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Vision-based monitoring systems using visible spectrum (regular) video cameras can complement or substitute conventional
sensors and provide rich positional and classification data. Although new camera technologies, including thermal video sensors,
may improve the performance of digital video-based sensors, their performance under various conditions has rarely been evaluated
at multimodal facilities.The purpose of this research is to integrate existing computer visionmethods for automated data collection
and evaluate the detection, classification, and speedmeasurement performance of thermal video sensors under varying lighting and
temperature conditions. Thermal and regular video data was collected simultaneously under different conditions across multiple
sites. Although the regular video sensor narrowly outperformed the thermal sensor during daytime, the performance of the thermal
sensor is significantly better for low visibility and shadow conditions, particularly for pedestrians and cyclists. Retraining the
algorithm on thermal data yielded an improvement in the global accuracy of 48%.Thermal speed measurements were consistently
more accurate than for the regular video at daytime and nighttime. Thermal video is insensitive to lighting interference and
pavement temperature, solves issues associated with visible light cameras for traffic data collection, and offers other benefits such
as privacy, insensitivity to glare, storage space, and lower processing requirements.

1. Introduction

In transportation management, planning, and road safety,
collecting data for both motorized and nonmotorized traffic
is necessary [1]. Collecting vehicle data was traditionally
limited to manual data collection or inductive loops at fixed
locations [2], to the point that loops became standard inmany
jurisdictions and are still widely used today [3]. However,
traditional loops do not provide any spatial coverage and
do not capture all road user types (loop detectors exist for
bicycles but do not count vehicles or pedestrians). Trajectory
data for all users (pedestrians, bicycles, and vehicles) is
essential to understandmicroscopic behaviour and surrogate
safety analysis in critical road facilities such as intersections

with high nonmotorized traffic volumes [4]. These factors
have spurred the development of nonintrusive traffic sensors
of which video-based devices are among the most promising
[1]. Vision-based monitoring systems are widely used in ITS
applications [5], can complement or substitute conventional
sensors [6], enable multiple lane detection [2], and provide
rich positional and classification data [7] beyond the capabil-
ities of traditional devices [8].

These benefits notwithstanding, there are several critical
limitations associated with using regular video cameras, also
referred to as visible spectrum video cameras, for traffic
data collection. As these cameras rely on the visible light
spectrum, the accuracy of detection, tracking, and classifi-
cation is “sensitive to environmental factors such as lighting,

Hindawi
Journal of Advanced Transportation
Volume 2017, Article ID 5142732, 15 pages
https://doi.org/10.1155/2017/5142732

https://doi.org/10.1155/2017/5142732


2 Journal of Advanced Transportation

shadow, and weather conditions” [5, 9]. Perhaps the greatest
limitation of regular cameras is varied performance in low
light conditions anddarkness [10]. Considering detection and
classification at nighttime, “the light sensitivity and contrast
of the camera. . .are generally too weak” [1] to compensate
for “the interference of illumination and blurriness” [11].This
is particularly problematic because the increased injury risk
associatedwith nighttime conditions leads tomore, andmore
severe, road traffic crashes [12]. During daytime, shadows and
glare degrade the accuracy of extracted data [5, 8].This is why
typical computer vision approaches developed for daytime
surveillance may not work under all conditions [1], and the
advancement of vision-based traffic sensors is a pressing
matter [8].

Recently, new camera (sensor) technologies, including
thermal or infrared sensors for traffic surveillance, have
become available. Although the present cost of these cameras
has prevented their widespread use in traffic analysis, cost will
continue to decrease as the technology advances. Recogniz-
ing that it “is difficult to cope with all kinds of situations with
a single approach” [5], the performance of thermal cameras
must be compared to regular cameras across varied lighting
and visibility conditions to satisfy the desire for an “around-
the-clock” video-based traffic sensor [8]. In recent years, var-
ious computer vision techniques for tracking, classification,
and surrogate safety analysis have been developed [7, 13],
though nearly all these methods were developed and tested
using regular video cameras. It is unclear if these methods
can be directly applied to thermal video and whether thermal
cameras offer a performance advantage compared to regular
cameras across lighting and temperature conditions.

The purpose of this study is (i) to integrate existing track-
ing and classification computer visionmethods for automated
thermal video data collection under low visibility conditions,
nighttime and shadows, and (ii) to evaluate the perfor-
mance of thermal video sensors under varying lighting and
temperature conditions compared to visible light cameras.
Performance is evaluated with respect to road user detection,
classification, and vehicle speed measurements. Lighting and
temperature conditionswhere each camera outperformed the
other are identified to provide practical recommendations for
the implementation of video-based sensors. An early version
of this paper has been presented previously [14, 15].

2. Literature Review

The difficulties associated with collecting traffic data using
regular cameras, and attempts to rectify these issues, have
beenwell documented in the existing literature, thoughmany
existing studies do not appropriately report performance, be
it for detection, classification, or tracking. Yoneyama et al. [5]
demonstrated that nighttime detection misses are up to 50%
and false alarms are 3.4% of the ground truth total, much
higher than for daytime detection. Robert [1] showed that
vehicle counts were accurate in various lighting, weather, and
traffic conditions when using a headlight detection method,
although sample sizes were generally 100 vehicles or less.
Methods that detect headlights or taillights are typically
only applicable at night, and the headlight detection method

may increase the difficulty of vehicle classification [8]. Thi
et al. [11] proposed a methodology using eigenspaces and
machine learning for classification from regular video at
nighttime. The authors found a successful classification rate
of 94% compared to 70% or lower for other classification
schemes. Coifman et al. [17] suggested that “to be an
effective traffic surveillance tool. . .a video image processing
system. . .should. . .function under a wide variety of lighting
conditions.” The authors proposed feature-based tracking as
an improvement over those methods dependent on identify-
ing an entire vehicle, because even under different lighting
or visibility conditions “the most salient features at the
given moment are tracked” [17].The proposed algorithmwas
evaluated on highways where it was generally successful at
tracking vehicles in situations including congestion, shadows,
and varying lighting conditions.

