aim is to keep as much 

as possible similarity between the models.  

Following the solution method from previous works, the Laplace transform is applied first 

to catch correctly the initial instant necessary for transient vibrations. Then the Fourier 

transform is applied, and the problem is solved in the transformed space analytically. The 

inverse Fourier transform is still fully analytical, but the inverse Laplace one must be helped by 

the methods of contour integration which require numerical determination of the poles. Solution 

is then expressed as a sum of residues. Unfortunately, there are some discontinuities in the 

function to be integrated which has to be eliminated by branch cuts and the integration along 

them is numerical. It has been demonstrated in previous works that this contribution, named as 

the truly transient part is in most cases insignificant. The other part of the transient solution is 

dominant, it corresponds to residues of finite number of poles and is described by harmonic 

function. This part is named as the unsteady harmonic part. Then there is obviously the steady-

state part of the solution. The steady-state part with the unsteady harmonic part is named as the 

harmonic solution. It thus holds for all models: 

( ) ( )( ) ( )i, , i , e ,q

tr
w res q W q w    = +  (8) 

where w  is the dimensionless beam displacement and W  is its Fourier image. q is the 

frequency and   and   are dimensionless moving spatial coordinate and time. The sum of 

residues defines the harmonic part (steady as well as unsteady) and trw  is the truly transient 

part. 
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After expressing the residues, it can be confirmed that there is no interaction term in the 

steady-state part of the solution, only in the harmonic unsteady part. The interaction terms are 

then responsible for differences in the onset of instability between one and more moving 

masses. Crucial function in all cases is a function K, which is proportional to the equivalent 

flexibility of the models. 

( )
( )

ie d
,

,

p p
K q

D p q






−

=   
(9) 

The difference between the models is then expressed by increasing complexity of ( ),D p q , 

where p is the Fourier counterpart of  . 

Deep analysis of function K is important for at least two reasons. First of all, the 

characteristic equation for all models, given by 

( )( ) ( ) ( )
2

2 2 4
det 2 0, 4 , ,M Mq K q q K d q K d q  = − − −  

(10) 

contains the K-function and serves for the determination of poles (so called induced 

frequencies), identifying the harmonic unsteady part of the solution. Evolution of these 

frequencies as a function of velocity is named as frequency lines. Secondly, K-function 

discontinuity defines the so-called discontinuity lines in complex q-plane, where the frequency 

lines are cut.  

All residues can be treated semianalytically, in closed forms; integrals are evaluated exactly 

using the methods of contour integration and analytical expressions for single and double pole 

residues. The main effort has to be spent on the determination of the induced frequencies.  

 

4 RESULTS AND DISCUSSION 

By analysing several sets of input data, [19], possible range of dimensional parameters can 

be identified. Within these ranges, there are significant differences between the models. These 

differences are reflected in the critical velocity, but also in the onset of instability for one or 

two moving masses.  

Generally, there are several resonant velocities that induce infinite displacements in the 

steady-state regime. The lowest value corresponds to the critical velocity. While for the one- 

and two- layer models the resonant velocities are well-defined by a double real pole and their 

number is 1 or 3, respectively, in the three-layer model their number depends on parameter 

values and can be 1, 3 or 5. If one compares the resonant values with the analysis of equivalent 

long finite beam, [18], it can be concluded that even positions of resonant velocities are weakly 

marked in parametric analysis and do not have the typical properties (there is not the typical 

jump to zero displacement at the force position), because they correspond to a position of a 

local maximum in a mode number and not to a minimum, as usual. The problem is causing the 

three-layer model, because in the absence of some values analytically well-defined, there are 

pseudo-critical velocities [13], but only some of them lead to excessive displacement increase 

and only some of them have a typical relation to the onset of instability of one moving mass. In 

Fig. 2, this is exemplified for the two-layer model and in Fig. 3 for the three-layer one. 

In Fig. 2, a case of the two-layer model is shown. As already written, in such a case, all three 
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resonant values are well-defined. The odd values clearly mark the typical jump to zero 

displacement in the force position. The even value is hardly seen in this graph, even if the step 

of 0.001 in   was used.   is the velocity ratio, s  and 
p  are the mass and stiffness ratios 

with respect to the sleeper and rail pad, respectively. “max”, “min” and “force” in the legend 

relate to the maximum and minimum displacement value of the steady-state regime along the 

beam, and displacement value at the force position, respectively. 

 

 
 
Figure 2: Critical velocity and the other two resonant velocities in two-layer model and 9s =  and 500p = . 

 

Figure 3: Pseudo-critical and other resonant values in three-layer model for: a) 6s = , 5b = , 0.03p =  and 

3b = ; b) 3s = , 10b = , 0.03p =  and 0.1p = . 

In Fig.3, two cases with pseudocritical velocity in the three-layer model are shown. The 

situation on the left has the pseudo-critical value well marked, nevertheless, displacement 

values do not reach infinity. Also, the typical jump to zero value is missing. The  -position 

can only be identified by a parametric analysis. Nevertheless, this value is so strong that for one 

moving mass works in the same way as the critical velocity. On the other hand, the situation on 

the right has the pseudo-critical value only with a small displacement increase and as such, does 

w w

 

w w
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not have the same properties as the previous one. Next values still visible in the graph have the 

typical properties, meaning the first and the third positions exhibit the typical jump to zero 

value. Both cases in Fig. 3 have only three resonant values well-defined by double real pole. 

Regarding the additional parameters used, b  and b  are the mass and stiffness ratios with 

respect to the ballast, respectively. 