With the limited success of regular cameras in adverse
conditions, many researchers have considered alternative
technologies for traffic data collection. Balsys et al. [18]
identified that weather interference could be avoided using
infrared (thermal) cameras, demonstrating that the cameras
eliminated issues associated with headlight glare at night and
cast shadows during the day. Thermal video demonstrated a
15% improvement in detection rate over visible light cameras.
Sangnoree and Chamnongthai [10] presented a method for
detecting, classifying, and measuring speeds of vehicles at
night using thermal videos. Although classification and speed
estimation were successful, detection worked best when only
a single vehicle was present in the video frame (84% success)
but suffered when two ormore vehicles were present (41–76%
success). Iwasaki [19] developed a vision-based monitoring
system that works robustly around the clock using infrared
thermography. Iwasaki et al. [8] achieved 96% successful
detection of vehicles using thermal video in poor visibility
conditions. MacCarley et al. [20] compared several infrared
and visible light cameras and found that many infrared
cameras were “virtually immune to headlight or streetlight
backscatter” and therefore performed best in darkness, fog,
or the combination of darkness and fog. However, without
fog or with light fog, the visible light camera outperformed
infrared cameras, and “there appears to be a limited number
of situations for which non-visible spectrum imaging appears
to be justified,” including dense fog or scenes with glare or
shadows [20].

Thermal video has been used successfully for night-
time pedestrian detection, an area of particular importance
because pedestrians may be less visible to drivers at night and
are therefore at a greater risk of collision [12]. Xu et al. [21]
used a support vector machine (SVM) to detect and classify
pedestrians using a thermal camera mounted to a moving
vehicle. Although detection was successful in many cases,
occlusion of pedestrians in heavy traffic was a significant
limitation. Krotosky and Trivedi [22] analyzed multiple
camera technologies. Recognizing that regular and thermal
cameras provide “disparate, yet complementary information
about a scene,” the authors recommend combining visible
light and infrared technologies [22].

Despite this existing work, several shortcomings exist.
Although several studies have addressed detecting vehicles
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or pedestrians, there has been limited work on detecting and
classifying multiple road user types (including bicycles) from
thermal video in mixed-traffic environments such as urban
intersections. No studies have attempted to identify the effect
of pavement temperature on the quality of thermal video.
Although thermal video sensors are promising, their perfor-
mance must be comprehensively evaluated and the adapta-
tion of existing computer vision software must be studied.
Most studies do not appropriately report performance and
cannot be reproduced since the software code and/or datasets
are not available. Detection rate alone is too limited to
represent performance. The whole confusion matrix should
be presented and receiver operating characteristic (ROC)
curves should be used to evaluate detectors or classifiers as
parameters that are adjusted. Separate data sets for calibration
and performance measurements should be required. When
available, researchers should use standard metrics such as
theMeasure of Tracking Accuracy (MOT) [23].This research
aims to address these gaps and integrate thermal sensors into
existing data collection and safety tools, in particular under
conditions where regular video presents limitations.

3. Methodology

The methodology considers three steps: (i) technology inte-
gration and data collection, (ii) implementation of detection
and classification algorithms, and (iii) vehicle speed valida-
tion. The three steps are detailed below.

3.1. Technology Integration and Data Collection. The two
technologies involved in this study are thermal video sensors
with a resolution of 368 × 296 pixels and visible light cameras
with a resolution of 1920 × 1080 pixels. The thermal camera
system consists of a thermal sensor, a signal converter, and
a power supply unit. Thermal video data is stored on a
simple chip microcomputer (SCM). The thermal sensor, the
ThermiCam by FLIR, is connected to an X-stream edge card
that reads the thermal signal and converts and outputs the
signal to a video file. The video file from the X-stream edge
card is transferred to the SCM using an Ethernet connection
where it is saved using the VLC software [24]. The camera
and X-stream edge card are powered using a battery with an
output of 12–24V. The SCM, the battery, and the X-stream
edge card are placed in a small enclosure which can be easily
installed for data collection. Figure 1 presents the components
of the thermal camera system and a sample frame from the
thermal camera recorded at night in Figure 1(d).

Three primary sources of data are required: thermal video
data, visible spectrum video data, and environmental and
pavement temperature data. The regular visible spectrum
camera and thermal camera systems are installed simulta-
neously using a telescoping-fibreglass mast to ensure nearly
identical fields of view. The regular camera system, intro-
duced previously [25], uses an inexpensive and commercially
available video camera which stores video and is powered
internally.

Since the road pavement is the primary background in the
video scenes, pavement temperature is regarded as the main
temperature variable affecting thermal video performance.

Pavement temperature data were collected using the FLIR
ONE thermal camera [16], which attaches to an iPhone to
capture thermal video and temperatures using the FLIRONE
iPhone application. The camera was held close to the road
surface to get an accurate temperature as suggested in the user
manual [26]. Based on field-testing, the temperature meas-
ured by the FLIR ONE camera was within 2∘C of the actual
pavement temperature. Figure 2 shows the camera system,
its user interface, and field measurement of the pavement
temperature data.

3.2. Implementation of Detection and Classification Algo-
rithms. As thermal videos detect thermal energy, they are
expected to solve the issues associated with visible light
cameras under different lighting conditions.Though existing
detection and classification algorithms are used for auto-
mated data collection, they must be retrained and evaluated
under different lighting and temperature conditions. Addi-
tional details of the methods for detection, tracking, and
classification are presented in the next subsections.

3.2.1. Detection and Tracking Algorithm. The videos were
processed using the tracker available inTraffic Intelligence, an
open-source computer vision software project [27]. Individ-
ual pixels are first detected and tracked from frame to frame
and recorded as feature trajectories using the Kanade-Lucas-
Tomasi feature tracking algorithm [28]. Feature trajectories
are then grouped based on consistent common motion to
identify unique road users.The techniques used in the tracker
are further explained by Shi and Tomasi [28] and Saunier and
Sayed [27]. Algorithm parameters were calibrated through
trial and error, in order to minimize both false alarms and
misses. False alarms and misses, respectively, result mostly
from oversegmentation (one user being tracked as multiple
users) and overgrouping (multiple users being tracked as one
user).

3.2.2. Classification Algorithm. Road user classification was
performed using the method developed by Zangenehpour
et al. [7]. Classifier V classifies detected road users as vehi-
cles, pedestrians, or cyclists based on the combination of
appearance, aggregate speed, speed frequency distribution,
and location in the scene. An SVM is used to learn the
appearance of each road user type as described by the well-
knownHistogramOriented Gradients (HOG).The SVMwas
trained based on a database containing 1500 regular images of
each road user type.The overall accuracy of this classification
method at intersections with high volumes and mixed road
user traffic is approximately 93%, an improvement over
simpler algorithms using only one or two classification cues
[7]. The classifiers are available in Traffic Intelligence [13].
For more details regarding the original classificationmethod,
readers are referred to [7].

3.2.3. Algorithm Retraining. Considering that the classifier
uses the appearance of the road user as a parameter, and the
fact that road users in thermal videos appear quite differently
than they do in visible light videos, the SVM classifier for
appearance classification, as part of the Classifier V [7] that
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TI X-stream

ThermiCam, FLIR

SCM with screen

EthernetTCP/IP

Battery: output, 12∼36V

(a) System components (b) System enclosure (c) Installation

(d) Sample video frame

Figure 1: Thermal camera system (note that, in the field, the battery, SCM, and the TI X-stream are enclosed in a small waterproof case).

(a) FLIR ONE camera [16] (b) App user interface (c) Field measurement

Figure 2: Pavement temperature measuring sensor—FLIR ONE thermal camera.

is used in this study, needs to be retrained on a dataset of
thermal images for all road user types. Although the shape
and proportions of the road users should be roughly equi-
valent, it is unclear how their appearance described by HOG
varies between the visible and thermal images. Furthermore,
the reduced resolution of the thermal video may impact
the classification performance as less information and fewer
details are available. The accuracy of the classification algo-
rithm must therefore be explored further.

The retraining work mainly consists of three steps: (1)
extracting the square subimages of all moving objects as
tracked by the algorithm in the sample videos; (2) manually
labeling images of the different road user types and preparing
the database for training; (3) using the database to train

the SVM classifier. The steps of the retraining work for
the SVM classifier are presented in Figure 3. For retraining
purpose, this study used a database containing 1500 thermal
images from several videos (separate from the ones used for
performance evaluation) for each type of road user to train
the SVM. Figure 4 shows the samples of the images of the
road users in the database which covers different lighting and
temperature conditions. Results using Classifier V with the
SVM trained, respectively, on the regular and the thermal
datasets are compared in the experimental results.

3.2.4. Detection and Classification Performance Metrics. The
detection and classification performance are measured using
different metrics and by extracting video data from frames
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Manual 
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Subimages of all 
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Input: video and
trajectory data

Output: SVM
model trained on
thermal images

Figure 3: Steps involved in retraining the classifier [7].

every 10 seconds.This corresponds to 150 frames considering
a frame rate of 15 frames per second (fps). Data (detection,
user class, and speed) is then extracted by observing the
results of the tracking and classification algorithms and
compared visually with the ground truth. The interval of 10 s
was chosen to be large enough in order to avoid evaluating
the same road user twice. Most road users are tracked for less
than 10 s continuously as the tracking algorithm tracks only
moving road users (if stopped, a road user is not tracked
anymore: tracking resumes when the road user starts moving
again): trajectories are typically less than 5 s long for vehicles
and less than 10 s for pedestrians and cyclists. Also, 10 s is
short enough to provide enough observations to evaluate the
detection and classification performance. For the extracted
frames, detection and classification errors are counted as
shown in Figure 5.

Different metrics are computed to evaluate the perfor-
mance of thermal versus regular video. For the classification
problem, the confusion matrix is used to investigate the
technology performance and derive metrics. In the general
case with𝑁 classes, the confusion matrix is an𝑁×𝑁matrix
that contains in each cell 𝑐𝑖𝑗, the number of objects of true
class 𝑖 predicted as class 𝑗.The detection and tracking step can
be also evaluated as a binary classification problem (a matrix
with 𝑁 = 2 classes, missed and detected), where the class of
objects to be detected is the positive class. The matrix in this
binary case is presented in Table 1 with the particular names
taken by the instances depending on their true and predicted
class. Misses are the false negatives and false alarms are the
false positives.