Regarding the onset of instability, there are also significant differences, not only between 

the models but also between the cases with one or more moving masses. For the one-layer 

model, instability of one moving mass has regular behaviour and occurs always in the 

supercritical velocity range when damping is present and at the critical velocity in case of no 

damping. Two moving proximate masses already introduce severe alterations, because in 

damped case the dynamic interaction can shift the onset of instability deeply into the subcritical 

velocity range. The other models introduce further irregularities, even for one moving mass.  

The onset of instability can be tracked as a function of the moving mass ratio, M . Some 

cases of one- and two-layer models are selected, and their specification is given in Table 1. For 

the sake of simplicity, masses are considered of the same value. 
p  and 

f  correspond to the 

representative damping ratio of the rail pad and of the foundation, respectively. In the legend 

of the following graphs, d  stands for the dimensionless distance between two moving masses.  

 

Table 1: Cases definition, Case 1 and 2 are for one-layer model and 3 and 4 for two-layer one. 

 p  f  
cr  p  

s  d  

Case 1 --- 0.05 1 --- --- 1:0.25:2.25 

Case 2 --- 0.3 1 --- --- 1:0.25:2.25 

Case 3 0.05 0.05 0.707 300 1 1:0.25:2.25 

Case 4 0.05 0.3 0.707 300 1 1:0.25:2.25 

 

In Fig. 4, the onset lines for the cases from Table 1 are plotted. It can be seen that there are 

several onset lines covering the whole range of velocities, contrary to one moving mass case, 

where there is only one onset line in supercritical range of velocities. There are some general 

tendencies, but exact determination is essential to avoid instability in subcritical velocity range.  
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b) 

c) 

d) 

 

Figure 4: Onset lines: a) Case 1; b) Case 2; c) Case 3; d) Case 4. 
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visualized in Fig. 4, because the range was limited by M =200 and 300, respectively, which is 

already a very high, mostly academic value. 

 

Table 2: Asymptotic velocities of the onset lines. 

 max   d  1,as  2,as  3,as  4,as  

Case 1 1.5 1 0.876 --- --- --- 

  1.25 0.743 --- --- --- 

  1.5 0.618 --- --- --- 

  1.75 0.497 --- --- --- 

  2 0.365 0.834 0.978 1.472 

  2.25 0.186 0.414 1.016 1.326 

Case 2 1.5 1 0.796 --- --- --- 

  1.25 0.664 --- --- --- 

  1.5 0.535 --- --- --- 

  1.75 0.405 --- --- --- 

  2 0.263 1.065 1.068 --- 

  2.25 0.093 0.998 1.050 1.414 

Case 3 1.1 1 0.622 --- --- --- 

  1.25 0.528 --- --- --- 

  1.5 0.440 --- --- --- 

  1.75 0.354 --- --- --- 

  2 0.261 0.578 0.704 1.031 

  2.25 0.136 0.287 0.716 0.929 

Case 4 1.1 1 0.583 --- --- --- 

  1.25 0.493 --- --- --- 

  1.5 0.404 --- --- --- 

  1.75 0.313 --- --- --- 

  2 0.213 1.073 --- --- 

  2.25 0.084 0.717 0.739 0.978 

 

For a three-layer model, one would expect something similar, but this is not true. When there 

are pseudo-critical velocities, then they can mark the limit for the onset of instability of one 

moving mass or not, and when this is not true, then the limit is attributed to the critical velocity. 

It is not clear how these two cases should be distinguished a priori, without performing the 

parametric analyses. 

 

5 CONCLUSIONS 

In this paper, a detailed analysis of layered models of the railway track was presented. The 

analysis addressed several issues, but the main emphasis was on the critical velocity and the 

onset of instability of one mass, or two moving proximate masses. It has been shown that 

external damping, coupled with the dynamic interaction between the moving masses can shift 

the onset of instability into a subcritical range of velocities, i.e., instability can occur at lower 

velocity than expected, which is a real danger and should be taken into account when designing 
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the railway. It should be noted that homogeneous initial conditions have been implemented, but 

conclusions regarding instability remain unchanged, because as shown in [10] inhomogeneous 

initial conditions do not change the induced frequencies. 

The onset of instability has been explained in detail and several illustrative examples have 

been shown. It can be concluded that for one- and two-layer model, one moving mass exhibits 

relatively regular behaviour, because the onset of instability always occurs in the supercritical 

range of velocities and external damping helps to shift such an onset to higher velocity values. 

This is, however, not the case of two moving proximate masses. Superposition of results is not 

possible in such a case, and if used, can lead to completely wrong results and conclusions. For 

several cases, the so-called onset lines were derived, showing the irregularity of the dynamic 

interaction. It has been demonstrated that instability can occur at very low velocities, therefore 

damping actually worsens the situation, not improves it, as is generally acknowledged. External 

damping causes high irregularity in the onset lines, which may have several branches. There 

are cases indicating closed intervals of velocities where instability occurs. Thus, instability may 

occur at a certain velocity, but for higher velocities, stability is restored and after that lost again. 

In the undamped case, the onset of instability always matches the critical velocity for one or 

more moving masses. 

For a three-layer model none of these conclusions are valid. This is mainly due to the fact 

that the resonant velocities are well-defined with all values only in some cases. There are cases 

with only one or three values, where the missing values are compensated by pseudo-critical 

velocities. These values can play the role of the critical velocity or not and such distinction is 

difficult to make a priori. 
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