The most common metric is the global accuracy defined
as the proportion of correct predictions and is computed as

Accuracy =
∑ 𝑐𝑘𝑘
∑𝑖∑𝑗 𝑐𝑖𝑗

. (1)

The majority of existing studies have used global accuracy
to measure classification performance, for both road user
detection and classification methods. This is however insuf-
ficient to properly report the performance, both for two-
class classification, that is, detection (since false alarms are
not accounted for by a single detection rate), and for classi-
fication with three and more classes such as in multimodal
environments, for example, with pedestrians, cyclists, and
vehicles. As used widely in the field of machine learning, this
study relied on the confusion matrix to derive the following
disaggregate metrics per class:

Precision𝑘 =
𝑐𝑘𝑘
∑𝑖 𝑐𝑖𝑘
.

Recall𝑘 =
𝑐𝑘𝑘
∑𝑗 𝑐𝑘𝑗
.

(2)

In the case of a binary classification problem, precision and
recall are typically reported only for the positive class and can
bewritten in terms of true/false positives/negatives as follows:

Precision = TP
TP + FP

= 𝑐11
𝑐11 + 𝑐21

Recall = TP
TP + FN

= 𝑐11
𝑐11 + 𝑐12

(3)

from which the miss rate can be derived as miss rate = 1 −
Recall = FN/(TP + FN).

The above metrics are computed by populating the
confusionmatrix through the visual assessment of each frame
extracted every 10 s or 150 frames as shown in Figure 5.
Since pedestrians often move in groups, and detecting and
tracking individual pedestrians within groups is difficult (and
actually an open problem in all conditions in computer
vision), the unit of analysis is individual pedestrians or groups
of pedestrians. In Figure 5, the groups of pedestrians labeled c
(overgrouping) are then considered correctly detected. Miss
rate is the main metric reported for detection performance
used for all test cases in the experimental results, while
precision and recall at the individual level, overall and per
known (true) type of road user, are also reported for two test
cases for a more complete assessment.

The road user classification problem has three classes:
pedestrians, cyclists, and vehicles. Precision and recall are
reported for each class, as well as global accuracy, from the
confusion matrix accumulated over all extracted frames.

3.3. Vehicle Speed Validation. Once road users have been
detected and classified, parameters such as vehicle speed
are of interest for traffic studies. Many existing studies have
used mean relative error (MRE) to quantify the error of
video speeds extracted automatically from video. However,
a previous study by Anderson-Trocme et al. [29] showed that
it “is insufficient at capturing the true behaviour of detectors
and other measures are necessary to define device precision
and accuracy separately,” where accuracy is the systematic
error or bias and precision is the residual error. However,
because video-based sensors tend to overestimate speed, and
because this overestimation is roughly constant with respect
to speed, simple methods for calculating relative precision
error and relative accuracy error were developed.

The vehicle speed validation process begins by plotting
automatically extracted speeds against manually measured
speeds (speeds calculated based on known distances and
video frame rate) in order to observe trends across visibility
and temperature conditions. The line 𝑦 = 𝑥 represents
ideal detector performance, and data points above the line
indicate overestimation of speed, while points below the
line indicate underestimation. As the overestimation bias is
typically constant, a line with slope equal to one is fitted to
the data. The 𝑦-intercept and 𝑅-squared values of this fitted
line represent accuracy and precision, respectively. However,
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(a) Sample of vehicles (b) Sample of cyclists (c) Sample of pedestrians

Figure 4: Sample of extracted road user images used for retraining.

Frame t

Frame t + 150

Extracted frame and errors

(a)

(b) (c)

(c)

(d)

(a)

(c)

(d) Classification error

(b) Oversegmentation
(a) Miss

(c) Overgrouping

DescriptionError type
1 cyclist, 1 pedestrian

3 pedestrian groups, IDs: 360, 364, and 368
1 pedestrian classified as cyclist, ID 359

1 vehicle with 2 trajectories

Time (frames)

Extraction interval(10 secs = 150 frames)

Figure 5: Video sampling and data extraction for detection and classification performance.

converting these results to relative error values “matches
the approach utilized in existing literature, and provides an
intuitive and communicable comparison” between multiple
environments [29]. Relative precision error (RPE) is quanti-
fied similarly to mean relative error, with the subtraction of
a correction factor equal to the 𝑦-intercept of the fitted line.
To normalize the intercept value consistently with the relative
mean error, the 𝑦-intercept is evaluated at every data point
(divided by the harmonic mean of observed speed) for the
relative accuracy error (RAE). The RAE represents the over-
or underestimation bias present in the video data. The RPE
can be seen as the best possible performance that could be
expected from calibrated video data [29]. Values for relative
error, relative precision, and accuracy error are calculated as

Mean Relative Error (MRE) = 1
100
∑
𝑉𝑒 − 𝑉𝑜


𝑉𝑜

Relative Precision Error (RPE)

= 1
100
∑
(𝑉𝑒 − 𝑦 intercept) − 𝑉𝑜


𝑉𝑜

Relative Accuracy Error (RAE)

= 1
100
∑
𝑦 intercept


𝑉𝑜
,

(4)

where 𝑉𝑒 and 𝑉𝑜 stand for the automatically extracted and
manually measured speeds, respectively.

4. Data Description

To evaluate the performance of the thermal and regular cam-
eras, 14 test cases (camera installations), with approximately
one to four hours of video data for each case, were used.
The lighting test cases, presented in Table 2, include videos
during the day and at night. Daytime test cases focussed
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Table 1: Corresponding table of confusion and basic terms from confusion matrix.

Predicted class
Positive Negative

True class Positive True positives (TP) False negatives (FN) Recall = TP
TP + FN

Negative False positives (FP) True negatives (TN)
Precision = TP

TP + FP

Table 2: Summary of lighting test cases.

(a)

Lighting condition
Vehicle speed Classification

Sample Size Season Road type Video
length Season Road type

Daytime
Overcast

100 vehicles

Winter

Segment
Every 10 s
for 30
minutes

Summer Intersection
Sun, little shadow Spring Summer Intersection
Sun, slight shadows Spring N/A N/A
Sun, strong shadows Summer Summer Intersection

Nighttime
High visibility

100 vehicles Spring
Segment Every 10 s

for 30
minutes

Winter IntersectionMedium visibility Intersection
Low visibility Intersection

(b) Sample camera views under different lighting conditions

Daytime
conditions Thermal camera Regular camera Nighttime

conditions Thermal camera Regular camera

Overcast High
visibility

Sun, little
shadow

Medium
visibility

Sun, strong
shadows Low visibility

on various sun exposures and shadow conditions, while
nighttime test cases focussed on the level of visibility, with
one case in near complete darkness, one nearly completely
illuminated, and one in between. Speed performance was
evaluated on a sample size of 100 vehicles for each test case,
while classification and detection performance was evaluated
on 30 minutes of sample videos.

A similar approach was adopted for the temperature test
cases, shown in Table 3. To evaluate detection and classifi-
cation performance under different temperature conditions,
thermal video data were collected from the same site with the
same camera angle throughout a sunny summer day when
the pavement temperature rose from 20∘C in the morning to
50∘C in the afternoon. Data collected from the same site in
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Table 3: Summary of temperature test cases.

(a)

Pavement temp. Ambient temp. Sample size Season Road type
Vehicle speed
0∘C–5∘C ∼0∘C

100 vehicles

Winter Segment
20∘C–25∘C ∼20∘C Summer Segment
25∘C–30∘C ∼20∘C Summer Segment
30∘C–35∘C ∼20∘C Summer Segment
35∘C–40∘C ∼20∘C Summer Segment
40∘C–45∘C ∼20∘C Summer Intersection
Classification
0∘C–5∘C ∼0∘C

Every 10 s (150 frames) for 20 minutes

Winter

Intersection

20∘C–25∘C ∼20∘C Summer
25∘C–30∘C ∼20∘C Summer
30∘C–35∘C ∼20∘C Summer
35∘C–40∘C ∼20∘C Summer
40∘C–45∘C ∼20∘C Summer
45∘C–50∘C ∼20∘C Summer

(b) Sample camera views under different temperature

Pavement temp. Camera view Pavement temp. Camera view

0∘C–5∘C 35∘C–40∘C

20∘C–25∘C 40∘C–45∘C

25∘C–30∘C 45∘C–50∘C

30∘C–35∘C

winter when the pavement temperature was close to 0∘C was
included. As with the lighting test cases, speed performance
was evaluated on a 100-vehicle sample, and classification and
detection performance was evaluated on 20-minute video
samples. In Table 3, the thermal images change drastically
from cold to hot pavement temperature. Road users are light
on a dark background when the pavement temperature is low
and dark on a light background when pavement temperature
is high.

5. Results

5.1. Detection and Classification

5.1.1. Lighting. Results of detection and classification for the
thermal and regular video are presented in Table 4 for the
lighting test cases. The thermal camera reported a miss rate
of 5% or less for all road user types in nearly all test cases.
While the vehicle miss rate of the regular camera was also
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lower than 5% in all test cases, the rate increased significantly
for pedestrians and cyclists in all nighttime test cases, where
very few pedestrians and cyclists were detected with the
regular camera (more than 75%). Vehicles were well detected
by both technologies under all conditions, possibly because
their lit headlights and larger size provide more features for
tracking compared to pedestrians and cyclists. In conditions
without interference of darkness or shadows (test cases of
“overcast” and “sun, little shadow”), excellent performance
was obtained for the regular videos. However, daytime cases
with shadows showed a decrease in performance, as shadows
inhibit the tracking and detection of pedestrians, cyclists, and
some vehicles.Themiss rates of pedestrians and cyclists both
increased to around 15% and 10% points higher than those in
the thermal videos.

For classification performance, the measures of recall
and precision are also presented in Table 4. Higher values
of recall and precision in classifying vehicles using reg-
ular videos indicate that, in general, the performance of
classifying vehicles was improved when using the regular
camera over the thermal camera. However, from medium to
low visibility conditions, regular cameras perform poorly in
the classification of cyclists and pedestrians. For cases with
medium and low visibility specifically, the algorithm failed to
recognize pedestrians and cyclists in regular videos. In such
cases, since classification is performed only for tracked road
users, computing the precision may not be possible when
no road user of the class was detected or representative if
too few were detected. Thermal videos perform reliably in
nighttime cases, even when using the classification algorithm
trained on the regular, or visible spectrum, images of road
users. In daytime conditions, the classification of pedestrians
and cyclists is only slightly better by regular camera, as
the global accuracy values are slightly higher in regular
videos than those in thermal videos in most cases. The
classification performance per class indicates the need for
improving the classification algorithm for thermal videos
by training the algorithm on images from thermal cameras.
Nevertheless, evenwith the algorithm trained only on regular
video data, the thermal camera correctly classifies road users
more often in low visibility conditions, especially at night-
time.

A more complete detection performance evaluation, in
particular for individual pedestrians, is reported for two
extreme test cases: (i) the sunny daytime case without the
interference of shadow, which has the best lighting envi-
ronment, presented in Figure 6, and (ii) the worst lighting
condition case shown in Figure 7, which is nighttime condi-
tion with low visibility. From the results, the thermal camera
and the regular camera perform similarly well in detecting
different road users in the good lighting environment. For
low visibility condition at night, the two camera systems have
similar capability in detecting vehicles; however, the regular
camera failed to detect the cyclists and pedestrians under
such a low visibility condition (low recall) where the thermal
camera can still work efficiently—this is in accordance with
the previous analysis. With similar performance for good
lighting conditions andmuch better performance for low vis-
ibility conditions, compared to the visible spectrum camera
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Figure 6: Detection performance results—test case: daytime, sun,
little shadow.
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Figure 7: Detection performance results—test case: nighttime, low
visibility.

system, thermal cameras can be used for all weather and
lighting conditions.

5.1.2. Temperature. The classifier trained on the thermal
dataset was applied in the different temperature test cases
where the outputs of the thermal videos changed greatly
with the change of temperature. Table 5 presents the results
of detection and classification performance for the classifier
trained on the regular or thermal dataset for each test case.
Again, the thermal video provided detection rates exceeding
95% for nearly all test cases, and temperature had little impact
on detecting different road users. Even when the pavement
temperature approaches that of the road users, miss rate
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Table 5: Detection and classification performance for different pavement temperatures—thermal camera.

Pavement temp.
Number of
road users
present

Number of missed
instances/miss rate

Classifier trained on
regular data

Classifier trained on
thermal data Improvement (% points)

Precision Recall Precision Recall Precision Recall
Vehicle detection and classification

0∘C–5∘C 42 1/2.4% 56.3% 96.4% 67.4% 96.7% 11.2% 0.2%
20∘C–25∘C 58 0/0.0% 89.1% 100.0% 96.1% 100.0% 7.0% 0.0%
25∘C–30∘C 37 2/5.4% 67.6% 100.0% 83.9% 100.0% 16.2% 0.0%
30∘C–35∘C 20 0/0.0% 27.9% 100.0% 68.4% 100.0% 40.5% 0.0%
35∘C–40∘C 45 1/2.2% 35.6% 100.0% 67.5% 100.0% 31.9% 0.0%
40∘C–45∘C 31 1/3.2% 23.6% 100.0% 65.4% 100.0% 41.7% 0.0%
45∘C–50∘C 19 0/0.0% 12.1% 100.0% 47.6% 100.0% 35.5% 0.0%
Average 44.6% 99.5% 70.9% 99.5% 26.3 % 0.0%

Cyclist detection and classification
0∘C–5∘C 10 0/0.0% 69.2% 90.0% 64.3% 100.0% −4.9% 10.0%
20∘C–25∘C 33 0/0.0% 72.1% 96.9% 64.6% 96.9% −7.5% 0.0%
25∘C–30∘C 22 0/0.0% 70.0% 46.7% 70.8% 94.4% 0.8% 47.8%
30∘C–35∘C 36 0/0.0% 93.8% 51.7% 75.8% 86.2% −18.0% 34.5%
35∘C–40∘C 27 2/7.4% 88.9% 33.3% 67.9% 76.0% −21.0% 42.7%
40∘C–45∘C 40 0/0.0% 88.9% 22.9% 83.8% 86.1% −5.1% 63.3%
45∘C–50∘C 26 0/0.0% 100.0% 6.7% 85.0% 85.0% −15.0% 78.3%
Average 83.3% 49.7% 73.2% 89.2% −10.1% 39.5%

Pedestrian detection and classification
0∘C–5∘C 286 4/1.4% 99.5% 89.5% 100.0% 92.0% 0.5% 2.5%
20∘C–25∘C 71 0/0.0% 100.0% 66.0% 100.0% 66.7% 0.0% 0.7%
25∘C–30∘C 39 0/0.0% 86.4% 67.9% 100.0% 66.7% 13.6% −1.2%
30∘C–35∘C 53 3/5.7% 75.0% 42.9% 97.0% 74.4% 22.0% 31.6%
35∘C–40∘C 51 2/3.9% 62.5% 12.5% 96.7% 63.0% 34.2% 50.5%
40∘C–45∘C 44 2/4.5% 50.0% 23.3% 96.3% 70.3% 46.3% 46.9%
45∘C–50∘C 44 2/4.5% 61.1% 33.3% 100.0% 71.1% 38.9% 37.7%
Average 76.4% 47.9% 98.6% 72.0% 22.2% 24.1%

Total detection and classification
Accuracy Accuracy Accuracy

0∘C–5∘C 338 5/1.5% 90.3% 92.8% 2.6%
20∘C–25∘C 162 0/0.0% 86.3% 85.9% -0.3%
25∘C–30∘C 98 3/3.1% 74.2% 84.4% 10.2%
30∘C–35∘C 109 3/2.7% 54.2% 82.4% 28.1%
35∘C–40∘C 123 5/4.1% 43.3% 76.5% 33.2%
40∘C–45∘C 115 3/2.6% 35.9% 82.2% 46.3%
45∘C–50∘C 89 2/2.2% 30.8% 79.4% 48.6%
Average 59.3% 83.4% 24.1%

remained low. Observing the videos, temperature variation
within each road user likely explains this good performance:
features are still detected for the areas of high and low
temperature within road users.

Although miss rate was low, classification results were
generally poor before retraining the algorithm, and clas-
sification accuracy reduced systematically as temperature
increased from 90.3% in the lowest temperature case to 30.8%

in the highest. This result indicates that, for the thermal
video, the object appearance described by HOG [7] varies
with pavement temperature, and therefore the SVM should
be trained on thermal images to account for the different
appearance of road users.The classification accuracy after the
new training showed improvements, particularly at higher
pavement temperatures. At 45–50∘C, overall classification
accuracy improved by 48.6% points, from an accuracy of
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30.8 to 79.4%. The excellent performance of detection and
the higher classification accuracy rates for the algorithm
trained on thermal data indicate the possibility of using this
algorithm to correctly detect and classify different types of
road users under different temperature conditions.

Looking at the per-class performance measures, better
recall and precision were found in almost all temperature
cases for vehicles and pedestrians when using the algorithm
trained with thermal data (with an average increase of 26.3%
points in precision for vehicles and an average increase of
24.1% points in recall and 22.2% points in precision for
pedestrians). The recall for cyclists increases in all cases by
39.5%points on average; however, precision decreases inmost
of the cases by 10.1% points on average. This is explained by
considering that, before training the algorithm on thermal
data, a smaller portion of the detected cyclists is successfully
classified which leads to a deceptively high precision. In
other words, fewer cyclists were classified as such by the
algorithm trained with regular videos, but the algorithm
made few mistakes, and the other cyclists were classified as
pedestrians or vehicles resulting in lower precision for these
road user types. With the newly trained algorithm, more
road users, including actual cyclists, are classified as cyclists,
which increases cyclist recall; but in doing so, more vehicles
and pedestrians are also misclassified as cyclists, causing a
decrease in cyclist precision. A general issue for both types of
cameras is confusing pedestrians and cyclists since they have
similar appearances. Global accuracy improved by asmuch as
50% points in the multimodal environments. Moreover, the
% point improvement was larger for high temperature cases,
indicating that training the algorithm for data collection
using thermal videos is both necessary and effective.

5.2. Vehicle Speed Validation. To compare the performance
of the camera systems in vehicle speed extraction accuracy,
a data visualization exercise was completed for all test
cases. One example, shown in Figure 8, demonstrates the
performance of the two camera systems under sun with
strong shadows.

5.2.1. Speed and Lighting. Table 6 provides the equation of
the fitted line, its 𝑅-squared value, MRE, RAE, and RPE
for each lighting conditions test case. The first important
observationwas that the intercept value in nearly all test cases
was positive for both technologies. This result is consistent
with previous research and shows that video sensors tend to
overestimate speeds [29]. The 𝑅-square values for thermal
video are significantly higher for daytime with shadows as
well as median and low visibility conditions. RPE is perhaps
the most critical value in Table 6. The thermal camera had a
lower RPE in all test cases other than overcast sky, in which
the regular camera was expected to perform well without
lighting interference. In the other test cases, the thermal
video consistently provided 2-3%points improvement in RPE
over the regular camera. Despite this good performance, the
RAE was highly variable both across conditions and across
cameras. This again supports previous research and indicates
that the overestimation bias is less a function of camera or
conditions as it is a function of user calibration error [29]. In

general, the RPE was within 5–10% of ground truth, which
is consistent with previously measured performance of video
sensors [29].

5.2.2. Speed and Temperature. Similarly for the temperature
test cases, parameters of the fitted line and the segregated
relative errors values are presented in Table 7. The RPE for
all but one test case was 0.06 or less, and was not observed
to vary greatly with temperature. For one test case (35–
40∘C), several outliers greatly increased the reported error.
A slight increase in RPE was noted between 20 and 30∘C.
These pavement temperatures most closely match the surface
temperature of vehicles, and so a slight performance decrease
may be explained by tracking issues associated with the low
contrast with the pavement temperature. Despite the slight
effect of temperature, the thermal videos performed reliably
and consistently across all temperature test cases, with errors
equal to what is expected from existing research. Thermal
videos can be an effective substitute for regular videos with
regard to speed data extraction under various lighting and
temperature conditions.

6. Conclusions

This paper presents an approach to integrate and evaluate the
performance of thermal and visible light videos for the auto-
mated collection and traffic data extraction under various
lighting and temperature conditions in urban intersections
with high pedestrian and bicycle traffic.The two technologies
were evaluated in terms of road user detection, classification,
and vehicle speed estimation. Considering the above results,
several key conclusions are drawn.

(1) The regular camera only narrowly outperformed the
thermal camera in terms of detection and classifi-
cation of all road users during daytime conditions.
Also, the regular camera detects and classifies vehicles
adequately under nighttime conditions. However, the
performance of the regular camera deteriorates for
pedestrians and cyclists in all nighttime test cases,
while miss rate by the thermal camera remained
around 5%, showing stability across the tested condi-
tions.

(2) Based on the results at the individual level from the
two test cases, the two cameras performed similarly
in the favorable case, while, for the night, low visibility
case, the advantage of using thermal camerawasmore
significant compared to the results at the group level.

(3) Training of the classifier to account for variation in
the appearance of road users in the thermal video
was observed to increase classification performance
(recall, precision, and global accuracy) for the thermal
camera, particularly at higher temperatures. Training
the algorithm using more thermal videos is expected
to improve the classification performance by thermal
video also during the day, where the thermal camera
was slightly inferior to regular video.

(4) Speed measurements by the thermal camera were
consistently more accurate than measurements by
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Figure 8: Example of vehicle speed estimation performance for thermal and regular cameras under sun with strong shadows.

Table 6: Vehicle speed performance for different lighting conditions—thermal and regular video.

Lighting condition Thermal video Regular video
Calibration model 𝑅2 Calibration model 𝑅2

Daytime
Overcast 𝑦 = 𝑥 − 1.97 0.91 𝑦 = 𝑥 − 0.04 0.95
Sun, little shadow 𝑦 = 𝑥 + 2.91 0.96 𝑦 = 𝑥 + 1.77 0.92
Sun, slight shadows 𝑦 = 𝑥 + 2.50 0.93 𝑦 = 𝑥 + 5.75 0.90
Sun, strong shadows 𝑦 = 𝑥 + 0.20 0.88 𝑦 = 𝑥 − 2.00 0.56

Nighttime
High visibility 𝑦 = 𝑥 + 4.49 0.93 𝑦 = 𝑥 + 0.01 0.92
Medium visibility 𝑦 = 𝑥 + 2.45 0.86 𝑦 = 𝑥 + 4.14 0.46
Low visibility 𝑦 = 𝑥 + 0.17 0.97 𝑦 = 𝑥 + 0.83 0.93

Lighting condition Thermal video Regular video
MRE RAE RPE MRE RAE RPE

Daytime
Overcast 0.067 0.058 0.067 0.059 0.001 0.059
Sun, little shadow 0.106 0.116 0.045 0.069 0.071 0.062
Sun, slight shadows 0.103 0.105 0.047 0.226 0.242 0.063
Sun, strong shadows 0.061 0.005 0.061 0.108 0.053 0.097

Nighttime
High visibility 0.150 0.151 0.047 0.051 0.000 0.051
Medium visibility 0.104 0.082 0.072 0.150 0.138 0.104
Low visibility 0.036 0.026 0.033 0.060 0.005 0.059

the regular video. Additionally, speed measurement
accuracy was observed to be generally insensitive to
lighting and temperature conditions.

Summarizing these points, regular video works well for
“overcast” and “sun, little shadow” conditions without light-
ing interference such as shadow, glare, low visibility, or reflec-
tion. The thermal camera performs similarly in these condi-
tions (although classification must be improved by training

the algorithm on thermal data). However, with shadows or
at night, the performance of the regular camera was greatly
reduced, and the thermal camera was superior in terms
of detection, classification, and vehicle speed measurement.
The thermal videos are insensitive to lighting interference
and solve the issues associated with visible light cameras
for traffic data collection, especially for active road users
such as pedestrians and cyclists. The thermal camera is also
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Table 7: Vehicle speed performance for different pavement
temperature—thermal video.

Pavement
temp. Calibration model 𝑅2 MRE RAE RPE

0∘C–5∘C 𝑦 = 𝑥 + 2.50 0.930 0.103 0.105 0.047
20∘C–25∘C 𝑦 = 𝑥 + 0.20 0.870 0.061 0.005 0.061
25∘C–30∘C 𝑦 = 𝑥 + 1.52 0.770 0.066 0.039 0.056
30∘C–35∘C 𝑦 = 𝑥 + 2.88 0.830 0.106 0.087 0.046
35∘C–40∘C 𝑦 = 𝑥 + 2.63 0.930 0.103 0.126 0.114
40∘C–45∘C 𝑦 = 𝑥 + 2.48 0.900 0.087 0.081 0.058

generally insensitive to the effects of pavement temperature.
Thermal videos are more reliable and stable compared to
regular videos in an around-the-clock collection campaign.
Furthermore, greyscale thermal videos with lower resolution
provide comparable results during the day, yet require less
storage space and processing power, which are key concerns.
Finally, thermal videos cause no privacy issues, which are
a major hurdle for the application of video-based sensors,
especially in the US and European countries.

As part of its contributions, this paper provides an
approach for integrating existing tracking and classification
algorithms for automated thermal video collection and analy-
sis under varied lighting and weather conditions. The pro-
posed approach can be used for automated counting, speed
studies, and surrogate safety analyses in particular during
low visibility conditions and in environments with high
pedestrian and bicycle traffic activity.

Though general improvement of the classification perfor-
mancewas achieved by training the classifier on thermal data,
the results (average 83.4% global accuracy over all cases, in
Table 5) are lower than what has been reported previously for
regular videos (93.3%) [7]. Reasons for this reduced perfor-
mance must be considered in future work, including lower
resolution of thermal videos and the need for more training
image samples of road users under different temperature con-
ditions. Validation of the classification algorithms on thermal
videos will be better characterized using the ROC curve to
compare different methods over several parameter settings.
Although past literature shows visual improvements when
using thermal cameras in foggy conditions, no work has been
done to quantify the improvement of thermal videos during
adverse weather conditions. The evaluation of thermal video
in adverse weather conditions, such as heavy precipitation
and fog, is a key focus of future work. Finally, a hybrid system
that combines the advantages of both technologies can be
designed to automatically calibrate and process video data
from both thermal and visible spectrum sensors.
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